Nestor cuts a cake with a 12-inch dameter One of the pleces he cuts has a central angle of 24° What is the area of the sice of cake? What fraction of the entire cake is this? Explain pleces he cuts has a central angle of 24 s

Answers

Answer 1

Answer:

7.54 sq. inches

Step-by-step explanation:

The cake with the cut portion has been shown in the figure below.

For calculating the area of cut part we first need to calculate the area of whole cake.

Diameter of the cake is given in the question as 12 inches.

So the area of the cake = [tex]\pi \frac{Diameter^2}{4}[/tex] = [tex]3.14 \times \frac{12\times12}{4} = 113.04[/tex] [tex]inches^2[/tex]

Since when the central angle is 360°, the area is 113.04 square inches

So when the central angle is 24°, the area of the section will be

[tex]\frac{113.04\times 24}{360} =7.54[/tex]

Thus area of the slice cut by Nestor is 7.54 sq. inches.

Fraction = [tex]\frac{7.54}{113.04} = 0.07[/tex]

Nestor Cuts A Cake With A 12-inch Dameter One Of The Pleces He Cuts Has A Central Angle Of 24 What Is

Related Questions

plz help dont skip
Using the distance formula, d = √(x2 - x1)2 + (y2 - y1)2, what is the distance between point (-2, 2) and point (4, 4) rounded to the nearest tenth?


4 units


5.7 units


1 unit


6.3 units

Answers

Answer:

The answer to your question is 6.3 units

Step-by-step explanation:

Data

A (-2, 2)

B (4, 4)

Distance = ?

Formula

dAB = [tex]\sqrt{(x2 - x1)^{2} + (y2 - y1)^{2}}[/tex]

Substitution

x1 = -2   x2 = 4    y1 = 2   y2 = 4

dAB = [tex]\sqrt{(4 + 2)^{2} + (4 - 2)^{2}}[/tex]

Simplification

dAB = [tex]\sqrt{6^{2} + 2^{2}}[/tex]

dAB = [tex]\sqrt{36 + 4}[/tex]

dAB = [tex]\sqrt{40}[/tex]

Result

dAB = 6.3 units

somebody help me plzzzz plz

Which of the following is the solution to 7/(x+2) + 11/(x-5) = 7/(x+2)(x-5)?


10/9


9/10


-10/9


-9/10

Answers

Option A: [tex]\frac{10}{9}[/tex] is the solution of x

Explanation:

The given expression is [tex]\frac{7}{(x+2)}+\frac{11}{(x-5)}=\frac{7}{(x+2)(x-5)}[/tex]

We need to determine the value of x.

The value of x can be determined by solving the expression for x.

Taking LCM , we get,

[tex]\frac{7(x-5)+11(x+2)}{(x+2)(x-5)}=\frac{7}{(x+2)(x-5)}[/tex]

Since, the denominator is common for both sides of the equation, let us cancel the denominator.

Thus, we have,

[tex]7(x-5)+11(x+2)=7[/tex]

Multiplying the terms within the bracket, we get,

[tex]7x-35+11x+22=7[/tex]

Adding the like terms, we get,

[tex]18x-13=7[/tex]

Adding both sides of the equation by 13, we have,

[tex]18x=20[/tex]

Dividing both sides of the equation by 18,

[tex]x=\frac{20}{18}[/tex]

Simplifying, we get,

[tex]x=\frac{10}{9}[/tex]

Thus, the solution is [tex]\frac{10}{9}[/tex]

Therefore, Option A is the correct answer.

Answer:

a

Step-by-step explanation:

The side length of a square is (6x-1) inches Write a linear expression in simplest form to represent the perimeter of the square.Find the perimeter of x equals 3

Answers

Final answer:

The perimeter of a square with side length (6x-1) is expressed as P = 24x - 4. Substituting x with 3, the perimeter is calculated to be 68 inches.

Explanation:

The expression for the perimeter of a square is given by the formula P=4s, where 's' is the side length of the square. For a square with side length (6x-1) inches, the perimeter would be:

P = 4(6x-1)

This expression can be simplified to:

P = 24x - 4

When x equals 3, we substitute 3 in place of x:

P = 24(3) - 4

P = 72 - 4

P = 68 inches

Therefore, the perimeter of the square when x is 3 is 68 inches.

Tarun has 4 more than the twice the number of tshirts Deepak has.Mahesh has 2 more than thrice the number of T-shirts that Tarun has.If the ratio is 6:7 find the number of T-shirts each of them has.

Answers

Answer:

Deepak: 4 t-shirts,

Tarun: 12 t-shirts,

Mahesh: 14 t-shirts.

Step-by-step explanation:

Let x represent number of t-shirts that Deepak has.

Please consider the complete question.

Tarun has 4 t-shirt more than twice the number of T-shirts Deepak has. Mahesh has 2 more than thrice the number of T-shirts Deepak has. If the ratio of the t-shirt that Tarun and Mahesh have is 6 : 7, find out the number of the t-shirt each of them has.​

Since Tarun has 4 t-shirt more than twice the number of T-shirts Deepak has, so the number of t-shirts that Tarun has would be [tex]2x+4[/tex].

We are also told that Mahesh has 2 more than thrice the number of T-shirts Deepak has. So the number of t-shirts that Mahesh has would be [tex]3x+2[/tex].

Since the ratio of the t-shirt that Tarun and Mahesh have is 6 : 7, so we can represent this information in an equation as:

[tex]\frac{2x+4}{3x+2}=\frac{6}{7}[/tex]  

Cross multiply:

[tex]6(3x+2)=7(2x+4)[/tex]

[tex]18x+12=14x+28[/tex]

[tex]18x-14x+12-12=14x-14x+28-12[/tex]

[tex]4x=16[/tex]

[tex]x=\frac{16}{4}=4[/tex]

Therefore, Deepak has 4 t-shirts.

The number of t-shirts that Tarun has would be [tex]2x+4\Rightarrow 2(4)+4=4+4=12[/tex]

Therefore, Tarun has 12 t-shirts.

The number of t-shirts that Mahesh has would be [tex]3x+2\Rightarrow 3(4)+2=12+2=14[/tex]

Therefore, Mahesh has 14 t-shirts.

-2x^(2)+10x=-14 complete the square

Answers

Step-by-step explanation:

[tex]-2x^2+10x=-14\qquad\text{divide both sides by (-2)}\\\\\dfrac{-2x^2}{-2}+\dfrac{10x}{-2}=\dfrac{-14}{-2}\\\\x^2-5x=7\qquad(a-b)^2=a^2-2ab+b^2\qquad(*)\\\\x^2-2(x)(2.5)=7\qquad\text{add}\ 2.5^2\ \text{to both sides}\\\\\underbrace{x^2-2(x)(2.5)+2.5^2}_{(*)}=7+2.5^2\\\\(x-2.5)^2=7+6.25\\\\(x-2.5)^2=13.25[/tex]

[tex]\text{If you want the solution, then:}\\\\(x-2.5)^2=13.25\iff x-2.5=\pm\sqrt{13.25}\\\\x-\dfrac{25}{10}=\pm\sqrt{\dfrac{1325}{100}}\\\\x-\dfrac{25}{10}=\pm\dfrac{\sqrt{1325}}{\sqrt{100}}\\\\x-\dfrac{25}{10}=\pm\dfrac{\sqrt{25\cdot53}}{10}\\\\x-\dfrac{25}{10}=\pm\dfrac{\sqrt{25}\cdot\sqrt{53}}{10}\\\\x-\dfrac{25}{10}=\pm\dfrac{5\sqrt{53}}{10}\\\\x-\dfrac{5}{2}=\pm\dfrac{\sqrt{53}}{2}\qquad\text{add}\ \dfrac{5}{2}\ \text{to both sides}\\\\x=\dfrac{5}{2}\pm\dfrac{\sqrt{53}}{2}[/tex]

[tex]\huge\boxed{x=\dfrac{5\pm\sqrt{53}}{2}}[/tex]

The growth of a local raccoon population approximates a geometric sequence where an is the number of raccoons in a given year and n is the year. after 6 years there are 45 raccoons and after 8 years there are 71 raccoons.

Answers

Answer:

 GENERAL EXPLICIT SEQUENCE IS GIVEN   [tex]a_n = (14.74)(r)^{n-1)}[/tex]

Step-by-step explanation:

Let n be the number of year the data is recorded in.

a: The number of raccoons taken initially.

r: The multiplying factor

[tex]a_n[/tex]  : The number of raccoon in the nth year.

As given:  [tex]a_6 = 45, a_8 = 71[/tex]

Now, as the given situation can be expressed as GEOMETRIC SERIES:

[tex]a_n = a r^{(n-1)}[/tex]

Applying the same to given terms, we get:

[tex]a_6 = a r^{(6-1)} = ar^5 = 45\\\implies ar^5 = 45[/tex]

[tex]a_8 = a r^{(8-1)} = ar^7 =71\\\implies ar^7 = 71[/tex]

Dividing both equations, we get:

[tex]\frac{ar^7}{ar^5} = \frac{71}{45} \\\implies r^2 = 1.58\\\implies r = 1.25[/tex]

So, the first term [tex]a = \frac{45}{(1.25)^5} = 14 .74 \approx 15[/tex]

So, the GENERAL EXPLICIT SEQUENCE IS GIVEN as:  [tex]a_n = (14.74)(r)^{n-1)}[/tex]

Write the quadratic function in standard form.

y = -(x + 2)^2

Answers

Answer:

Step-by-step explanation:

-(x+2)^2 --> -(x+2)(x+2) --> -(x^2+4x+4) = -x^2-4x-4

Answer:

[tex]x^{2} -4x+4[/tex]

Step-by-step explanation:

[tex]y =-(x+2)^{2}[/tex]

The negative sign multiplies the positive in the bracket

[tex]y=(x-2)^{2}[/tex]

[tex](x-2) X (x-2)[/tex]

[tex]x^{2} -2x-2x+4[/tex]

That gives us

[tex]x^{2} -4x+4[/tex]

a swimming pool is shaped like a cylinder with a radius of 15 feet and a height of 6 feet. if one cubic foot holds 7.48 gallons of the water how much gallons of water can the swimming pool hold.

Answers

Answer: the swimming pool can hold 31707.72 gallons of water.

Step-by-step explanation:

The swimming pool is shaped like a cylinder. The formula for determining the volume of a cylinder is expressed as

Volume = πr²h

Where

r represents the radius of the cylindrical swimming pool.

h represents the height of the pool.

π is a constant whose value is 3.14

Therefore, volume of the swimming pool is

Volume = 3.14 × 15² × 6 = 4239 cubic feet

if one cubic foot holds 7.48 gallons of the water, then the number of gallons of water that the swimming pool can hold is

4239 × 7.48 = 31707.72 gallons of water

Answer:

the swimming pool can hold 31707.72 gallons of water.

Step-by-step explanation:

PLEASE HELP IM BEING TIMED

Answers

Answer:

The 3rd option Summation(4^i-4)

Step-by-step explanation:

Summation(4^i-4)

When i = 1

4^I-4 = 4^1-4 = 4^-3 = 1/64

When i = 2

4^i-4 = 4^2-4 = 4^-2 = 1/16

When i = 3

4^i-4 = 4^3-4 = 4^-1 = 1/4

When i = 4

4^i-4 = 4^4-4 = 4^0 = 1

When i = 5

4^i-4 = 4^5-4 = 4^1 = 4

Answer:

[tex]\sum _{i=1}^54^{i-4}[/tex]

Step-by-step explanation:

[tex]a_{1} \\[/tex] = First term

In this case, our first term is [tex]\frac{1}{64}[/tex]

The ratio of all of the adjacent terms is 4

[tex]a_{1} \\[/tex] = [tex]4^1^-^4[/tex]

[tex]a_{1}=\frac{1}{64}[/tex]

~Hope this helps!~

A theater ticket costs $20. The function h(x) = 20x represents the cost of purchasing x theater tickets. a. How much does it cost to buy 7 theater tickets? b. How many theater tickets can you buy with 460?

Answers

Answer:

A.) it costs 140$ for 7 tickets B.) 460$ = 23 tickets

Step-by-step explanation:

If it is 20 dolors for 1 ticket if you buy 7 you do 7 x 20 = 140.

But if you have 460$ then you do the opisit you do 460/20=23

In a game, a player earns 100 points for each question answered correctly and earns −30 points for each question answered incorrectly. A player answered 14 questions correctly and 6 questions incorrectly. Write a numeric expression to represent the total number of points the player earned. What is the total number of points the player earned?

Answers

Answer:

1220

Step-by-step explanation:

Given that in a game, a player earns 100 points for each question answered correctly and earns −30 points for each question answered incorrectly.

Let x be the no of questions correctly answered .  Then 20-x would be the question wrongly answered since total number of questions = 14+6 =20

Points gained for correct answer = 100(x) = 100x

Points lost for wrong answer = -30(20-x) = -600+30x

So total points gained when x questions are answered right

= [tex]100x-600+30x\\= 130x-600[/tex]

A player answered 14 questions correctly and 6 questions incorrectly.

Here x =14

Hence we substitute x =14 to get total points earned

Total points earned

[tex]= 130(14)-600\\= 1820-600\\=1220[/tex]

dont skip help me plzzz will mark brainliest

Answers

Answer:

(6,-6)

Step-by-step explanation:

well if you count over to the right 6 and down 6 that points would be

(6,-6)

Answer:

(6,-6)

Step-by-step explanation:

The answer is that because the x-axis for A  is positive and it is 6 points away from the origin. The  y-axis for A should negative this is because the quadrants are often numbered from 1st to 4th and denoted by Roman numerals: I (where the signs of the (x; y) coordinates are I (+; +), II (−; +), III (−; −), and IV (+; −). The point is also 6 units away from the origin.

Rachel gets her midterm grades and finds that she has a 2.4 in OB. She expected a better grade point average to date. Rachel is _________ her performance.

Answers

Answer:

Answer is; Evaluating

Step-by-step explanation:

Student self-assessment involves students evaluating their own work and learning progress.

Through self-assessment evaluation, students can:

* See where their knowledge is weak

* See where to focus their attention in learning.

* Set realistic goals

* Revise their work

* Track their own progress.

In Rachel's case, after writing her midterm exams, she already set her goal grade. So when she got her midterm grades, she needed to evaluate her work to find out her performance.

Therefore, according to the question, Rachel is EVALUATING her performance.

Jamie is riding a Ferris wheel that takes fifteen seconds for each complete revolution. The diameter of the wheel is 10 meters and its center is 6 meters above the ground. (a) When Jamie is 9 meters above the ground and rising, at what rate (in meters per second) is Jamie gaining altitude? (b) When is Jamie rising most rapidly? At what rate?

Answers

Answer:

The answers to the question is

(a) Jamie is gaining altitude at 1.676 m/s

(b) Jamie rising most rapidly at t = 15 s

At a rate of 2.094 m/s.

Step-by-step explanation:

(a) The time to make one complete revolution = period T = 15 seconds

Here will be required to develop the periodic motion equation thus

One complete revolution = 2π,

therefore the  we have T = 2π/k = 15

Therefore k = 2π/15

The diameter = radius of the wheel = (diameter of wheel)/2 = 5

also we note that the center of the wheel is 6 m above ground

We write our equation in the form

y = [tex]5*sin(\frac{2*\pi*t}{15} )+6[/tex]

When Jamie is 9 meters above the ground and rising we have

9 = [tex]5*sin(\frac{2*\pi*t}{15} )+6[/tex] or 3/5 = [tex]sin(\frac{2*\pi*t}{15} )[/tex] = 0.6

which gives sin⁻¹(0.6) = 0.643 =[tex]\frac{2*\pi*t}{15}[/tex]

from where t = 1.536 s

Therefore Jamie is gaining altitude at

[tex]\frac{dy}{dt} = 5*\frac{\pi *2}{15} *cos(\frac{2\pi t}{15}) =[/tex] 1.676 m/s.

(b) Jamie is rising most rapidly when   the velocity curve is at the highest point, that is where the slope is zero

Therefore we differentiate the equation for the velocity again to get

[tex]\frac{d^2y}{dx^2} = -5*(\frac{\pi *2}{15} )^2*sin(\frac{2\pi t}{15})[/tex] =0, π, 2π

Therefore [tex]-sin(\frac{2\pi t}{15} )[/tex] = 0 whereby t = 0 or

[tex]\frac{2\pi t}{15}[/tex] = π and t =  7.5 s, at 2·π t = 15 s

Plugging the value of t into the velocity equation we have

[tex]\frac{dy}{dt} = 5*\frac{\pi *2}{15} *cos(\frac{2\pi t}{15}) =[/tex] - 2/3π m/s which is decreasing

so we try at t = 15 s and we have [tex]\frac{dy}{dt} = 5*\frac{\pi *2}{15} *cos(\frac{2\pi *15}{15}) = \frac{2}{3} \pi[/tex]m/s

Hence Jamie is rising most rapidly at t = 15 s

The maximum rate of Jamie's rise is 2/3π m/s or 2.094 m/s.

(a) When Jamie is 9 meters above the ground and rising, she is gaining altitude at approximately 1.68 meters per second. (b) Jamie is rising most rapidly when the cosine function is at its maximum, which happens at the lowest point of the Ferris wheel, and the rate is approximately 2.094 meters per second.

Part (a): Rate at Which Jamie is Gaining Altitude

1. Identify the position function of Jamie on the Ferris wheel:

  The height h of Jamie above the ground as a function of time t can be modeled by the equation of a sinusoidal function:

 [tex]\[ h(t) = 6 + 5\sin\left(\frac{2\pi}{15}t\right) \][/tex]

  Here, 6 meters is the height of the center of the Ferris wheel above the ground, and 5 meters is the radius of the wheel.

2. Differentiate the height function to find the rate of change of height:

  To find the rate at which Jamie is gaining altitude, we need to differentiate h(t) with respect to t:

[tex]\[ h'(t) = \frac{d}{dt} \left( 6 + 5\sin\left(\frac{2\pi}{15}t\right) \right) = 5 \cdot \frac{2\pi}{15} \cos\left(\frac{2\pi}{15}t\right) \][/tex]

  Simplifying,

 [tex]\[ h'(t) = \frac{2\pi}{3} \cos\left(\frac{2\pi}{15}t\right) \][/tex]

3. Determine t when Jamie is at 9 meters above the ground and rising:

[tex]\[ 9 = 6 + 5\sin\left(\frac{2\pi}{15}t\right) \] Solving for \( \sin \left(\frac{2\pi}{15}t\right) \): \[ 3 = 5\sin\left(\frac{2\pi}{15}t\right) \] \[ \sin\left(\frac{2\pi}{15}t\right) = \frac{3}{5} \][/tex]

  Jamie is rising when [tex]\( \cos \left(\frac{2\pi}{15}t\right) > 0 \)[/tex].

4. Find the rate at which Jamie is gaining altitude at this instant:

  Substitute [tex]\(\sin \left(\frac{2\pi}{15}t\right) = \frac{3}{5}\)[/tex] into the derivative [tex]\( h'(t) \)[/tex]:

  [tex]\[ \cos \left(\frac{2\pi}{15}t\right) = \sqrt{1 - \sin^2 \left(\frac{2\pi}{15}t\right)} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5} \][/tex]

  Thus, the rate of change of height:

[tex]\[ h'(t) = \frac{2\pi}{3} \cdot \frac{4}{5} = \frac{8\pi}{15} \approx 1.68 \text{ meters per second} \][/tex]

Part (b): When Jamie is Rising Most Rapidly

1. Identify when Jamie is rising most rapidly:

  Jamie rises most rapidly when [tex]\( \cos \left(\frac{2\pi}{15}t\right) = 1 \)[/tex], which corresponds to the maximum value of the cosine function.

2. Rate of change of height at maximum rise:

[tex]\[ h'(t) = \frac{2\pi}{3} \cdot 1 = \frac{2\pi}{3} \approx 2.094 \text{ meters per second} \][/tex]

Find [g•h](x) and [h•g] (x) g(x)=2x h(x)=-10x-10

Answers

Answer:

-40x(x+1)

Step-by-step explanation:

Find [g•h](x) and [h•g] (x)

g(x)=2x

h(x)=-10x-10

[g•h](x) = 2x(-10x-10)= -20x^2-20x = -20x(x+1)

[h•g](x) = (-10x-10)2x= -10x(2x)-10(2x) = -20x^2-20x

[g•h](x) and [h•g] (x)

and means addition

-20x^2-20x + (-20x^2-20x)

-20x^2-20x-20x^2-20x

choose like terms

-20x^2-20x^2-20x-20x

-40x^2-40x

-40x(x+1)

You have an SRS of 23 observations from a large population. The distribution of sample values is roughly symmetric with no outliers. What critical value would you use to obtain a 95% confidence interval for the mean of the population?

Answers

Answer:

Therefore the critical value= 2.073

Step-by-step explanation:

The number of observation = 23.

For the mean of the population the confidence interval  = 95%.

Here mean and stander deviation of the distribution is not given. So we use t distribution.

T distribution is called as student's t distribution.

Sample number =n =23.

Confidence level = c= 95% =0.95

The degree of freedom is sample size decreased by 1

df=n-1 = 23-1 =22.

The critical value [tex]t^*[/tex] can be found in the row df = 22 and column with 0.95 of the T distribution table .

[tex]t^*[/tex] = 2.073

Therefore the critical value= 2.073

To calculate the critical value for a 95% confidence interval when the sample size is small (less than 30), we need to use the t-distribution. The critical value from the t-distribution will depend on the sample size (specifically, the degrees of freedom) and the desired level of confidence.
Here's how you could calculate this step by step without using the Python function mentioned:
**Step 1: Identify the desired confidence level.**
For a 95% confidence interval, we are interested in capturing the central 95% of the t-distribution.
**Step 2: Determine the degrees of freedom.**
The degrees of freedom (df) for a t-distribution is equal to the sample size minus 1. So with 23 observations, df = 23 - 1 = 22.
**Step 3: Find the critical t-value.**
We want to find the critical t-value for the t-distribution with 22 degrees of freedom that corresponds to the 95% confidence interval. This means we want to find the t-value such that 95% of the distribution lies between -t and +t. Because the t-distribution is symmetric, we can look up the critical value for 97.5% (to split the remaining 5% evenly on both tails of the distribution).
Using a t-distribution table (often found in the appendices of statistics textbooks) or a statistical computing resource, you would find the t-value that corresponds to a cumulative probability of 0.975 with 22 degrees of freedom.
**Step 4: Interpret the table or resource correctly.**
If you were looking at a table, you would look down the degrees of freedom column until you find 22, then right to the column that represents the 97.5% cumulative probability (remember, this is for the two-tailed test). That entry is the critical t-value that corresponds to a 95% confidence interval.
**Step 5: Use the critical t-value for constructing the interval.**
Once you have the critical t-value, you would use it to construct the confidence interval for the population mean by multiplying this t-value by the standard error of the sample mean and then add and subtract this value from the sample mean.
**Important Note:**
Please be aware that the exact t-value varies depending on the source of the statistical tables or the statistical software being used. The value also depends on the precision (number of decimals) presented in the table.
If you perform these steps with a standard statistical table or software, you should find that the critical t-value for a 95% confidence interval with 22 degrees of freedom is approximately 2.074.

A rectangular public park has an area of 3,600 square feet. It is surrounded on three sides by a chain link fence. If the entire length of the fence measures 180 feet, how many feet long could the unfenced side of the rectangular park be?

Answers

Answer:

If length of the field is 30 ft, then width is 120 ft.

If the  length of the field is 60 ft, then width is 60 ft.

Step-by-step explanation:

Let us assume the length of the rectangular park = L ft

Let us assume the breadth of the rectangular park = B  ft

Now, AREA of the given park =  L x B

L x B  = 3,600 sq ft   ... (1)

Also, the perimeter of three sides  = 180 ft

2 L +  B  = 180  ..... (2)

Now, from (1) and (2), we get:

L x B  = 3,600

2 L +  B  = 180   ⇒ B  = 180 - 2 L

Substitute this in(1) , we get:

L x B  = 3,600   ⇒ L x (180 - 2 L)  = 3600

[tex]\implies 180 L - 2L^2 = 3600\\\implies L^2 -90L + 1800 = 0\\\implies (L-30)(L-60)= 0[/tex]

L = 30 or L  = 60

So, if L  = 30  ft , then B = 180 - 2L  =  180 - 60 = 120 ft

So, if L  = 60  ft , then B = 180 - 2L  =  180 - 120 = 60 ft

So, if length of the field is 30 ft, then width is 120 ft.

And if the  length of the field is 60 ft, then width is 60 ft.

You are renting a limousine that charges certain rates to visit each of the following cities. You need to visit each city once and you need to start in Athens and end in Athens. Use the "Brute Force" Algorithm to find the cheapest route to visit each city and return home again to Athens.


Answers

Answer:

The cheapest route to visit each city and return home again to Athens is:

A→B→C→D→A  or A→D→C→B→A.

Step-by-step explanation:

The Algorithm of Brute Force

List of all possible routesCalculate the charge of each route found in Step 1Pick the route which has the cheapest route.

Let Athens ⇒A , Buford ⇒B , Cuming ⇒ C , Dacula ⇒ D

There are 6 routes to visit each city and return home again to Athens.

Route 1: A→B→C→D→A = 70 + 25 + 30 + 60 = $185

Route 2: A→B→D→C→A = 70 + 70 + 30 + 50 = $220

Route 3: A→C→B→D→A = 50 + 25 + 70 + 60 = $205

Route 4: A→C→D→B→A = 50 + 30 + 70 + 70 = $220

Route 5: A→D→B→C→A = 60 + 70 + 25 + 50 = $205

Route 6: A→D→C→B→A = 60 + 30 + 25 + 70 = $185

By checking the previous routes:

The cheapest charge will be $185 and it will be for the route

A→B→C→D→A  or A→D→C→B→A.

Jocelyn estimates that a piece of wood measures 5.5 cm. If it actually measures 5.62 cm, what is the percent error of Jocelyn's estimate?2.13%2.18%12%46.83%

Answers

Answer:

is d

Step-by-step explanation:

Answer:

2.13%

Step-by-step explanation:

Inaccurate measurement = 5.5cm

Actual measurement = 5.62cm

Difference= actual - inaccurate

=> 5.62 - 5.5

Therefore, the measurement Jocelyn obtained is off by 0.12cm (difference)

Note: error = difference

% diff = error÷ actual measurement × 100

= 0.12/5.62 × 100

% diff. = 2.13 (to the nearest decimal place)

A satellite views the Earth at an angle of 20°. What is
the arc measure, x, that the satellite can see?
O 40°
O 80°
160°
0 320​

Answers

Answer:

The answer is 160

Step-by-step explanation:

The value of x is (πr - 20).

What is the arc length of a circle?

The arc length of a circle is the distance between two points on the curve of the circle.

We have,

The measure of an angle formed by two tangents outside the circle.

= Difference of the intercepted arc / 2 ______(1)

Now,

Larger arc = (2πr - x)

Small arc = x

Angle = 20

Substituting in (1).

20 = (2πr - x - x) / 2

40 = 2πr - 2x

20 = πr - x

x = πr - 20

Thus,

The value of x is (πr - 20).

Learn more about arc lengths here:

https://brainly.com/question/16403495

#SPJ7

An arc on a circle measures 295°. The measure of the central angle

Answers

Answer:

59/36π

Step-by-step explanation:

We know that an angle is measured in either degrees or radians and The arc's angle measurement, taken at the center of the circle the arc is part of, is measured in degrees (or radians)

Let's convert 90 degrees into radians

295° = 295 * π/180 = 59/36π

Joyce knits baby sweaters and baby socks. The baby sweaters take 10 feet of yarn and the baby socks take 5 feet of yarn. She has 100 feet of yarn and wants to make 5 sweaters. What is the maximum number of socks she will be able to make from the leftover yarn?


Let x represent sweaters and y represent socks.

Select one:
A. 8
B. 9
C. 11
D. 10

Answers

I believe the correct answer is c

Answer: the maximum number of socks she will be able to make from the leftover yarn is 10

Step-by-step explanation:

Let x represent the number of sweaters.

Let y represent the number of socks.

The baby sweaters take 10 feet of yarn and the baby socks take 5 feet of yarn. This means that the total number of feet of yarn needed to make x sweaters and y socks is expressed as

10x + 5y

She has 100 feet of yarn and wants to make 5 sweaters. This means that

10 × 5 + 5y = 100

50 + 5y = 100

5y = 100 - 50 = 50

y = 50/5

y = 10

Tony collected 16.2 pounds of pecans from the trees on his farm.He will give the same weight of pecans to each of 12 friends.How many pounds of pecans will each friend get.

Answers

Each friend will get 1.35 pounds of pecans.

To find this, simply divide 16.2 by 12 to find the weight of pecans everyone gets. Thus making 1.35 pounds of pecans the answer.

I hope this helps!

The height of a volleyball, h, in feet, is given by h = −16t2 + 11t + 5.5, where t is the number of seconds after it has been hit by a player. The top of the net is 7.3 feet above the floor. Does the volleyball travel high enough to clear the top of the net?

Answers

Answer:

It will travel high enough

Step-by-step explanation:

Find the vertex of the parabola:

x=-b/2a

x=-11/2(-16)

x=-11/-32

x=11/32

Plug x=11/32 into quadratic to get the y-coordinate:

h=-16(11/32)^2+11(11/32)+5.5

h=7.391

Since 7.391>7.3, the volleyball will travel high enough (aka. yes)

Final answer:

To determine if the volleyball clears the net, we calculate the maximum height using the vertex of the parabola from the quadratic equation representing the ball's trajectory. By finding the time at the vertex and substituting it back into the equation, we get the maximum height, which needs to be compared with the net's height.

Explanation:

To determine whether the volleyball travels high enough to clear the net, we need to calculate the maximum height reached by the ball using the given quadratic equation h = −16t2 + 11t + 5.5. The maximum height will be at the vertex of the parabola represented by the quadratic function. The t-coordinate of the vertex can be found using the formula t = -b/2a, where a and b are the coefficients from the quadratic term and the linear term respectively.

For the given equation h = -16t2 + 11t + 5.5, a is -16 and b is 11. Thus,


t = -b/2a = -11/(2 * -16) = 11/32
Substitute t back into the equation to find maximum height, h
h = -16(11/32)2 + 11(11/32) + 5.5

Doing the calculation will reveal the maximum height of the volleyball. If this height is greater than 7.3 feet, the height of the net, then the volleyball clears the net.

Learn more about Maximum Height of Volleyball here:

https://brainly.com/question/35544673

#SPJ6

Given square ABCD, what is the length of AD?

Answers

Answer:

since it's a square, all sides are equal

therefore,

3x - 5 = x + 1

2x = 6

x = 3

sub x into AD, which is 3x-5

= 3(3) - 5

= 9 - 5

= 4

therefore AD is 4 units

Step-by-step explanation:

Final answer:

The length of AD in a square ABCD is equal to the length of any other side.

Without specific measurements given for any side, the length of AD cannot be determined.

Explanation:

To find the length of segment AD in a square ABCD, we utilize the properties of a square where all sides are equal.

Therefore, if you know the length of any other side of the square, that would be the length of AD as well.

However, since the length of AB, BC, or CD is not provided in the question, there is insufficient information to determine the length of AD.

Without additional information, such as the length of one of the sides or a relationship that includes AD, it is impossible to provide a numerical answer.

If the question related to the string exercise is part of the information to be used, we would need to know the length of ED or BD to find AD, again, as they are all equal in a square.

For any real-world application like in the trilateration example, measuring actual dimensions would be necessary.

Given f(x) and g(x) = f(x + k), use the graph to determine the value of k.

Two lines labeled f of x and g of x. Line f of x passes through points negative 4, 0 and negative 2, 2. Line g of x passes through points negative 10, 0 and negative 8, 2.

6
−3
−6
3

Answers

Answer:

6

Step-by-step explanation:

f(-4) = g(-10) = f(-10+k)

f(-2) = g(-8) = f(-8+k)

-4 = -10+k

k = -4+10

k = 6

If the line f passes through (-4,0) and (-2,2) it means:

f(-4)=0 and f(-2)=2

If the line g passes through (-10,0) and (-8,2) it means:

g(-10)=0 and g(-8)=2

We can see that

                                                g(-10)=0=f(-4)

                                              g(-10)=0=f(-10+6)

Also,

                                                  g(-8)=2=f(-2)

                                                 g(-8)=2=f(-8+6)

Therefore, k=6

Factor the expression. d2 – 4d + 4


(d + 2)2

(d – 4)(d – 1)

(d – 2)2

(d – 2)(d + 2)

Answers

(D+2)2
Because d2 is just 2*d so it’s 2d-4d+4 subtract 2d from 4d and you get (2d+4) and you can factor out a 2 from that 2(d+2)

The expression d^2 - 4d + 4 factors to (d - 2)^2.

To factor the expression d^2 + 4d + 4, we are looking for two binomials that will multiply together to give us the original quadratic expression. These binomials will be of the form (d - a)^2 because the last term is a perfect square (4 = 22) and the middle term is twice the product of the square roots of the first and last terms.
Here's the step-by-step factoring:
1. Identify the square root of the first term, which is d.
2. Identify the square root of the last term, which is 2.
3. Since our middle term is negative, we use negative signs in our binomials.
4. The factored form is (d - 2)^2, as this will expand to d^2 - 2*d*2 + 22, which simplifies to d^2 - 4d + 4.

Which of the following is not​ true? Choose the correct answer below. A. The area in any normal distribution bounded by some score x is the same as the area bounded by the equivalent​ z-score in the standard normal distribution. B. A​ z-score is a conversion that standardizes any value from a normal distribution to a standard normal distribution. C. A​ z-score is an area under the normal curve. D. If values are converted to standard​ z-scores, then procedures for working with all normal distributions are the same as those for the standard normal distribution.

Answers

Using concepts of the normal distribution, it is found that the statement which is not true is:

C. A​ z-score is an area under the normal curve.

In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The standard normal distribution has [tex]\mu = 0, \sigma = 1[/tex]. The z-score converts any distribution a standard normal. It measures how many standard deviations the measure is from the mean.  After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the area under the normal curve.

Thus, statement C is false, as the p-value is the area under the normal curve, not the z-score.

A similar problem is given at https://brainly.com/question/14243195

At December 31, bonds payable of $109,993,000 are outstanding. The bonds pay 12% interest every September 30 and mature in installments of $27,498,250 every September 30, beginning September 30, 2018.

Answers

Answer:

Explanation:

If 112%  interest of bond amount = $27,498,250

∴ 100% principal amount = 27,498,250 X 100/112 = $24,552,008.93

10% bond interest = $24,552,008.93 X 0.10 = $2,455,200.89    

Between October 2018 and August 2019, it amounts = $2,455,200.09 X 11 = $27,007,209.82

The amount accrued up to September 2019 = $(27,007,209.82 + 27,498,250) = $54,505,459.82

From October 2019 to August 2020, it will amount = $(27,007,209.82 + 54,505,459.82) = $81,512669.64

The amount accrued up to September 2020 = $(81,512,669.64 + 27,498,250) = $109,010,919.64

       

In 2000 the population of a country reached 1 ​billion, and in 2025 it is projected to be 1.2 billion. ​(a) Find values for C and a so that ​P(x)equalsCa Superscript x minus 2000 models the population of a country in year x. ​(b) Estimate the​ country's population in 2010. ​(c) Use P to determine the year when the​ country's population might reach 1.4 billion. ​(a) Cequals nothing ​(Type an integer or decimal rounded to five decimal places as​ needed.)

Answers

Answer:

(a) The value of C is 1.

(b) In 2010, the population would be 1.07555 billions.

(c) In 2047, the population would be 1.4 billions.

Step-by-step explanation:

(a) Here, the given function that shows the population(in billions) of the country in year x,

[tex]P(x)=Ca^{x-2000}[/tex]

So, the population in 2000,

[tex]P(2000)=Ca^{2000-2000}[/tex]

[tex]=Ca^{0}[/tex]

[tex]=C[/tex]

According to the question,

[tex]P(2000)=1[/tex]

[tex]\implies C=1[/tex]

(b) Similarly,

The population in 2025,

[tex]P(2025)=Ca^{2025-2000}[/tex]

[tex]=Ca^{25}[/tex]

[tex]=a^{25}[/tex]                    (∵ C = 1)

Again according to the question,

[tex]P(2025)=1.2[/tex]

[tex]a^{25}=1.2[/tex]

Taking ln both sides,

[tex]\ln a^{25}=\ln 1.2[/tex]

[tex]25\ln a = \ln 1.2[/tex]

[tex]\ln a = \frac{\ln 1.2}{25}\approx 0.00729[/tex]

[tex]a=e^{0.00729}=1.00731[/tex]

Thus, the function that shows the population in year x,

[tex]P(x)=(1.00731)^{x-2000}[/tex]     ...... (1)

The population in 2010,

[tex]P(2010)=(1.00731)^{2010-2000}=(1.00731)^{10}=1.07555[/tex]          

Hence, the population in 2010 would be 1.07555 billions.

(c) If population P(x) = 1.4 billion,

Then, from equation (1),

[tex]1.4=(1.00731)^{x-2000}[/tex]

[tex]\ln 1.4=(x-2000)\ln 1.00731[/tex]

[tex]0.33647 = (x-2000)0.00728[/tex]

[tex]0.33647 = 0.00728x-14.56682[/tex]

[tex]0.33647 + 14.56682 = 0.00728x[/tex]

[tex]14.90329 = 0.00728x[/tex]

[tex]\implies x=\frac{14.90329}{0.00728}\approx 2047[/tex]

Therefore, the country's population might reach 1.4 billion in 2047.

Other Questions
The following information is available for Department X for the month of August:Work in process, August 1:Materials$ 8,480Conversion costs$15,900Costs added during August:Materials$29,680Conversion costs$26,500Equivalent units of production (weighted average):Materials4,240Conversion5,300Department X's cost per equivalent unit with respect to conversion, using the weighted average method would be: Phenolphthalein is an indicator that turns from colorless (acidic form) to magenta (basic form) and has a pKa of 9.40. What is the ratio of the magenta phenolphthalein concentration to the colorless phenolphthalein concentration ([magenta phenolphthalein]/[colorless phenolphthalein]) at a pH of 11? Students who believe they belong in school academically and socially, are engaged in learning, and don't let intellectual or social setbacks derail them are exhibiting characteristics of ________. Sandra budgets $580 each month for living expenses. She nets $1640 semimonthly.What percent of her net monthly income does she budget for living expenses?35%24%18%16% When the U.S. colonies gained their independence from England, the _____ was agreed upon as the western boundary of the newly independent country. The land area of the new nation was then doubled shortly afterward with the Louisiana Purchase in 1803. A group of people ate dinner at a restaurant.Their bill was $64 .They split the bill evenly and each person left a $2 tip.How much did each person pay? Adjectives____nouns and pronouns Reread this sentence from paragraph 5:The Firewall also monitors the use of certain keywordsand phrases considered dangerous.How does this sentence help develop the paragraph?It helps explain why the Chinesegovernment monitors certainwords and phrases.It highlights one differencebetween Internet use in China andin other countries.It provides a detail showing oneway the Great Firewall works.It identifies a problem ChineseInternet users must solve to accesspopular websites. MySpace is a social network that is targeted primarily to people under the age of 25 years old. In 2005, when MySpace was the leading social network, News Corp, owner of The Wall Street Journal and Fox News, bought the firm for $580 million. Since then, its membership has declined precipitously due to changing consumer preferences. As a result, News Corp. sold MySpace to a group of investors for a paltry $38 million in mid-2011. This is an example of how __________ forces impact the marketing environment. A. economic B. competitive C. social D. technological E. regulatory A B C D E 4.The volume of a sample of a gas at STP is 200.0 ml. If the pressure is increased to 4.00 atmospheres (temperature constant), what is the new volume? 28913 To the nearest thousand This assignment covers the sequential circuit component: Register and ALU. In this assignment you are supposed to create your own storage component for two numbers using registers. Those two numbers are then passed into a custom ALU that calculates the result of one of four possible operations. Key aspect of this assignment is to understand how to control registers, how to route signals and how to design a custom ALU. Since animals have nerve and muscle tissue and plants do not, which of the following events in earths history would be associated with adaptive radiation of many groups of animals, and not particularly that of plants?A. increase in atmospheric O2B. great increase in land mass areaC. changes in global ocean temperaturesD. meteorite impacts and volcanic eruptionsE. earthquake activity causing increased barrier formation Mr. Busbin told Angelika.If you wanted to expand this sentence to include the following clause, "that she would enjoy going to the opera," which would be the most effective expansion of this sentence? A) Mr. Busbin told Angelika that she would enjoy going to the operaB) That she would enjoy going to the opera Mr. Busbin told Angelika. C) Angelika told Mr. Busbin that she would enjoy going to the opera. D) That she would enjoy going to the opera is what Mr. Busbin told Angelika. Explain what a haploid cell is as if you were talking to an 8-10-year-old. (Please help, I'm working on a storybook about meiosis for children. Let's learn about how you came to be, children-os!) Teds car is now worth 9000 which is 60% of what he paid for it . What did he pay for his car On January 1, 2021, Wright Transport sold four school buses to the Elmira School District. In exchange for the buses, Wright received a note requiring payment of $534,000 by Elmira on December 31, 2023. The effective interest rate is 6%. (FV of $1, PV of $1, FVA of $1, PVA of $1, FVAD of $1 and PVAD of $1) (Use appropriate factor(s) from the tables provided.):1. How much sales revenue would Wright recognize on January 1, 2020, for this transaction?2. Prepare journal entries to record the sale of merchandise on January 1, 2020 (omit any entry that might be required for the cost of the goods sold), the December 31, 2020, interest accrual, the December 31, 2021, interest accrual, and receipt of payment of the note on December 31, 2022Required 1: How much sales revenue would Wright recognize on January 1, 2018, for this transaction? (Round your final answer to nearest whole number.) ales revenue_________Required 2: - Record the sale of goods on January 1, 2018 in exchange for the long term note.- Record the interest accrual on December 31, 2018.- Record the interest accrual on December 31, 2019.- Record the interest revenue in 2020 and collection of the note.. Speciation occurs when populations of a species become so different over time that they can no longer interbreed. Which of thefollowing best describes the relationship between speciation and biodiversity?A.An increase in biodiversity generally results in a decrease in speciation rate.B. Ecosystems with low biodiversity always have a low rate of speciation.C.Speciation results in an increase in overall biodiversity.D.Speciation can only occur in ecosystems with low biodiversityResetSubmit 5 years ago,an individual has invested $10,000 in aninvestment trust. Over those years, the trust has distributed $2,000, consisting of $1,600 of dividends and $400 of capital gains. The investor has reinvested these distributions in additional trust units. The investors aggregate current cost basis in the trust is:A. $10,000B. $10,400C. $11,600D. $12,000 Sphere 1 with radius R_1 has positive charge q, Sphere 2 with radius 4.50 R_1 is far from sphere 1 and initially uncharged. The separated spheres are then connected with a wire then uncouth to retain only negligible charge. (a) What is the ratio V_1/V_2 of the final potentials of the spheres? (b) what fraction of q ends up on sphere? (c) What fraction of q ends up on sphere 2? (d) What is the ratio q_1/q_2 of the surface charge densities of the spheres? Steam Workshop Downloader