Answer:
Choice C: approximately 121 green beans will be 13 centimeters or shorter.
Step-by-step explanation:
What's the probability that a green bean from this sale is shorter than 13 centimeters?
Let the length of a green bean be [tex]X[/tex] centimeters.
[tex]X[/tex] follows a normal distribution with
mean [tex]\mu = 11.2[/tex] and standard deviation [tex]\sigma = 2.1[/tex].In other words,
[tex]X\sim \text{N}(11.2, 2.1^{2})[/tex],
and the probability in question is [tex]X \le 13[/tex].
Z-score table approach:
Find the z-score of this measurement:
[tex]\displaystyle z= \frac{x-\mu}{\sigma} = \frac{13-11.2}{2.1} = 0.857143[/tex]. Closest to 0.86.
Look up the z-score in a table. Keep in mind that entries on a typical z-score table gives the probability of the left tail, which is the chance that [tex]Z[/tex] will be less than or equal to the z-score in question. (In case the question is asking for the probability that [tex]Z[/tex] is greater than the z-score, subtract the value from table from 1.)
[tex]P(X\le 13) = P(Z \le 0.857143) \approx 0.8051[/tex].
"Technology" Approach
Depending on the manufacturer, the steps generally include:
Locate the cumulative probability function (cdf) for normal distributions.Enter the lower and upper bound. The lower bound shall be a very negative number such as [tex]-10^{9}[/tex]. For the upper bound, enter [tex]13[/tex]Enter the mean and standard deviation (or variance if required).Evaluate.For example, on a Texas Instruments TI-84, evaluating [tex]\text{normalcdf})(-1\text{E}99,\;13,\;11.2,\;2.1 )[/tex] gives [tex]0.804317[/tex].
As a result,
[tex]P(X\le 13) = 0.804317[/tex].
Number of green beans that are shorter than 13 centimeters:
Assume that the length of green beans for sale are independent of each other. The probability that each green bean is shorter than 13 centimeters is constant. As a result, the number of green beans out of 150 that are shorter than 13 centimeters follow a binomial distribution.
Number of trials [tex]n[/tex]: 150.Probability of success [tex]p[/tex]: 0.804317.Let [tex]Y[/tex] be the number of green beans out of this 150 that are shorter than 13 centimeters. [tex]Y\sim\text{B}(150,0.804317)[/tex].
The expected value of a binomial random variable is the product of the number of trials and the probability of success on each trial. In other words,
[tex]E(Y) = n\cdot p = 150 \times 0.804317 = 120.648\approx 121[/tex]
The expected number of green beans out of this 150 that are shorter than 13 centimeters will thus be approximately 121.
which of the following is the surface area of the right cylinder below?
Answer:
the answer is A
Step-by-step explanation:
the formula is 2π rh +2πr^2
you put the values in
2π (6*15) +2π(6)^2
then you solve
180π+ 72π= 252π
For this case we have that by definition, the surface area of a cylinder is given by:
[tex]SA = 2 \pi * r * h + 2 \pi * r ^ 2[/tex]
Where:
A: It's the radio
h: It is the height of the cylinder
We have to:
[tex]r = 6 \ units\\h = 15 \ units[/tex]
Substituting:
[tex]SA = 2 \pi * 6 * 15 + 2 \pi * (6) ^ 2\\SA = 2 \pi * 6 * 15 + 2 \pi * (6) ^ 2\\SA = 180 \pi + 72 \pi\\SA = 252 \pi \ units ^ 2[/tex]
Answer:
Option A
Help please! Liberal Arts Mathematics question
Answer:
Option C (x < -5/4)
Step-by-step explanation:
((2 - 5x)/(-3)) + 4 < -x.
Take LCM on LHS:
(2 - 5x - 12)/(-3) < -x.
Multiplying -3 on both sides (this will also flip the inequality):
-5x - 10 > 3x.
Adding 10 on both sides and subtracting -3x on both sides:
-8x > 10.
Dividing -8 on both sides (this will also flip the inequality):
x < -5/4.
Therefore, Option C is the correct answer!!!
Describe the locus in space.
points 4 mm from
Question 34 options:
a sphere of radius 4 cm
two planes parallel to , each 4 mm from
an endless cylinder with radius 4 mm and centerline
two lines parallel to , each 4 mm from
Answer: an endless cylinder with radius 4 mm and centerline
Scott takes a student loan to go to college after high school. If he pays $750 in interest at a rate of 3%, how much must the loan have been for originally?
Final answer:
To calculate the original loan amount for Scott, who paid $750 in interest at a 3% rate, we use the formula for simple interest and determine that the original loan amount was $25,000.
Explanation:
If Scott pays $750 in interest at a rate of 3%, to find out the original amount of the loan, we can use the formula I = PRT, where I stands for interest, P is the principal amount (the original loan amount), R is the rate of interest, and T is the time in years. Since Scott already knows the interest and the rate, we can rearrange this formula to solve for P: P = I / (RT).
In this case, we assume the time T to be 1 year, since no specific time was given. The calculation would be:
P = $750 / (0.03 * 1)
P = $750 / 0.03
P = $25,000
So, the original loan amount Scott must have taken out is $25,000.
WILL MARK BRAINLIEST
Solve the following equation algebraically:
2x*2=50
a.+0.2
b.+7.07
c.+5
d.+12.5
Divide 50 by 2 so 25 then divide that by 2 so 12.5 =x
The equation 2x² = 50 has two solutions, x = 5 and x = -5.
The equation 2x² = 50 can be solved algebraically by dividing both sides by 2 and then taking the square root of both sides. This gives us two solutions, x = 5 and x = -5.
Another way to solve this equation is to factor the left side. We can see that 2x² = 2(x²). We can also factor x² as (x)(x). This gives us the following equation:
2(x)(x) = 50
Dividing both sides by 2, we get:
(x)(x) = 25
Taking the square root of both sides, we get:
x = ±5
Therefore, the two solutions to the equation 2x² = 50 are x = 5 and x = -5.
We can check our answer by substituting x = 5 and x = -5 back into the original equation.
2(5)² = 50
2(25) = 50
50 = 50
This is true.
2(-5)² = 50
2(25) = 50
50 = 50
This is also true.
Therefore, our solutions are correct.
For more such information on: equation
https://brainly.com/question/29174899
#SPJ3
Each edge of a wooden cube is 4 centimeters long. The cube has a density of 0.59 g/cm^3 .
What is the mass of the wooden cube?
Answer:
[tex]37.76\ g[/tex]
Step-by-step explanation:
we know that
The density is equal to divide the mass by the volume
[tex]D=m/V[/tex]
Solve for the mass
[tex]m=D*V[/tex]
Find the volume of the cube
The volume of the cube is equal to
[tex]V=b^{3}[/tex]
we have
[tex]b=4\ cm[/tex]
substitute
[tex]V=4^{3}[/tex]
[tex]V=64\ cm^{3}[/tex]
Find the mass
[tex]m=0.59*64=37.76\ g[/tex]
what time does Mia have to leave for school if it takes 45 minutes to get to school school starts at 7:30 a.m. to draw a number line to explain
Answer:
6:45
Step-by-step explain if she has to leave 45 minutes before you take away 45 from 7:30 giving you the time she would have to leave
The graph of F(x) = x^2 is shown.
Compare the graph of f(x) with the graph of [tex]p(x) = 3(x-8)^2[/tex]
Answer:
B
Step-by-step explanation:
Given a function of a parabola (quadratic) in the form f(x) = x^2, we have a translated function as:
g(x) = a(x-b)^2
Where
a is the vertical compression or stretch. If a > 1, it is a vertical stretch and if 0 < a < 1, it is a vertical compression.b is the horizontal translation b units to the rightThe function given is p(x) = 3(x-8)^2
So it means that it is a vertical stretch with a factor 3 and the graph is shifted horizontally 8 units right
the correct answer is B
Determine the length, to 1 decimal place, of the arc that subtends an angle of 5.4 radians at the centre of a circle with radius 7 cm.
Answer:
37.8
Step-by-step explanation:
Length = radius * Θ
L=7*5.4
L=37.8
If wrong don't report, just notify me so I can edit.
Have a great day!
The length, to 1 decimal place, of the arc that subtends an angle of 5.4 radians at the center of a circle with a radius of 7 cm is 37.8 cm.
What is a circle?It is described as a set of points, where each point is at the same distance from a fixed point (called the center of a circle)
It is given that:
The arc subtends an angle of 5.4 radians at the center of a circle with a radius of 7 cm.
As we know, the relationship between radius of the circle, central angle, and arc length is:
s = rθ
r = 7 cm
θ = 5.4 radians.
When two lines or rays converge at the same point, the measurement between them is called an "Angle."
s = 7×5.4
s = 37.8 cm
Thus, the length, to 1 decimal place, of the arc that subtends an angle of 5.4 radians at the center of a circle with a radius of 7 cm is 37.8 cm.
Learn more about circle here:
brainly.com/question/11833983
#SPJ4
What is that answer for... Vanessa made 6 sandwiches for a party and cut them all into fourths. How many 1/4 sandwich pieces did she have?
Answer:
24 pieces
Step-by-step explanation:
Divide:
6 sandwiches
---------------------------- = 24 pieces
1/4 sandwich/piece
50 POINTS!! PLEASE HELP ASAP
After completing the fraction division 5 divided by 5/3, Miko used the multiplication shown to check her work.
3 x 5/3=3/1 x 5/3 = 15/3 or 5
Which is the most accurate description of Miko’s work?
A. Miko found the correct quotient and checked her work using multiplication correctly.
B. Miko found the correct quotient but checked her work using multiplication incorrectly.
C. Miko found an incorrect quotient but checked her work using multiplication correctly.
D. Miko found an incorrect quotient and checked her work using multiplication incorrectly.
Answer:
D. Miko found an incorrect quotient and checked her work using multiplication incorrectly
Step-by-step explanation:
We are given the equation
[tex]\frac{5}{\frac{5}{3} }[/tex]
This can be rewritten as
[tex]5*\frac{3}{5} =3[/tex]
Miko's work is incorrect as she did not multiply by the reciprocal of denominator's fraction. Instead she just multiplied by that fractions.
Which is the most accurate description of Miko’s work?
After completing the fraction division 5 divided by 5/3, Miko used the multiplication shown to check her work. 3 x 5/3=3/1 x 5/3 = 15/3 or 5
Answer: D) Miko found an incorrect quotient and checked her work using multiplication incorrectly.
I hope this helps you! ☺
The graph of f(x) = x^2 is shown.
Compare the graph of f(x) with the graph of w(x) = (x-7)^2
Answer:
I believe it is C
Hope This Helps! Have A Nice Day!!
Answer:
its
B.The graph of W(x) is 7 units to the right of the graph of f(x)
The ratio of boys to girls in the Science Club is 3:5. If there are 60 girls, how many boys are there?
Answer:
36
Step-by-step explanation:
The 5 part of the ratio represents 60 girls.
Divide 60 by 5 to find the value of one part of the ratio
60 ÷ 5 = 12 ← value of 1 part of the ratio
The 3 part of the ratio represents the number of boys, hence
3 × 12 = 36 ← number of boys
A basketball player's probability of making a free throw is 0.9. When the player makes two free throws in a row, X is the number of free throws made.
What is P(X = 2)?
Enter your answer, as a decimal, in the box.
P(X = 2) =
Answer:
0.81
Step-by-step explanation:
P(success) = 0.9
P(failure) = 1 - 0.9 = 0.1
Binomial probability:
P(X=n) = nCr (0.9)^n (0.1)^r
Here, n=2 and r=0:
P(X=2) = ₂C₀ (0.9)² (0.1)⁰
P(X=2) = 0.81
X is the number of free throws made P(X = 2) is 0.81
What is probability?
Probability is a branch of mathematics that deals with the occurrence of a random event.
calculation:-
⇒P( sucess event ) = 0.9
⇒P(failure event) = 1 - 0.9 = 0.1
Binomial probability:
P(X=n) = nCr (0.9)ⁿ (0.1)ˣ
let, n=2 and r=0:
P(X=2) = ₂C₀ (0.9)² (0.1)⁰
P(X=2) = 0.81
Learn more about probability here:-https://brainly.com/question/1328358
#SPJ2
Each test contains 20 questions. In average, it takes a person to take each test 40 minutes. If I was to get stuck in one out of 5 questions for an additional 2 minutes. How long will it take me to complete 3 of the tests?
I think the answer is 144 minutes
Below are the demand and supply equations for overhead projectors in a certain market. In these equations, p represents price, D represents demand, and S represents supply.
What is S at the point of equilibrium, to the nearest whole number?
a.
12
b.
15
c.
58
d.
67
The answer is B
The value of [p] at equilibrium is equivalent to 43.12.
What is the relation between demand and supply at equilibrium?At equilibrium, the demand is equal to supply. Mathematically, we can write -
D{x} = S(x)
Given is are the demand and supply equations.
We have the demand and supply equations as -
D{p} = (-5/8)p + 35
S{p} = (6/5)p - 44
Now, at equilibrium, we can write -
D{p} = S{p}
(-5/8)p + 35 = (6/5)p - 44
(6/5)p + (5/8)p = 35 + 44
p{(48 + 25)/40} = 79
p(73/40) = 79
p = (79 x 40)/73
p = 43.12
Therefore, the value of [p] at equilibrium is equivalent to 43.12.
To solve more questions on demand and supply, visit the link below -
https://brainly.com/question/9446041
#SPJ5
What is the value of x, given that OP II NQ?
A. x = 7
B. x = 9
C. x = 12
D. x = 24
Answer:
Option C. x = 12
Step-by-step explanation:
we have that
Traingles MOP and MNQ are similar
therefore
The ratio of its corresponding sides is proportional
[tex]\frac{MO}{MN}=\frac{MP}{MQ}[/tex]
substitute the values
[tex]\frac{21+7}{21}=\frac{36+x}{36}[/tex]
[tex]28*36=21*(36+x)\\ \\1,008=756+21x\\ \\21x=252\\ \\x=12\ units[/tex]
The graph of [tex]f(x) = \frac{1}{4} 3^{x} -6[/tex] is shown below. g(x) is a transformation of f(x). How would you write the equation for the function g(x)?
A. [tex]g(x) = \frac{1}{4}3^{x} +2[/tex]
B. [tex]g(x) = -\frac{1}{4}3^{x} -6[/tex]
C. [tex]g(x) = \frac{1}{3} *4^{x} +3[/tex]
D. [tex]g(x) = 3^{x} +2[/tex]
Answer:
the answer would be like finding the point and then doing the math
after the math u will find you answer on the am going to say either C or D
Step-by-step explanation:
Answer:
A
Step-by-step explanation:
If g(x) is a transformation of f(x), then we can consider function f(x) as parent function.
So, to get the graph of the function g(x), we have to translate the graph of the function f(x) 8 units up.
This translation will give us the function
[tex]g(x)=f(x)+9\\ \\g(x)=\dfrac{1}{4}\cdot 3^x-6+8\\ \\g(x)=\dfrac{1}{4}\cdot 3^x+2[/tex]
Find all values of the angle θ (in radians, with 0 ≤ θ < 2π) for which the matrix a = cos θ −sin θ sin θ cos θ has real eigenvalues. (enter your answers as a comma-separated list.)
The matrix
[tex]A=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}[/tex]
has eigenvalues [tex]\lambda[/tex] such that
[tex]\det(A-\lambda I)=\begin{vmatrix}\cos\theta-\lambda&-\sin\theta\\\sin\theta&\cos\theta-\lambda\end{vmatrix}=0[/tex]
[tex](\cos\theta-\lambda)^2+\sin^2\theta=0[/tex]
[tex](\cos\theta-\lambda)^2=-\sin^2\theta[/tex]
[tex]\cos\theta-\lambda=\pm\sqrt{-\sin^2\theta}[/tex]
[tex]\lambda=\cos\theta\pm\sqrt{-\sin^2\theta}[/tex]
[tex]\sin^2\theta\ge0[/tex] for all values of [tex]\theta[/tex], so we need to have [tex]\sin\theta=0[/tex] in order for [tex]\lambda[/tex] to be real-valued. This happens for
[tex]\sin\theta=0\implies\theta=n\pi[/tex]
where [tex]n[/tex] is any integer, and over the given interval we have [tex]\theta=0[/tex] and [tex]\theta=\pi[/tex].
The matrix a will always have real eigenvalues for any value of θ.
Explanation:To find the values of the angle θ for which the matrix a has real eigenvalues, we need to determine when the determinant of the matrix is greater than or equal to 0. The matrix a can be written as:
a = cos(θ) -sin(θ)
sin(θ) cos(θ)
To calculate the determinant, we use the formula det(a) = cos(θ) * cos(θ) - (-sin(θ)) * sin(θ) = cos²(θ) + sin²(θ) = 1. Since the determinant is always 1, the matrix a will always have real eigenvalues for any value of θ.
Learn more about Eigenvalues here:https://brainly.com/question/32607531
#SPJ6
Which of the following equations is the formula of [tex]f(x) = x^{1/3}[/tex] but shifted 2 units to the right and 2 units down?
A. [tex]f(x) = 2x^{1/3} -2[/tex]
B. [tex]f(x) = (x-2)^{1/3} -2[/tex]
C. [tex]f(x) = 2x^{1/3} +2[/tex]
D. [tex]f(x) = (x+2)^{1/3} -2[/tex]
Answer:
[tex]f(x)=(x-2)^{\frac{1}{3}}-2[/tex] ⇒ answer B
Step-by-step explanation:
* Lets revise some transformation
- If the function f(x) translated horizontally to the right
by h units, then the new function g(x) = f(x - h)
- If the function f(x) translated horizontally to the left
by h units, then the new function g(x) = f(x + h)
- If the function f(x) translated vertically up
by k units, then the new function g(x) = f(x) + k
- If the function f(x) translated vertically down
by k units, then the new function g(x) = f(x) – k
* Now lets solve the problem
∵ f(x) = x^1/3
- f(x) shifted 2 units to the right
∴ f(x) = (x - 2)^1/3
- f(x) shifted 2 units down
∴ f(x) = (x - 2)^1/3 - 2
* [tex]f(x)=(x - 2)^{\frac{1}{3}}-2[/tex]
Use the information provided to calculate the different parts of the proposal: The lazy river is basically a large circle that will need to be filled with water. The radius of the outer perimeter is 30 yards. The river is 4 feet deep and it's width is 5 feet. First compute the river's volume in cubic feet and then calculate how many gallons of water it will hold. Remember 1 cubic foot = 7.48 gallons.
Answer:
10,995.6 ft^3.
2300.3 gallons.
(both to the nearest tenth).
Step-by-step explanation:
Area of the surface of the river = area of the outer circle - area of the inner circle.
Radius of the outer circle = 30 *3 = 90 feet.
So the surface area of the river = π(90)^2 - π(85)^2
= 875π ft^2
Also the volume of the river = surface area * depth = 875π*4 = 3500π ft^3
= 10,995.6 ft^3.
Number of gallons of water it will hold = 10,995.6 / 4.78
= 2300.3 gallons.
Suppose the Santa Monica has a hull length that is 10 ft shorter than that of the Nina Pinta. What expression represents the hull speed of the Santa Monica in terms of the length, ln of the Nina Pinta? Domain Where a = and b = ln What are the restrictions on ln? ln >
Answer: [tex]ln-10[/tex] is the length of Santa Monica and [tex]ln>10[/tex]
Step-by-step explanation:
Let the length of Nina Pinta be ''ln'
According to question, we have given that
the Santa Monica has a hull length that is 10 ft shorter than that of the Nina Pinta.
and 10 ft shorter than that of Nina Pinta is expressed as [tex]ln-10[/tex]
So, the length of Santa Monica be 'ln'-10'
Restriction on ln is that ln>10.
As Length of Santa Monica cannot be negative or equal to zero.
so, [tex]ln>10[/tex]
Hence, [tex]ln-10[/tex] is the length of Santa Monica and [tex]ln>10[/tex]
The speed of the Santa Monica, given the hull length of Nina Pinta as 'ln' and that Santa Monica is 10 ft lesser in hull length, can be represented by 1.34 * sqrt(ln - 10). The restriction on this is that ln must be greater than 10 ft.
Explanation:The hull length of the Santa Monica is defined as ln - 10, where ln is the hull length of the Nina Pinta. The hull speed of the Santa Monica, according to the hull speed formula, is calculated as 1.34 times the square root of the hull length. Therefore, the hull speed of the Santa Monica in terms of the hull length of the Nina Pinta, ln, can be represented by the expression 1.34 * sqrt(ln - 10) where sqrt stands for 'square root'.
The restriction on the domain is that ln must be greater than 10 as the hull length cannot be negative.
Learn more about Hull Speed Expression here:https://brainly.com/question/15337820
#SPJ11
Which is the correct inequality for the given graph?
x + 3y < -3
x + 3y > -3
x - 3y < -1
3x + y > -1
Answer:
The correct inequality for the given graph is x + 3y < -3 ⇒ 1st answer
Step-by-step explanation:
* Lets study the graph
- The angle between the positive part of x-axis and the line is obtuse,
that means the slope of the line is negative value
- The shaded part is under the line, that means the solutions of the
inequality are under the line , so the sign of the inequality is <
- The y-intercept is < -1 ⇒ (the value of y when x = 0)
* Now lets check the answers to find the correct answer
- At first we will choose the answer with sign <
∴ The answers are x + 3y < -3 OR x - 3y < -1
- At second lets check the y-intercept (put x = 0)
- Substitute x by 0 in the two answer to choose the right one
∵ x = 0
∴ 0 + 3y < -3 ⇒ ÷ 3 both sides
∴ y < -1
* OR
∵ x = 0
∴ 0 - 3y < -1 ⇒ ÷ -3 both sides
∴ y > 1/3 ⇒ because we divide the inequality by negative number
we must reverse the sign of inequality
∵ the y-intercept is < -1
∴The first equation is right
* To be sure check the slope of each line
∵ y < mx + c, where m is the slope of the line
- Put each inequality in this form
∵ x + 3y < -3 ⇒ subtract x from both sides
∴ 3y < -3 - x ⇒ ÷ 3
∴ y < -1 - x/3
∴ m = -1/3 ⇒ the slope is negative
* OR
∵ x - 3y < -1 ⇒ subtract x from both sides
∴ -3y < -1 - x ⇒ ÷ -3
∴ y > 1/3 + x/3
∴ m = 1/3 ⇒ the slope is positive
∵ The slope of the line is negative
∴ The correct inequality for the given graph is x + 3y < -3
A student completed 1/4 of a work book in 3/5 hour. He plabs to work for 1 more hour at the same rate. What fraction of thebworkbook should he expect to complete in 1 hour
Answer
workbook =x
1/4 3/5
x 5/5 (1 hour)
then x=(5/5 * 1/4):3/5
x= 5/20 * 5/3
x=1/4 *5/3
x= 5/12
Please please answer this correctly
Answer:
11 m by 18 m
Step-by-step explanation:
The area is the product of two adjacent sides of a rectangle. The perimeter is twice the sum of two adjacent sides, so that sum is (58 m)/2 = 29 m.
We want to find two factors of 198 that sum to 29.
198 = 1·198 = 2·99 = 3·66 = 6·33 = 9·22 = 11·18
Of these factor pairs, only the last one has a sum of 29.
The dimensions of the pool are 11 meter by 18 meters.
A wallet contains 34 notes, all of which are either $5 or $10 notes.
The total value of the money is $285. How many $10 notes are there?
Answer:
There are 23 $10 notes and 11 $5 notes
Step-by-step explanation:
x= Number of $10 notes
y= Number of $5 notes
1 x + 1 y = 34 .............1
Total value
10 x + 5 y = 285 .............2
Eliminate y
multiply (1)by -5
Multiply (2) by 1
-5 x -5 y = -170
10 x + 5 y = 285
Add the two equations
5 x = 115
/ 5
x = 23
plug value of x in (1)
1 x + 1 y = 34
23 + y = 34
y = 34-23
y = 11
y = 11
x= 23 Number of $10 notes
y= 11 Number of $5 notes
There are 23 notes of $10.
What is Algebra?A branch of mathematics known as algebra deals with symbols and the mathematical operations performed on them.
Variables are the name given to these symbols because they lack set values.
In order to determine the values, these symbols are also subjected to various addition, subtraction, multiplication, and division arithmetic operations.
Given:
A wallet contains 34 notes, all of which are either $5 or $10 notes.
let x be Number of $10 notes
let y be Number of $5 notes
x + y = 34 .............(1)
and, 10 x + 5 y = 285 .............(2)
Solving equation (1) and (2), we get
-5 x -5 y = -170
10 x + 5 y = 285
_____________
5 x = 115
x= 11/5/5
x = 23
and, x+ y= 34
y= 34- 23
y= 11
Hence, there are 23 notes of $10.
Learn more about algebra here:
https://brainly.com/question/24875240
#SPJ2
River boat ( ) a river boat leaves silver town and travels upstream to gold town at an average speed of 6 kilometers per hour. it returns by the same route at an average speed of 9 kilometers per hour. what is the average speed for the round-trip in kilometers per hour?
a.7.0
b.7.1
c.7.2
d.7.5
e.8.0
Answer:
Let's suppose the distance between gold town and silver town is 9 kilometers.
The first trip takes 9 km / 6 km / hour = 1.5 hours
The return trip takes 9 / 9 km / hour = 1 hour
TOTAL TRIP = 18 kilometers in 2.5 hours
= 18 / 2.5 = 7.2 hours
Answer is c
Step-by-step explanation:
The length of one open measures 17 1/2 inches filling to father of the measures 24 3/4 inches how many inches in length are there of been placed end to end end to end
Answer:
I believe it would be 42.25? or 42 and 1/4
Step-by-step explanation:
first answer gets brainliest
Beep bop I’m a beginner and need this
Hshaks jdlsmavsusksns those were so that you would reach the answer minimum of 20 characters
Answer:
c
Step-by-step explanation:
A solid metal cylinder with a 4-in. radius and a 10-in. altitude is melted and recast into solid right circular cones each with a 1-in. radius and a 2-in. altitude. The number of cones formed is
Answer:
240
Step-by-step explanation:
Volume of the cylinder
= π(4)²(10)
= 160π in³
Volume of the cone
= 1/3 π(1)²(2)
= 2/3 π in³
Number of cones
= 160π ÷ 2/3 π
= 240
By calculating the volumes of both the original cylinder and one of the cones, we can determine that 80 solid right circular cones can be formed from the melted cylinder.
The question involves calculating the number of solid right circular cones that can be formed from melting and recasting a solid metal cylinder with given dimensions. First, we need to calculate the volume of the original cylinder and then the volume of one of the right circular cones, followed by dividing the volume of the cylinder by the volume of a cone to determine how many cones can be formed.
Step 1: Calculate the Volume of the Cylinder
The formula for the volume of a cylinder is V = πr²h, where r is the radius and h is the height (altitude). For the cylinder with a 4-inch radius and 10-inch altitude, the volume is V = π(4²)(10) = 160π cubic inches.
Step 2: Calculate the Volume of a Cone
The formula for the volume of a cone is V = ⅓πr²h, where r is the radius and h is the height. For a cone with a 1-inch radius and 2-inch altitude, the volume is V = ⅓π(1²)(2) = ⅓π cubic inches.
Step 3: Determine the Number of Cones Formed
To find the number of cones that can be formed, divide the volume of the cylinder by the volume of a cone: Number of cones = (160π) / (⅓π) = 80. Therefore, 80 solid right circular cones can be formed from the melted cylinder.