Answer:
R₁ = 32kΩ
Explanation:
See attached image
A piece of corroded steel plate was found in a submerged ocean vessel. It was estimated that the original area of the plate was 17 in.2 and that approximately 2.1 kg had corroded away during the submersion. Assuming a corrosion penetration rate of 200 mpy for this alloy in seawater, estimate the time of submersion in years. The density of steel is 7.9 g/cm3.
Answer:
4.8 years
Explanation:
The rate of corrosion (CPR) is defined as the rate at which a metal corrodes in a specific environment. It depends on the environmental condition and the type of metal. It is expressed in inches per year or melts per year. CPR is given by:
[tex]CPR=\frac{KW}{\rho At}[/tex]
Where K is a constant = 534, W is the weight corroded = 2.1 kg = 2.1 × 10⁶mg, A is the area = 17 in², ρ is the density = 7.9 g/cm³
From the CPR equation:
[tex]t=\frac{KW}{\rho A(CPR)}=\frac{534*2.1*10^6}{7.9*17*200}= 4.17*10^4 hrs=4.8years[/tex]
A coil consists of 100 turns of wire wrapped around a square frame of sides 0.25 m. The coil is centered at the origin with each of its sides parallel to the x ?or y ?axis. Find the induced emf across the open-circuited ends of the coil if the magnetic field is given by (a) B = z 20 e ^-3t (T) (b) B = z 20 cos x cos 10^3 t (T) (c) B = z 20 cos x sin 2y cos 10^3 t (T)
Find solution in attachments below
Select the statement that is false.
A. If two graphs G and H are isomorphic, then they have the same total degree.
B. If two graphs G and H have the same degree sequence, then G and H are isomorphic.
C. If two graphs G and H have the same degree sequence, then G and H must have the same number of edges.
D. If two graphs G and H have the same number of edges then G and H must have the same total degree.
Answer:
D
Explanation:
the way vertices are connected may be different so having same number of edges do not mean that total degree will also be same.
Consider a 50 x 106 m3 lake fed by a polluted stream with a flow rate of 75 m3 /s and a pollutant concentration of 25.5 mg/L. There is also a sewage outfall that discharges 3.0 m3 /s of wastewater with a pollutant concentration of 125 mg/L. Stream and sewage wastes have a reaction rate coefficient of 5% per day. Find the steady-state (i.e., effluent) pollutant concentration and flow rate
Answer:
24.78 mg/L
Explanation:
The step-to-step explanation is written legibly with clear explanation in the diagram attached below.
Answer:
Answer: Input rate = 2.288 x 10⁶mg/s
Output rate =78 x 10³Cmg/s
Decay rate = 28.94 x 10 ⁵C mg/s
Explanation:
Assuming that complete and instantaneous mixing occurs in the lake, this implies that the concentration in the lake C is the same as the concentration of the mix leaving the lake Cm
Input rate = Output rate + KCV
Input rate = Q₁C₁ + QwCw
= (75.0m³/s x 25.5mg/L + 3.0m³/s x 125.0mg/L) x 10³L/m³
= 2.288 x 10⁶mg/s
Output rate = QmCm = (Q₁ +Qw)C
=(75 + 3.0)m³/s x Cmg/L x 10³L/m³ = 78 x 10³Cmg/s
Decay rate = KCV = 5/d x Cmg/L x 50 x 10⁶ x 10³L/m³
24 hr/d x 3600s/hr
= 28.94 x 10 ⁵C mg/s
So,
=2.288 x 10⁶ = 78 x 10³C + 28.94 x 10 ⁵C = 29.72 X 10⁵C
= 2.288 x 10⁶
29.72 X 10⁵ = 0.77 mg/l
C =
A flexible pavement has a SN of 3.8 (all drainage coefficients are equal to 1.0). The initial PSI is 4.7 and the terminal serviceability is 2.5. The soil has a CBR of 9. The overall standard deviation is 0.40 and the reliability is 95%. The pavement is currently designed for 1800 equivalent 18-kip single-axle loads per day. If the number of 18-kip single-axle loads were to increase by 30%, by how many years would the pavement design life be reduced
Answer:
2.83 years
Explanation:
Please kindly see the attached file at thw attachment area for a detailed and step by step solution to the given problem.
The clock period of a ripple counter must be longer than the total propagation
delays through all of the flip-flops. For proper operation, the period / frequency
should be:
Tmin = N x tpd where tpd is the propagation delay fmax = 1/ Tmin = 1/ (N x tpd).
If the propagation delay is 15ns for a J-K FF, what is the largest
MOD counter that can be constructed to ensure the counter will operate for
frequencies > 12 MHz?
Answer:
See explaination
Explanation:
Please kindly check attachment for the step by step solution of the given problem
Consider the problem of oxygen transfer from the interior lung cavity, across the lung tissue, to the network of blood vessels on the opposite side. The lung tissue (species B) may be approximated as a plane wall of thickness L. The inhalation process may be assumed to maintain a constant molar concentration CA(0) of oxygen (species A) in the tissue at its inner surface (x = 0), and assimilation of oxygen by the blood may be assumed to maintain a constant molar concentration CA(L) of oxygen in the tissue at its outer surface (x = L). There is oxygen consumption in the tissue due to metabolic processes, and the reaction is zero order, with N_A=-k_0.
Obtain expressions for the distribution of the oxygen concentration in the tissue and for the rate of assimilation of oxygen by the blood per unit tissue surface area.
Answer:
See attached images
Problem 32.3 The telescoping arm ABC is used to provide an elevated platform for construction workers. The workers and the platform together have a msss of 250 kg and have a combined center of gravity located directly above C. For the position when θ = 25°, determine (a) the force exerted at B by the single hydraulic cylinder BD, (b) the force exerted on the supporting carriage at A.
The question involves applying principles of static equilibrium and mechanical advantage in physics to calculate forces exerted by a hydraulic cylinder and at a support point in a construction telescoping arm scenario.
Explanation:The question relates to the application of static equilibrium and mechanical advantage concepts in physics to solve for forces in a telescoping arm used in construction. Specifically, it involves calculating force exerted by a hydraulic cylinder and the force at a support point when a mass is placed at a specific location on the arm.
In order to solve for the force exerted at point B by the hydraulic cylinder (part a) and the force exerted on the supporting carriage at A (part b) when the arm makes an angle heta = 25 degrees with the horizontal, one would typically use the principles of torques and static equilibrium. Summation of torques around a point, often the pivot, and summation of forces in horizontal and vertical directions are standard procedures. This requires knowledge of the geometry of the construction, the location of the center of gravity, and the mass of the workers and platform.
The information given about the forces in a wheelbarrow and cranes are analogous examples that illustrate similar principles of physics applied to different scenarios. These examples demonstrate how to calculate the mechanical advantage and forces based on lever arms and mass distribution.
The force exerted at B by the hydraulic cylinder BD and the force exerted on the supporting carriage at A can be calculated using principles of moments and equilibrium of forces, respectively.
For part (a): The force exerted at B by the hydraulic cylinder BD can be calculated using the principle of moments. By summing the moments about point A, you can find the force at B.
For part (b): The force exerted on the supporting carriage at A can be determined by considering.
(30 pts) A simply supported beam with a span L=20 ft and cross sectional dimensions: b=14 in; h=20 in; d=17.5 in. is reinforced with tension steel As=5 in2 . The beam supports a uniformly distributed dead load (including its own weight) DL=2.2 kips/ft and a uniformly distributed live load LL=1.8 kips/ft. The properties of the materials are as follows: f’c=4000 psi, steel fy=60,000 psi. Calculate the long-term deflections in the beam after five years.
Answer:
Zx = 176In³
Explanation:
See attached image file
A flat-plate solar collector is 2 m long and 1 m wide and is inclined 60o to the horizontal. The cover plate is separated from the absorber plate by an air gap of 2 cm thick. If the temperatures of the cover plate and the absorber plate are 305 K and 335 K, respectively. Calculate the convective heat loss. Take the pressure at 1 atm.
Answer:
164.4 W
Explanation:
We can define Heat loss as a measure of the total transfer of heat through the fabric of a building from inside to the outside, either from conduction, convection, radiation, or any combination of the these.
Please kindly check attachment for the solution of the heat loss as asked in the question.
The attached file have the solved problem.
Derive an expression for the axial thrust exerted by a propeller if the thrust depends only on forward speed, angular speed, size, and viscosity and density ofthe fluid. How would the expression change if gravity were a relevant variable in the case of a ship propeller?
Answer:
Find the given attachment
A 0.91 m diameter corrugated metal pipe culvert (n = 0.024) has a length of 90 m and a slope of 0.0067. The entrance has a square edge in a headwall. At the design discharge of 1.2 m3 /s, the tailwater is 0.45 m above the outlet invert. Determine the head on the culvert at the design discharge. Repeat the calculation for head if the culvert is concrete.
Answer:
HW=1.71m
Explanation:
Please kindly check attachment for the step by step solution of the given problem.
Determine the convention heat transfer coefficient inside the for the flow of (a) air and (b) water at a velocity of 2 m/s in an 8-cm- diameter and 7-m-long tube when the tube is subjected to uniform heat flux from all surfaces. Use fluid properties at 25oC.
Answer:
Find the attachments sequence wise for complete solution.
Consider a circular grill whose diameter is 0.3 m. The bottom of the grill is covered with hot coal bricks at 961 K, while the wire mesh on top of the grill is covered with steaks initially at 274 K. The distance between the coal bricks and the steaks is 0.20 m. Treating both the steaks and the coal bricks as blackbodies, determine the initial rate of radiation heat transfer from the coal bricks to the steaks. Also, determine the initial rate of radiation heat transfer to the steaks if the side opening of the grill is covered by aluminum foil, which can be approximated as a reradiating surface.
Answer:
Step 1
Given
Diameter of circular grill, D = 0.3m
Distance between the coal bricks and the steaks, L = 0.2m
Temperatures of the hot coal bricks, T₁ = 950k
Temperatures of the steaks, T₂ = 5°c
Explanation:
See attached images for steps 2, 3, 4 and 5
Create a JavaFX application that lets the user enter the food charge for a meal at a restaurant. When a button is clicked, the application should calculate and display the amount of an 18 percent tip on the total food charge, 7 percent sales tax, and the total of all three amounts. For example, if $20 is entered as a food charge for a meal then $3.6 should be displayed for the tip, $1.4 should be displayed for sales tax, and $25 should be displayed as a total of all three amounts.
Answer:
See explaination
Explanation:
package sample;
import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import javafx.geometry.*;
import javafx.scene.Parent;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;
public class Main extends Application {
atOverride // Replace the at with at symbol
public void start(Stage primaryStage) throws Exception{
primaryStage.setTitle("Calculator");
GridPane rootNode = new GridPane();
rootNode.setPadding(new Insets(15));
rootNode.setHgap(5);
rootNode.setVgap(5);
rootNode.setAlignment(Pos.CENTER);
Scene myScene = new Scene(rootNode, 300, 200);
rootNode.add(new Label("Amount:"), 0, 0);
TextField firstValue = new TextField();
rootNode.add(firstValue, 1, 0);
rootNode.add(new Label("Toatal is:"), 0, 5);
Button aButton = new Button("Calculate");
rootNode.add(aButton, 1, 2);
GridPane.setHalignment(aButton, HPos.LEFT);
TextField result = new TextField();
result.setEditable(false);
rootNode.add(result, 1, 5);
TextField tax = new TextField();
rootNode.add(new Label("Tax:"), 0, 3);
tax.setEditable(false);
rootNode.add(tax,1,3);
TextField tip = new TextField();
rootNode.add(new Label("Tip:"), 0, 4);
tip.setEditable(false);
rootNode.add(tip,1,4);
aButton.setOnAction(e -> {
Float value1 = Float.valueOf(firstValue.getText());
Float value2 =(value1*18)/100;
Float value3 = (value1*7)/100;
Float r = value1+value2+value3 ;
tax.setText(value3.toString());
tip.setText(value2.toString());
result.setText(r.toString());
});
primaryStage.setScene(myScene);
primaryStage.show();
}
public static void main(String[] args) {
launch(args);
}
}
The question is about creating a JavaFX application that calculates and displays the cost of a restaurant meal, including an 18% tip and 7% sales tax. To create the application, an interface is needed with a text field for user input, a button for the calculation, and labels to display the results. The calculation logic is added to the button event handler.
Explanation:The subject of this question is in the area of Computers and Technology, specifically application development using JavaFX. To create the desired application, we need to first create an interface, typically using FXML, with a text field for user input (food charge), a button for the calculation, and three labels to display the tip, sales tax, and total respectively.
On the button event handler, we would include the logic to calculate the 18% tip, 7% sales tax, and add all three (food charge, tip, sales tax) to get the total amount. This is done using the following formulas: tip = food charge * 0.18, sales tax = food charge * 0.07, and total = food charge + tip + sales tax. Finally, we would display the calculated amounts on the respective labels.
The code is written in JavaFX, a software platform used to create and deliver desktop applications, along with rich internet applications that can run across a wide variety of devices.
Learn more about JavaFX application here:https://brainly.com/question/31593283
#SPJ3
A 179 ‑turn circular coil of radius 3.95 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. The coil is connected to a 10.1 Ω resistor to create a closed circuit. During a time interval of 0.163 s, the magnetic field strength decreases uniformly from 0.573 T to zero. Find the energy, in millijoules, that is dissipated in the resistor during this time interval.
Answer:
The energy, that is dissipated in the resistor during this time interval is 153.6 mJ
Explanation:
Given;
number of turns, N = 179
radius of the circular coil, r = 3.95 cm = 0.0395 m
resistance, R = 10.1 Ω
time, t = 0.163 s
magnetic field strength, B = 0.573 T
Induced emf is given as;
[tex]emf= N\frac{d \phi}{dt}[/tex]
where;
ΔФ is change in magnetic flux
ΔФ = BA = B x πr²
ΔФ = 0.573 x π(0.0395)² = 0.002809 T.m²
[tex]emf = N\frac{d \phi}{dt} = 179(\frac{0.002809}{0.163} ) = 3.0848 \ V[/tex]
According to ohm's law;
V = IR
I = V / R
I = 3.0848 / 10.1
I = 0.3054 A
Energy = I²Rt
Energy = (0.3054)² x 10.1 x 0.163
Energy = 0.1536 J
Energy = 153.6 mJ
Therefore, the energy, that is dissipated in the resistor during this time interval is 153.6 mJ
The mean of hours that the average person watches television each day is 4.18 hours with a standard deviation of 1.19 hours. Find probability that someone watches between 3 and 5 hours a day
Answer:
[tex] z = \frac{3-4.18}{1.19}=-0.992[/tex]
[tex] z = \frac{5-4.18}{1.19}=0.689[/tex]
And we can find this probability with this difference:
[tex] P(-0.992<z<0.689) = P(z<0.689) -P(z<-0.992) =0.752 -0.161=0.591[/tex]
And then we can conclude that the probability that someone watches between 3 and 5 hours a day is approximately 0.591 using a normal distribution
Explanation:
For this case we can define the random variable X as "hours that a person watches television". For this case we don't have the distribution for X but we have the following parameters:
[tex]\mu = 4.18,\sigma =1.19[/tex]
We can assume that the distribution for X is normal
[tex] X \sim N(\mu = 4.18 , \sigma =1.19)[/tex]
And we want to find this probability:
[tex] P(3 <X<5)[/tex]
And we can use the z score formula given by:
[tex] z=\frac[X- \mu}{\sigma}[/tex]
And we can find the z score for each limit and we got:
[tex] z = \frac{3-4.18}{1.19}=-0.992[/tex]
[tex] z = \frac{5-4.18}{1.19}=0.689[/tex]
And we can find this probability with this difference:
[tex] P(-0.992<z<0.689) = P(z<0.689) -P(z<-0.992) =0.752 -0.161=0.591[/tex]
And then we can conclude that the probability that someone watches between 3 and 5 hours a day is approximately 0.591 using a normal distribution
A 3-phase stepping motor is to be used to drive a linear axis for a robot. The motor output shaft will be connected to a screw thread with a screw pitch of 1 mm. We want to be able to have a spatial control of at least 0.05 mm. a. How many poles should the motor have? b.How many pulses are needed from the controller every second to move the linear axis at a rate of 90 mm/sec?
The number of poles required for a 3-phase stepping motor to achieve 0.05 mm spatial control depends on the increments per revolution, which was not provided. To move the axis at 90 mm/sec, the pulses per second from the controller will be calculated based on the screw pitch and the number of increments per revolution. Additional information on the stepper motor is needed for precise calculations.
Explanation:To answer the student's questions regarding a 3-phase stepping motor for spatial control in a robotics application:
Poles of the motor: The number of poles in a stepper motor determines the resolution of movement. To achieve a spatial control of at least 0.05 mm with a screw pitch of 1 mm, the motor needs to have enough poles to allow for a fractional turn equal to that precision. Given that stepper motors can have a range of 5,000 to 10,000 increments in a 90-degree rotation, the exact number of poles required can be calculated based on the needed increments per mm.Pulses needed for motion: To move the axis at a speed of 90 mm/sec, the number of pulses required from the controller per second will depend on the revolutions per minute (rpm) the screw thread needs to turn, which is determined by the number of poles or increments per revolution of the motor. Generally, to calculate this, we would use the formula (speed in mm/sec) / (screw pitch in mm) * (number of increments per revolution), giving us the pulses per second.Without the specific number of increments per revolution of the stepping motor, it's impossible to provide an exact answer. However, typically stepper motors with more poles can provide finer control, and thus would be preferred in this application to meet the 0.05 mm spatial control requirement.
Air at 400 kPa, 980 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occurs at an average outer surface temperature of 315 K at the rate of 30 kJ per kg of air flowing. Kinetic and potential energy effects are negligible. Assuming the air is modeled as an ideal gas with variations in specific heat, determine a) the rate power is developed, in kJ per kg of air flowing.b) the rate of entropy production within the turbine, in kJ/K per kg of air flowing.
Answer:
a) [tex]w_{out} = 281.55\,\frac{kJ}{kg}[/tex], b) [tex]s_{gen} = 0.477\,\frac{kJ}{kg\cdot K}[/tex]
Explanation:
a) The process within the turbine is modelled after the First Law of Thermodynamics:
[tex]-q_{out} - w_{out} + h_{in}-h_{out} = 0[/tex]
[tex]w_{out} = h_{in} - h_{out}-q_{out}[/tex]
[tex]w_{out} = c_{p}\cdot (T_{in}-T_{out})-q_{out}[/tex]
[tex]w_{out} = \left(1.005\,\frac{kJ}{kg\cdot K}\right)\cdot (980\,K-670\,K)-30\,\frac{kJ}{kg}[/tex]
[tex]w_{out} = 281.55\,\frac{kJ}{kg}[/tex]
b) The entropy production is determined after the Second Law of Thermodynamics:
[tex]-\frac{q_{out}}{T_{surr}} + s_{in}-s_{out} + s_{gen} = 0[/tex]
[tex]s_{gen} = \frac{q_{out}}{T_{surr}}+s_{out}-s_{in}[/tex]
[tex]s_{gen} = \frac{q_{out}}{T_{surr}}+c_{p}\cdot \ln\left(\frac{T_{out}}{T_{in}} \right)[/tex]
[tex]s_{gen} = \frac{30\,\frac{kJ}{kg} }{315\,K} + \left(1.005\,\frac{kJ}{kg\cdot K} \right)\cdot \ln\left(\frac{980\,K}{670\,K} \right)[/tex]
[tex]s_{gen} = 0.477\,\frac{kJ}{kg\cdot K}[/tex]
Q2: The average water height of an ocean area is 2.5 m high and each wave lasts for an average period of 7 s. Determine (a) the energy and power of the wave per unit area and (b) the work and average power output of a wave power plant on this ite with a plant efficiency of 35% and a toltal ocean wave area of 1 km2 . Take the density of the seawater to be 1025 kg/m3 .
Answer:
(a) 561.12 W/ m² (b) 196.39 MW
Explanation:
Solution
(a) Determine the energy and power of the wave per unit area
The energy per unit are of the wave is defined as:
E = 1 /16ρgH²
= 1/16 * 1025 kg/ m3* 9.81 m/s² * (2.5 m )²
=3927. 83 J/m²
Thus,
The power of the wave per unit area is,
P = E/ t
= 3927. 83 J/m² / 7 s = 561.12 W/ m²
(b) The average and work power output of a wave power plant
W = E * л * A
= 3927. 83 J/m² * 0.35 * 1 *10^6 m²
= 1374.74 MJ
Then,
The power produced by the wave for one km²
P = P * л * A
= 5612.12 W/m² * 0.35 * 1* 10^6 m²
=196.39 MW
"From the earth to the moon". In Jules Verne’s 1865 story with this title, three men went to the moon in a shell fired from a giant cannon sunk in the earth in Florida.
(a) Find the minimum muzzle speed needed to shoot a shell straight up to an altitude equal to the 2 times earth’s radius RE.
(b) Find the minimum muzzle speed that would allow a shell to reach the height of the moon, 385,000 km, center of the earth to center of the moon
Answer:
Check the explanation
Explanation:
Kindly check the attached image below to get the step by step explanation to the above question.
2.(10 pts)A proposed engine cycle employs an ideal gas and consists of the following sequence of transformations; a) Isothermal compression at 300 o K from a pressure of 1bar to a pressure of 30bar b) Constant pressure heating to a temperature of 1600 o K. c) Isothermal expansion at 1600 o K to the original pressure of 1 bar. d) Constant pressure cooling to a temperature of 300 o K to complete the cycle An ideal regenerator connects d) to b) so that the heat given up in d) is used for the heating in b). For an engine using a kilamole of gas find the net work in kJ and the thermal efficiency. You may assume C p
Answer:
Check the explanation
Explanation:
For ideal regeneration heat loss in cooling aqual to heat gain in compression so temperature Tb=Td as can be seen in the step by step solution in the attached images below.
Compare the heat transfer coefficients for laminar forced and free convection over vertical flat plates. Develop an approximate relation between the Reynolds and Rayleigh numbers such that the heat transfer coefficients for pure forced convection and pure free convection are equal.
Answer:
Check the attached images below.
Explanation:
It Is required to develop an approximate relation between . Reynolds and Grashor numbers such that the heat-transfer coefficients for pure forced convection and pure .e convection are equal, assuming laminar flow, by comparing the heat-transfer coefficients for forced or free convection over vertical hat plates.
write the equation or heat transfer coefficient Mr (arced comedian.
Kindly check the attached images below.
An extruder barrel has a diameter of 4.22 inches and a length of 75 inches. The screw rotates at 65 revolutions per minute. The screw channel depth = 0.23 in, and the flight angle = 21.4 degrees. The head pressure at the die end of the barrel is 705 lb/in2. The viscosity of the polymer melt is given as 145 x 10-4 lb·sec/in2. Calculate the volume flow rate in in3/sec of the plastic through the barrel.
Answer:
volume flow rate Q = 53.23 in³/s
Explanation:
given data
diameter = 4.22 inches
length = 75 inches
screw rotates = 65 revolutions per minute
depth = 0.23 in
flight angle = 21.4 degrees
head pressure = 705 lb/in²
viscosity = 145 x [tex]10^{-4}[/tex] lb·sec/in²
solution
we get here volume flow rate of platstic in barrel that is express as
volume flow rate Q = volume flow rate of die - volume flow of extruder barrel ................1
here
volume flow rate extruder barrel is
flow rate = [tex]\frac{\pi \times 705 \times 4.22 \times 0.23\times sin21.4 }{12\times 145 \times 10^{-4}\times 75 }[/tex]
flow rate = 60.10
and
volume flow rate of die is express as
volume flow rate = 0.5 × π² × D² × Ndc × sinA × cosA .............2
put here value and w eget
volume flow rate = 0.5 × π² × 4.22² × 0.23 × 1 × sin21.4 × cos21.4
volume flow rate = 6.866
so put value in equation 1 we get
volume flow rate Q = 60.10 - 6.866
volume flow rate Q = 53.23
An n- channel enhancement- mode MOSFET with 50 nm thick HfO2 high- k gate dielectric (Pr = 25) has a flat band voltage of 0.5 V, and substrate doping of 1018 cm-3. The intrinsic carrier concentration is 1011 cm-3, effective electron channel mobility is 250 cm2/Vs, and Pr = 15. What is the drive current for a 50 om wide and 2 om long device at VG = 3 V and VD = 0.05 V? What is the saturation current at this gate bias?
Answer:
Find the complete solution in the given attachments
The average starting salary for this year's graduates at a large university (LU) is $20,000 with
a standard deviation of $8,000. Furthermore, it is known that the starting salaries are normally
distributed.
a. What is the probability that a randomly selected LU graduate will have a starting salary of at least $30,400?
b. What is the probability that a randomly selected LU graduate will have a salary of
exactly $30,400?
c. Individuals with starting salaries of less than $15600 receive a low income tax break. What percentage of the graduates will receive the tax break?
d. If 189 of the recent graduates have salaries of at least $32240, how many students
graduated this year from this university?
Answer:
(a) 0.0968 (b) the probability that a randomly selected LU graduate will have a salary of exactly $30,400 is 0.0000 (c) 29.12% (d) 3000 students graduates this year from this university
Explanation:
Solution
For the problem given,
The average salary starting for this year's graduates at a large university (LU) is = 20,000
So,
The mean μ = $ 20,000
Standard deviation is б = $ 8000
Note: kindly find the complete steps taken to get the solution to this questions attached below.
"Design a sequential circuit with two T flip-flops A and B, and one input x. When x = 0, the circuit remains in the same state. When x = 1, the circuit goes through the state transitions from 00 to 01, to 10, to 11, back to 00, and repeats. What is the boolean equation of the input of flip-flop A (TA)? Type variables and operations without blanks."
Answer:
See attached images for the diagrams and tables
A 10 wt % aqueous solution of sodium chloride is fed to an evaporative crystallizer which operates at 80o C. The product is a slurry of solute crystals suspended in a saturated solution. The unit is to produce 1000 kg/crystals per hour. If the pump that handles the slurry cannot handle more than 40 wt % solids, find the feed rate to the crystallizer and the evaporation rate of the water. (20 pts)
Answer: The feed rate is
17,020kg/he and the rate is 13,520kg/h
Check the attachment for step by step explanation
An airplane starts from rest, 6050 ft down a runway at uniform accelerationthen takes off with a speed of 150mi / h . It then climbs in a straight line with a uniform acceleration of 2 ft/s^ 2 until it reaches a constant speed of 195mi / h . How far has the plane traveled when it reaches this constant speed?
Given Information:
distance = s₁ = 6050 ft
velocity = v₁ = 0 mi/hr
velocity = v₂ = 150 mi/hr
velocity = v₃ = 195 mi/hr
Acceleration = a = 2 ft/s²
Required Information:
distance = s₂ = ?
Answer:
distance = s₂ = 14,399 ft
Explanation:
We know from the equations of motion,
v₃² = v₂² + 2a(s₂ - s₁)
We want to find out the distance s₂
2a(s₂ - s₁) = v₃² - v₂²
s₂ - s₁ = (v₃² - v₂²)/2a
s₂ = (v₃² - v₂²)/2a + s₁
First convert given velocities from mi/hr to ft/s
1 mile has 5280 feet and 1 hour has 3600 seconds
velocity = v₂ = 150*(5280/3600) = 220 ft/s
velocity = v₃ = 195*(5280/3600) = 286 ft/s
s₂ = (v₃² - v₂²)/2a + s₁
s₂ = (286² - 220²)/2*2 + 6050
s₂ = 33396/4 + 6050
s₂ = 8349 + 6050
s₂ = 14,399 ft
Therefore, the plane would have traveled a distance of 14,399 ft when it reaches a constant speed of 286 ft/s
ou want to amplify a bio-potential signal that varies between 2.5 V and 2.6 V. Design an amplifier circuit for this signal such that the output spans 0 V to +10 V. The signal cannot be inverted. You can use any number of op amps and any number of resistors (with any values). But you can use only one +10 V DC voltage source (for powering the op amps as well as for any other needs). Clearly draw the complete circuit and show all component values.
Answer:
See attachment
Explanation:
Gain= Vo/Vin
If we set Vout=9.62V corresponding to Vin=2.6V, then gain will be 3.7
Using above value of gain, let's design non-inverting op-amp configuration
Gain= 1+Rf/Rin
3.7= 1= Rf/Rin
2.7= Rf/Rin
If Rin=100Ω then Rf= 270Ω