Answer:
Choice c.
Step-by-step explanation:
The domain of a rational function is found where the denominator of the fraction is equal to 0. These are the values that are NOT allowed. We have to factor the denominator completely to find these values that make the denominator equal 0. In other words, our denominator right now is:
[tex]x(x^2-16)[/tex]
we set each factor equal to 0:
x = 0 or
[tex]x^2-16=0[/tex]
The left side of that quadratic is the difference of perfect squares, so it factors into the 2 binomials:
(x + 4)(x - 4)
Setting each of those equal to 0 we can solve for the values of x that are not allowed:
If x + 4 = 0, then
x ≠ 4.
If x - 4 = 0, then
x ≠ -4
So the domain for this rational function is:
{x I x ≠ ±4, x ≠ 0},
which is c.
A bag contains 7 blue cards, 4 green cards, 6 red cards, and 8 yellow cards. You randomly choose a card. How many possible outcomes are there? In how many ways can choosing a card that is not red occur?
Answer:
25 possible outcomes
19 non-red outcomes
Step-by-step explanation:
there are 25 cards. if you remove the 6 red card outcomes you have 19.
For what value of y must QRST be a parallelogram?
A: 1
B: 2
C: 3
D: 0.5
Answer:
A
Step-by-step explanation:
Diagonals of a parallelogram bisect each other.
3x = 3
x = 1
y = x
y = 1
In a parallelogram, the parts in which each diagonal cuts the other are congruent.
This means that we must have
[tex]\begin{cases}3=3x\\x=y\end{cases}[/tex]
From the first equation we can deduce x=1, and thus y=x=1.
Help
What is the approximate area of a sector given Θ≈212 with a radius of 45 m?
Question 1 options:
2613.59 m²
3744.45 m²
3371.26 m²
2928.36 m
Answer:
[tex]3,744.45\ m^{2}[/tex]
Step-by-step explanation:
we know that
The area of a sector is equal to
[tex]A=\frac{\theta}{360\°}\pi r^{2}[/tex]
where
[tex]\theta[/tex] ------> is the angle in degrees
r is the radius of the circle
In this problem we have
[tex]r=45\ m[/tex]
[tex]\theta=212\°[/tex]
assume
[tex]\pi =3.14[/tex]
substitute the values
[tex]A=\frac{212\°}{360\°}(3.14)(45)^{2}[/tex]
[tex]A=3,744.45\ m^{2}[/tex]
Find the value of the indicated angles. PLEASE HELP!!
Answer:
Part 1) The measure of the angle is 47°
Part 2) The measure of the angle is 52°
Step-by-step explanation:
Part 1)
we know that
The inscribed angle is half that of the arc it comprises.
we have that
(12y-1)°=(9y+11)° ----> because the arc that the inscribed angles comprise is the same
Solve for y
12y-9y=11+1
3y=12
y=4°
Find the measure of the angle
(12y-1)°=12(4)-1=47°
Part 2)
we know that
The inscribed angle is half that of the arc it comprises.
we have that
2(3m+2)°=(4m+20)° ----> because the arc that the inscribed angles comprise is the same
Solve for m
6m+4=4m+20
6m-4m=20-4
2m=16
m=8
Find the measure of the angle
(4m+20)°=4(8)+20=52°
Two variables are correlated with r=−0.31.
Which answer best describes the strength and direction of the association between the variables?
weak positive
weak negative
strong negative
strong positive
Answer:
weak negative
Step-by-step explanation:
we know that
The correlation coefficient r measures the direction and strength of a linear relationship. It can take a range of values from +1 to -1.
Values between -0.5 and -1.0 or 0.5 and 1.0 indicate a strong negative/positive linear relationship
Values between -0.3 to -0.1 or 0.1 to 0.3 indicate a weak negative/positive linear relationship
In this problem
The correlation coefficient for the data is −0.31
therefore
Is a weak negative correlation
Express the product as a sum containing only sines or cosines. 64) sin (5θ) cos (2θ)
[tex]\bf \textit{Product to Sum Identities} \\\\sin(\alpha)cos(\beta)=\cfrac{1}{2}[sin(\alpha+\beta)\quad +\quad sin(\alpha-\beta)] \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ sin(5\theta )cos(2\theta )\implies \cfrac{1}{2}[sin(5\theta +2\theta )+sin(5\theta -2\theta )]\implies \cfrac{sin(7\theta )+sin(3\theta )}{2}[/tex]
The required value of trigonometry expression is the product as a sum [sin(7θ) + sin(3θ)] / 2.
What is the product to sum Identities?The product-to-sum formulae are used to represent the sum of the sine and cosine functions. These are generated from trigonometry's sum and difference formulae.
sin A cos B = (1/2) [ sin (A + B) + sin (A - B) ]
The trigonometry expression is given in the question
sin (5θ) cos (2θ)
According to the product to sum Identities
sin A cos B = (1/2) [ sin (A + B) + sin (A - B) ]
Here A = 5θ and B = 2θ
sin (5θ) cos (2θ) = (1/2) [sin(5θ + 2θ) + sin(5θ - 2θ)]
sin (5θ) cos (2θ) = (1/2) [sin(7θ) + sin(3θ)]
sin (5θ) cos (2θ) = [sin(7θ) + sin(3θ)] / 2
Thus, the required value of trigonometry expression is the product as a sum [sin(7θ) + sin(3θ)] / 2.
Learn more about Trigonometric functions here:
brainly.com/question/6904750
#SPJ2
During the player's career, the player attempted 1,507 free throws and made 1,213 of those free throws. What percentage of free throws has this player made?
The answer is 80%
Correct me if I’m wrong
If a pair of two idenrcal dice are rolled n successive rmes, how many sequences of outcomes contain all six doubles (i.e., two 1's, two 2's, ... ,two 6's)?
I think the answer is six
(1,1) , (2,2) , (3,3) , (4,4) , (5,5) , (6,6)
What is the equation of the line that is perpendicular to the given line and passes through the point (2, 6)?
x = 2
x = 6
y = 2
y = 6
Answer:
Either x = 2 or y = 6, depending on the original line
Step-by-step explanation:
So, if the original line is horizontal, our new line is vertical, and all vertical lines in a graph is x = some number. To pass through the point (2, 6), x has to equal 2, since the point's x-coordinate is 2.
On the other hand, if the original line is vertical, our new line is horizontal, which is y = some number. Our point's y-coordinate is 6, so our line should be that y = 6.
It's A, x=2. I hope i helped!!
Please help me with these 2
explain the step plz
thanks
1)when we know x+y=90* the sine of x is equal to cosine of y , so the solution of the first is 0.6 again!
Answer:
Left diagram cos(y) = 0.6
Right diagram x = 5 makes the equation true.
Step-by-step explanation:
Left diagram
Both the sin(x) and the Cos(y) use the same side as the non hypotenuse side.
Therefore they most be equal.
So if sin(x) = 0.6, then cos(y) = 0.6
=========================
Right diagram
You can factor this to get the answer.
From the first 2 terms, take out x^2. From terms 3 and 4 take out 2.
x^2(x - 5) + 2(x - 5) = 0
Take out the common factor of (x - 5)
(x^2 +2)(x - 5)
x^2 + 2 yields a complex answer (which doesn't matter for this question)
x - 5 = 0
x = 5
You are getting ready to watch a fireworks display and are sitting about 300 feet away from the launch pad. The angle for you to see the fireworks is about 35°. If the fireworks are launched vertically into the sky, what is the height of the fireworks when they explode?
Answer:
210.06 feet
Step-by-step explanation:
This is a classic right triangle trig problem. The distance from the launch pad is the measure of the base of the right triangle. The angle of elevation, 35, is the base angle (not the right angle). How high the fireworks go up is the height of the triangle. You have the reference angle of 35, the side adjacent to it, 300, and you're looking for the side length across from it, y. The trig ratio that relates a reference angle to the sides opposite it and adjacent to it is the tangent ratio. Setting that up:
[tex]tan(35)=\frac{y}{300}[/tex]
Solving for y:
y = 300 tan(35)
On your calculator in degree mode find y to be 210.06 feet.
By using basic trigonometry, specifically the tangent of the viewing angle, we can determine that the height of the fireworks when they explode is approximately 210 feet.
Explanation:You are asking how to use trigonometry to find the height of the fireworks when they explode. If we combine your conditions that the launch was vertical and the viewing angle was 35°, we can use the tangent of that angle to find the height of the fireworks. The tangent of an angle in a right triangle is the opposite side (height in this case) divided by the adjacent side (distance from the launch, 300 feet in this case). So setting up the equation, we have: tan(35°) = height / 300. Solving for 'height', we get: height = 300 * tan(35°). Using a calculator, we find that tan(35°) is roughly 0.70021. Multiplying that by 300, we find that the height of the fireworks when they explode is approximately 210 feet.
Learn more about Trigonometry here:https://brainly.com/question/31896723
#SPJ11
Which figure shows how a shape can be rotated about an axis to form a cylinder?
Answer
the rectangle
Step-by-step explanation:
the cylinder folds like a circle but it is not a circle.
A rectangular shape can be rotated about an axis to form a cylinder.
What is the cylindrical shape?A cylindrical shape is a three-dimensional geometrical shape consisting of two parallel circular bases which are connected by some height h.
We know that cylinder has some height h and two base circles.
If we compare the curved part of the cylinder then we can see that its shape is similar to a rectangle.
The length of the rectangle is similar to the circumference of the circular base of a cylinder and the height of the cylinder with the breadth of the rectangle.
Thus, a rectangular shape can be rotated about an axis to form a cylinder.
Learn more about the cylindrical shape:
https://brainly.com/question/25103758
find the vertex : f(x)=3x^2-18x+10
f(x)=3x^2-18x+10
a = 3, b = -18 and c = 10
The vertex of a parabola is in form a(x+d)^2 + e
d = b/2a = -18/2(3) = -18/6 = -3
e = c-b^2/4a = 10 - -18^2/4(3) = 10-27 = -17
Now the vertex form of the parabola becomes 3(x-3)^2 -17
Use the vertex form of the parabola in the vertex form of y = a(x-h)^2 +k
Where a = 3, h = -3 and k = -17
Now you have y = 3(x-(-3))^2 +(-17)
Simplify: y = 3(x+3)^2 -17
The vertex becomes the h and k values of (3,-17)
What is the sum of all the positive two-digit integers divisible by both the sum and product of their digits?
Answer:
72
Step-by-step explanation:
Exhaustive search shows the numbers to be 12, 24, 36. The sum of these three numbers is 72.
Kylie started basketball practice at 2:30 p.m and finished at 6:00 p.m how long was kylie at basketball practice
Answer:
3 hours and 30 minutes
Step-by-step explanation:
Since both of these times are in the P.M., each hour has 60 minutes and 2:30 is half, add 30 minutes to get 3:00 P.M. and then add 3 hours to get 6:00 P.M. . 3 hours and 30 minutes added to 2:30 P.M. equals 6:00 P.M. :)
Answer:
3 hours and 30 minutes
Step-by-step explanation:
Kylie started basketball practice at 2:30
Kylie finished basketball practice at 6:00
Time duration = 3 hours and 30 minutes
2 : 30 → 3 : 00
( 30 minutes )
3 : 00 → 6 : 00
( 3 hours )
3 hours + 30 minutes = 3 hours and 30 minutes
If T: (x, y) → (x - 7, y + 2), then T -1: (x,y) → _____.
A.( -x/7 , y/2)
B.(-7x, 2y)
C.(x - 7, y - 2)
D.(x + 7, y - 2)
Answer:
D. (x + 7, y - 2)
Step-by-step explanation:
To get back the original after translating left 7 and up 2, you must translate right 7 and down 2. The transformation of choice D does that.
Which two events have the same probability the spinner is divided into 8 equal sections
Answer:
N/A
Step-by-step explanation:
Not enough context is given for the problem.
Just remember, though:
And = Multiplication
Or = Addition
1/8 chance for each section
Answer:
(A) P(gray), P(green)
Step-by-step explanation:
Notice that there are 2 tiles in each, so it should be A as the answer.
Please mark me brainiest!
Hope you have a good day!
Help with this question, please!!
Answer:
(x +8)² +(y +1)² = 9
Step-by-step explanation:
The formula for a circle with center (h, k) and radius r is ...
(x -h)² +(y -k)² = r²
Filling in your given numbers gives ...
(x -(-8))² +(y -(-1))² = 3²
Simplifying that results in ...
(x +8)² +(y +1)² = 9
Identify the value of x and the length of each chord. HELP ASAP!!
Answer:
First option
x = 9.1, AB = 16.5, CD = 14.1
Step-by-step explanation:
5 * x = 13 * 3.5
5x = 45.5
x = 9.1
AB = 3.5 + 13 = 16.5
CD = 5 + 9.1 = 14.1
The value of x and the length of each chord is x = 9.1, AB = 16.5, CD = 14.1. Thus first option is correct.
What is the relation between line perpendicular to chord from the center of circle?If the considered circle has center O and chord AB, then if there is perpendicular from O to AB at point C, then that point C is bisecting(dividing in two equal parts) the line segment AB.
Or
|AC| = |CB|
Let x be the measure of the length of ED.
[tex]5 \times x = 13 \times3.5\\5x = 45.5\\x = 9.1[/tex]
Therefore,
AB = 3.5 + 13 = 16.5
CD = 5 + 9.1 = 14.1
Learn more about the chord of a circle here:
https://brainly.com/question/27455535
#SPJ2
It took Fran 2.7 hours to drive to her mother's house on Monday morning. On her return trip on Tuesday night, traffic was heavier, so the trip took her 3 hours. Her average speed on Tuesday was 6 mph slower than on Monday. What was her average speed on Tuesday.
Answer:
Step-by-step explanation:
Set up a table for a distance = rate × time problem. We are considering the trips taken on Monday and Tuesday.
d = r × t
Monday
Tuesday
Now let's start filling in what we know. First off, Fran went to her Mother's both days. Unless her Mother moved overnight from Monday to Tuesday, the distance from Fran to her mom is the same both days, even though we don't know how far it is. So we will just call that "d".
d = r × t
Monday d =
Tuesday d =
Now we are told about the times it took to get there on both days. Monday took 2.7 hours and Tuesday took 3 hours. Filling in that:
d = r × t
Monday d = × 2.7
Tuesday d = × 3
We're getting there. Now let's look at rates. Again, we don't know her rate (that's what we are solving for!) but we do know that she drove faster on Monday than Tuesday. Tuesday she was 6 miles per hour slower than Monday. Since we don't know Monday's rate, we will call it r. Since we don't know Tuesday's rate, but only that it is 6 mph slower than Monday, we will call it r - 6
d = r × t
Monday d = r × 2.7
Tuesday d = r-6 × 3
Now we have our equations. We know that d = rt. Since the distances are the same, d = d, by the transitive property of equality, we can set the 2 expressions equal to each other:
2.7r = 3(r - 6) and solve for r:
2.7r = 3r - 18
-.3r = -18
r = 60
If r = 60, then that r value goes in for Monday. That means that Tuesday is 60 - 6 which is 54
What was her average speed on Tuesday is 54 mph
Monday
Time = 2.7 hours
Date = r mph
Distance = 4.5r miles
Tuesday
Time = 3 hours
rate = r-6 mph
Distance = 3(r-6) miles
Hence:
Distance = distance
2.7r=3(r-6)
2.7r = 3r - 18
0.3r = 18
r =18/0.3
r 60 mph ( Monday rate)
r-6=60-3 (Tuesday rate)
r-6 = 54 mph (Tuesday rate)
Inconclusion What was her average speed on Tuesday is 54 mph.
Learn more here:
https://brainly.com/question/13238620
70 POINTS!!!!!!!!!! Given: E, F, Q, D∈k(O),O ∈ ED, m∠DFQ = 10°, measure of arc EF = 28° Find: Angles of △EFQ
Answer:
The measures of angles of triangle EFQ are
1) [tex]m\angle EFQ=100\°[/tex]
2) [tex]m\angle FEQ=66\°[/tex]
3) [tex]m\angle EQF=14\°[/tex]
Step-by-step explanation:
step 1
Find the measure of arc QD
we know that
The inscribed angle is half that of the arc it comprises.
[tex]m\angle DFQ=\frac{1}{2}(arc\ QD)[/tex]
substitute the given value
[tex]10\°=\frac{1}{2}(arc\ QD)[/tex]
[tex]20\°=(arc\ QD)[/tex]
[tex]arc\ QD=20\°[/tex]
step 2
Find the measure of arc FQ
we know that
[tex]arc\ QD+arc\ FQ+arc\ EF=180\°[/tex] ---> because ED is a diameter (the diameter divide the circle into two equal parts)
substitute the given values
[tex]20\°+arc\ FQ+28\°=180\°[/tex]
[tex]arc\ FQ=180\°-48\°=132\°[/tex]
step 3
Find the measure of angle EFQ
we know that
The inscribed angle is half that of the arc it comprises.
[tex]m\angle EFQ=\frac{1}{2}(arc\ QD+arc\ ED)[/tex]
substitute the given value
[tex]m\angle EFQ=\frac{1}{2}(20\°+180\°)=100\°[/tex]
step 4
Find the measure of angle FEQ
we know that
The inscribed angle is half that of the arc it comprises.
[tex]m\angle FEQ=\frac{1}{2}(arc\ FQ)[/tex]
substitute the given value
[tex]m\angle FEQ=\frac{1}{2}(132\°)=66\°[/tex]
step 5
Find the measure of angle EQF
we know that
The inscribed angle is half that of the arc it comprises.
[tex]m\angle EQF=\frac{1}{2}(arc\ EF)[/tex]
substitute the given value
[tex]m\angle EQF=\frac{1}{2}(28\°)=14\°[/tex]
Jon has 15 coins in nickels and dimes.he has 3 more dimes than nickels.how many nickels and dimes dose he have
Answer: 6 nickels and 9 dimes
Step-by-step explanation:
15 coins - 3 extra dimes = 12
12 / 2 = 6
6 nickels
6 + 3 = 9 dimes
Is the square root of 8 a rational number
Answer:
No.
Step-by-step explanation:
The square root of an integer is rational only if that integer is a square number. The closest squares to 8 are 2^2 = 4 and 3^2 = 9. 8 is not a square number, so has an irrational square root.
The square root of 8 is an irrational number.
Explanation:A square root is a mathematical operation that, when applied to a number, finds a value that, when multiplied by itself, equals the original number. For example, the square root of 25 is 5 because 5 x 5 = 25. It is denoted by the √ symbol. Whether the square root of 8 is a rational number or not can be determined by finding the square root and checking if it can be expressed as a fraction.
The square root of 8 is approximately 2.828, which is an irrational number because it cannot be expressed as a fraction. To further prove that it is irrational, we can use the prime factorization method and show that 8 does not have a perfect square factor.
Learn more about Square root:https://brainly.com/question/428672
BRAINLIEST AND 30 POINTS FOR WHOEVER CAN EXPLAIN HOW TO GET THESE ANSWERS...
Given: △ACM, m∠C=90°, CP⊥ AM. AP=9 cm, PM=16 cm.
Explain how to get these answers: AC = 15, CM = 20, CP = 12
Step-by-step explanation:
Since m∠ACM = 90°, then by angle addition, m∠ACP + m∠PCM = 90°.Since CP⊥ AM, then by definition of perpendicular, m∠APC = 90°. Since angles of a triangle add up to 180°, that means m∠PAC + m∠ACP = 90°.By substitution, m∠PCM = m∠PAC.Since m∠PCM + m∠CMP = 90°, then by substitution, m∠CMP = m∠PAC.Therefore, by AAA, △ACP and △CMP are similar.Having proven that the triangles are similar, we can write the proportion:
AP / CP = CP / MP
9 / CP = CP / 16
CP² = 144
CP = 12
Now, we can simply use Pythagorean theorem to find the other sides.
AC² = AP² + CP²
AC² = 9² + 12²
AC = 15
CM² = CP² + PM²
CM² = 12² + 16²
CM = 20
Please help me out!?????
Answer
[tex]\frac{121}{4} \pi mm^2[/tex]
Explanation
Find the radius
11/2 = 5.5
The formula to find the area of a circle is [tex]\pi r^2[/tex]
[tex]\pi 5.5^2[/tex] = [tex]30.25\pi[/tex]
Convert number into fraction.
[tex]30.25 \rightarrow \frac{121}{4} \pi[/tex]
Area = [tex]\frac{121}{4} \pi mm^2[/tex]
Answer:
30.25π mm²
Step-by-step explanation:
The area (A) of a circle is calculated using the formula
A = πr² ← r is the radius
here diameter = 11 and radius is half of the diameter. thus
r = 5.5
A = π × 5.5² = 30.25π mm²
Which function represents a translation of the graph of y = x^2 by 8 units to the right?
A. [tex]y=x^2+8[/tex]
B. [tex]y=8x^2[/tex]
C. [tex]y=(x-8)^2[/tex]
D. [tex]y=(x+8)^2[/tex]
Answer:
Option C. [tex]y = (x-8) ^ 2[/tex]
Step-by-step explanation:
If we have a parent function f(x) and we want to make a transformation that translates the graph of f(x) horizontally then we do
[tex]y = f (x + h)[/tex]
Where h is a constant such that:
If [tex]h> 0[/tex] then the graph of f(x) moves h units to the left
If [tex]h <0[/tex] then the graph of f(x) moves h units to the right.
In this case we have the function [tex]y = x ^ 2[/tex] and we know that 8 units are moved to the right. If you move 8 units to the right This means that
[tex]h <0[/tex] and [tex]h = -8[/tex]
So if [tex]f(x) = x ^ 2[/tex] the transformed function will be:
[tex]y = f(x -8)[/tex]
[tex]y = (x-8) ^ 2[/tex]
The relation between two expressions that are not equal
Answer:
an inequality
Step-by-step explanation:
An inequality is the relation between two expressions that are not equal. The symbols generally used are less than (<) or greater than (>), as in:
4 > 3 or 4 < 9
That means that each side of the symbol represents a value that is different from the other side. The relationship is described with the sign to indicate which side has a greater value.
If both sides have an equal value, then it's an equation.
A pizza stand at an outdoor festival is going to sell slices of pizza. Last year the stand sold two kinds: cheese and sausage. The ratio of cheese slices sold to total slices sold was 9:16. The sold 288 cheese slices last year. How many sausage slices were sold?
There are 126 slices of sausage pizza sold
Please help me with these 5 questions!
2.
A. No
B. yes; k = -1/2 and y = -1/4x
C. yes; k = 4 and y = 4x
D. yes; k = 1/4 and y = 1/4x
6.
A. y = 5x-1
B. y = 5/2x+5
C. y = -x+5
D. y = 1/5x-1
8.
A. line a
B. line d
C. line b
D. line c
11.
What is the slope of the line through the points (–2, –1) and (8, –3)?
A. 3/2
B. 1/5
C. -3/2
D. -1/5
15.
A. line a
B. line d
B. line b
C. line c
Answer:
Part 2) Option D. yes; k = 1/4 and y = 1/4x
Part 6) Option D. y = 1/5x-1
Part 8) Option C. line b
Part 11) Option D. -1/5
Part 15) Option A. line a
Step-by-step explanation:
Part 2) we know that
A relationship between two variables, x, and y, represent a directly variation if it can be expressed in the form [tex]y=kx[/tex]
In a proportional relationship the constant of proportionality k is equal to the slope m of the line and the line passes through the origin
In this problem the line passes through the origin
therefore
Yes. y varies directly with x
Let
A(4,1)
The constant k is equal to
[tex]k=y/x[/tex]
substitute
[tex]k=1/4[/tex]
the equation is equal to
[tex]y=(1/4)x[/tex]
Part 6) we know that
The y-intercept of the trend line is -1 (For x=0)
The slope of the trend line is positive
The x-intercept of the trend line is 5 (For y=0)
therefore
the equation is equal to
[tex]y=(1/5)x-1[/tex]
Part 8) we have
[tex]y+4=-\frac{2}{3}x[/tex]
This is the equation of a line into point slope form
The slope is negative [tex]m=-2/3[/tex]
Pass through the point (0,-4) ----> y-intercept
The x-intercept is equal to
[tex]0+4=-\frac{2}{3}x[/tex]
[tex]x=-4*3/2=-6[/tex]
therefore
Is the line b
Part 11)
What is the slope of the line through the points (–2, –1) and (8, –3)?
we know that
The formula to calculate the slope between two points is equal to
[tex]m=\frac{y2-y1}{x2-x1}[/tex]
substitute the values
[tex]m=\frac{-3+1}{8+2}[/tex]
[tex]m=\frac{-2}{10}[/tex]
simplify
[tex]m=-\frac{1}{5}[/tex]
Part 15) we have
[tex]y=3x-2[/tex]
The slope is positive [tex]m=3[/tex]
The y-intercept is -2 (For x=0)
The x-intercept is (For y=0)
[tex]0=3x-2[/tex]
[tex]3x=2[/tex]
[tex]x=2/3[/tex]
therefore the line is a
please help me with this geometry question
image attached
15/17. The value (ratio) of cos A is 15/17.
The trigonometric ratios of an acute angle are, basically, the sine, the cosine and the tangent. They are defined from an acute angle, α, of a right triangle, whose elements are the hypotenuse, the leg contiguous to the angle, and the leg opposite the angle.
-The sine of the angle is the opposite leg divided by the hypotenuse.
-The cosine of the angle is the adjacent leg divided by the hypotenuse.
-The tangent of the angle is the opposite leg divided by the adjacent leg or, which is the same, the sine of the angle divided by the cosine of the angle.
cos A = adjacent leg/hypothenuse = BC/AC = 15/17