Answer:
It would be A.
Explanation:
The scale goes from 0 to 14, With 0 being acidic and 14 being basic.
So if 7 is neutral, then anything less than 7 is moving more towards being more acidic. Anything higher than 7 is moving towards being more basic.
Answer:
100, 50, 40, 30, 20, 10 butter
Explanation:
A 2 000-kg sailboat experiences an eastward force of 3 000 N by the ocean tide and a wind force against its sails with a magnitude of 6 000 N directed toward the northwest (45 N of W). What is the magnitude of the resultant acceleration? with steps, please.
Answer:
The magnitude of the resultant acceleration is 2.2 [tex]m/s^2[/tex]
Explanation:
Mass (m) of the sailboat = 2000 kg
Force acting on the sailboat due to ocean tide is [tex]F_1[/tex] = 3000N
Eastwards means takes place along the positive x direction
Then[tex]F_{1x}[/tex] = 3000N and [tex]F_{1y}[/tex]= 0
Wind Force acting on the Sailboat is[tex]F_2[/tex] = 6000N directed towards the northwest that means at an angle 45 degree above the negative x axis
Then
[tex]F_{2x}[/tex] = -(6000N) cos 45 degree = -4242.6 N
[tex]F_{2y}[/tex] = (6000N) cos 45 degree = 4242.6 N
Hence , the net force acting on the sailboat in x direction is
[tex]F_x = F_{1x}+ F_{2x}[/tex]
= - 3000 N + 4242.6 N
= - 3000 N +4242.6 N
= 1242.6N
Net Force acting on the sailboat in y direction is
[tex]F_y = F_{1y}+ F_{2y}[/tex]
= 0+ 4242.6N
= 4242.6N
The magnitude of the resultant force =
Using pythagorean theorm of 1243 N and 4243 N
[tex]\sqrt{(1242.6)^2 + (4242.6)^2[/tex]
[tex]\sqrt{(1544054.76) + (17999654.8)}[/tex]
[tex]\sqrt{(19543709.5)^2}[/tex]
4420.8 N
F = ma
[tex]a = \frac{F}{m}[/tex]
[tex]a =\frac{4420.8}{ 2000}[/tex]
=2.2 [tex]m/s^2[/tex]
FIGURE 1 shows part of a mass spectrometer. The whole arrangement is in a vacuum. Negative ions of mass 2.84 x 10-20 kg and charge -2.0 x 10-19 C are produced at S, which is at a potential difference of - 3000 V. The ions are accelerated in a narrow beam towards H, a hole in a hollow metal container. Inside the container, the negative ions enter a region where an electric field of strength E and a magnetic field of strength 0.83 T act.
Is it possible for the io
ns to exit slit P without being deflected in the fields?
Explain, with the aid of diagram.
Yes, the ions can exit slit P without being deflected, if the electric field strength is 170.6 N/C
Explanation:
When the ions are inside the container, they are subjected to two forces, with directions opposite to each other:
The force due to the electric field, whose magnitude is [tex]F_E=qE[/tex], where q is the charge of the ion and E is the strength of the electric fieldThe force due to the magnetic field, whose magnitude is [tex]F_B=qvB[/tex], where v is the speed of the ions and B is the strength of the magnetic fieldThe ions will move straight and undeflected if the two forces are equal and opposite. By using Fleming Left Hand rule, we notice that the magnetic force on the (negative) ions point upward: this means that the electric field must be also upward (so that the electric force on the ions is downward). Then, the two forces are balanced if
[tex]F_E = F_B[/tex]
which translates into
[tex]qE=qvB\\\rightarrow v = \frac{E}{B}[/tex]
Therefore, if the speed of the ions is equal to this ratio, the ions will go undeflected.
We can even calculate the value of E at which this occurs. In fact, we know that the ions are earlier accelerated by a potential difference [tex]V=-3000 V[/tex], so we have that their kinetic energy is given by the change in electric potential energy:
[tex]qV=\frac{1}{2}mv^2[/tex]
where
[tex]q=-2.0\cdot 10^{-19}C\\m=2.84\cdot 10^{-20}kg[/tex]
Solving for v, the speed,
[tex]v=\sqrt{\frac{2qV}{m}}=\sqrt{\frac{2(-2.0\cdot 10^{-19})(-3000)}{2.84\cdot 10^{-20}}}=205.6 m/s[/tex]
And since the magnetic field strength is
B = 0.83 T
The strength of the electric field must be
[tex]E=vB=(205.6 m/s)(0.83 T)=170.6 N/C[/tex]
Learn more about electric and magnetic fields:
brainly.com/question/8960054
brainly.com/question/4273177
brainly.com/question/3874443
brainly.com/question/4240735
#LearnwithBrainly
A 3.0-kilogram cart possesses 96 joules of kinetic
energy. Calculate the speed of the car.
Answer:
8.0 m/s
Explanation:
KE = ½ mv²
96 J = ½ (3.0 kg) v²
v = 8.0 m/s
The kinetic energy of the object is the energy conserved due to the motion of the object.
A cart of 3 kg mass has the kinetic energy of 96 joules hence the speed of the cart is 8 m/s.
How do you calculate the speed of the cart?Given that cart has a kinetic energy of 96 Joules and the mass of the cart is 3 kg.
The formula for kinetic energy is given below.
[tex]KE = \dfrac {1}{2} mv^2[/tex]
Where KE is the kinetic energy of the cart, m is the mass of the cart and v is the speed of the cart.
Substituting the given values in the above formula to calculate the speed of the cart.
[tex]96 = \dfrac {1}{2} \times 3\times v^2[/tex]
[tex]v^2 = 64[/tex]
[tex]v = 8 \;\rm m/s[/tex]
Hence we can conclude that the speed of the cart is 8 m/s.
To know more about kinetic energy, follow the link given below.
https://brainly.com/question/999862.
A basic substance consisting of only one kind of atom is called a(n)
ion
compound
element
molecule
Answer:
Element
Explanation:
Why Apparent weight of substance is less than it Real weight?
Answer:
The apparent weight is less than that of the real weight because of buoyancy.
Explanation:
Buoyancy is the upward thrust that is experienced by the object that is either fully or partially immersed in the object. The weight of the immersed object will be equal to the mass of the liquid that is displaced by the object. Buoyancy can be calculate based on Archimedes's Principle. Buoyancy also acts in the air, the normal force is reduced than the force of gravity. Buoyancy is the ability to float in liquid as well as in air. This floating happens when various forces acts on the opposite direction. The direction of the force will always remain upwards.
Question 49 (1 point)
What kind of relationship, if any, exists between an orbit's semimajor axis length and
its period?
A direct
B inverse
Cno relationship
Answer:
Orbit's semi-major axis length and its period is directly proportional.
Explanation:
Orbital period(T) is the time taken for an celestial object to make one complete revolution in the orbit around other object
According to Kepler's laws 3rd of planetary motion stating
The square of an orbital period T of a planet is “directly proportional” to the cube of the "semi-major axis" of its orbit.
The orbital period T is given by
[tex]T=2 \pi \sqrt{\frac{a^{3}}{\mu}}[/tex]
Where
a is the semi-major axis of the orbit
µ = GM which is the standard gravitational parameter
With G is the gravitational constant and M is the mass of body.
a ball is thrown downward with an initial speed of 7m/s. the balls velocity after 3 seconds is m/s
Answer: -36.4
Explanation:
It says that the initial speed is 7 and the time is 3. acceleration is -9.8 ( its always 9.8 but since its going downward its negative)
The equation you want to use is Vf = Vo + AT.
When you plug in the answers it is
0 = 7 + -9.8(3)
-9.8(3) = -29.4
Then add 7
and you get -36.4
The ball's velocity after 3 seconds is 24.4 m/s.
The ball is thrown downward with an initial speed of 7 m/s. The acceleration due to gravity is 9.8 m/s². So, the ball's velocity is increasing at a rate of 9.8 m/s^2.
After 3 seconds, the ball's velocity is 7 m/s + 3 * 9.8 m/s²
= 24.4 m/s.
Therefore, the ball's velocity after 3 seconds is 24.4 m/s.
First, we find the acceleration of the ball by multiplying the acceleration due to gravity by the time it has been falling.
Next, we add the initial velocity of the ball to the acceleration we just found to find the final velocity of the ball.
To learn more about velocity, here
https://brainly.com/question/24259848
#SPJ3
As water moves down through the ground, what force is acting against it?
A. Capillary action
B. Saturation
C. Gravity
D. Permeability
As water moves down through the ground, the force that is acting against it is gravity, which is in option c, as gravity pulls the water down through the soil and towards the water table or the nearest body of water.
What is capillary action?Gravity is a force that pulls objects towards each other, and it is what causes water to move downward through soil and rock. When it rains or when water is added to the soil, the force of gravity causes the water to percolate or move down through the soil and towards the water table or the nearest body of water. Capillary action refers to the ability of water to move upward through small spaces or pores, such as in soil or rock. It is caused by the surface tension of water and the adhesion of water molecules to surfaces.
Hence, as water moves down through the ground, the force that is acting against it is gravity, which is option c.
Learn more about capillary action here.
https://brainly.com/question/11266846
#SPJ5
The force acting against water as it moves down through the ground is Gravity(C). It pulls the water downwards, and this motion is resisted by the earth's material, which is referred to as permeability.
Explanation:As water moves down through the ground, the force that is acting against it is Gravity(C). Gravity is the force of attraction that pulls two masses towards each other, in this case, the mass of the earth and the mass of water. This downward pull of water is resisted by the earth's material leading to the permeability of soil and rocks, that is the ability for water to flow through them. However, the answer to your actual question is Gravity as it’s the primary force pulling the water downwards.
Learn more about Gravity here:https://brainly.com/question/35699425
#SPJ2
SP: Describe what moment is,
give the formula and unit for it.
Rearrange the equation to make
a force as a subject
Answer:
Moment of force (often just moment) is a measure of its tendency to cause a body to rotate about a specific point or axis.ORA force that tends to cause rotation.Explanation:
The unit for moment is N/m(newton per meter).
The formula for moment of force(also known as torque) is:
T= r.F sinθ
To make force as a subject,
T = r.F sinθ
T/r = F sinθ
F = T / r sinθ
What is the difference in light that is refracted compared to light that is reflected? Think in terms of speed of light as well as what happens to light waves when they interact with a medium.
Answer:
The refracted light wave is bent at an angle while the reflected light wave is bounced back either at 90° or at angle less than 180°.
The refracted light wave changes its speed when it moves from one medium to another based on the density of the medium.
The reflected light does not change its speed once it contacts another medium. It just bounces back with the same speed.
Explanation:
What is the force required to accelerate a 4 kg rock from 3 m/s to 15 m/s in seconds?
Answer:
16 Newtons
Explanation:
We will use the equation F=ma
First, find the acceleration using the givens.
a=∆v/∆t
a=15-3/3
a=12/3
a=4 m/s^2
Next, plug the acceleration and mass into the equation.
F=ma
F=4kg(4m/s^2)
F=16 Newtons
Just after vertical launch from Earth surface, the space shuttle takes 8.0 s to reach a speed of 160 km/h. During this phase, what is the apparent weight of an 84 kg astronaut?
Answer:
1291.08 N
Explanation:
acceleration=change in speed per unit time
[tex]a=\frac {v-u}{t}[/tex] where v and u are final and initial velocities respectively.
u is zero and v=160 km/h converted to m/s becomes[tex]160\times \frac {1000m}{3600s}\approx 44.44 m/s[/tex]
acceleration=[tex]\frac {44.44-0}{8}\approx 5.56 m/s^{2}[/tex]
Apparent weight, [tex]F_N=m(g+a)[/tex]
Taking g as 9.81 and m as 84 Kg then
[tex]F_N=84(9.81+5.56)\approx 1291.08 N[/tex]
The astronaut's apparent weight just after launch is about 467.04 N. This is calculated using the equation F = ma, where m is the astronaut's mass and a is the shuttle's acceleration (derived from the given final velocity and time).
Explanation:To calculate the apparent weight of the astronaut, we need to find the acceleration of the shuttle first. We'll use the formula v = u + at, where v is the final velocity, u is the initial velocity (zero in this case as it's a vertical launch), a is the acceleration, and t is the time. We're given that v = 160 km/h which is equivalent to 44.44 meters per second (160000 m / 3600 seconds) and t = 8 seconds.
Calculating for a = (v - u) / t, we get a = 5.56 m/s². Then we calculate the apparent weight using the equation F = ma, where F is the force (apparent weight) and m is the mass. Using m = 84 kg and a = 5.56 m/s², we find that F (the apparent weight) = 467.04 N (rounded to the nearest hundredths place).
Learn more about Apparent Weight here:
https://brainly.com/question/14323035
#SPJ3
A custodian is struggling to move a 100. kg desk on a dolly, using a rope. He is pulling on the rope at a 60. ◦ angle. (a) How much force will the custodian need to apply in order to cause the desk to accelerate horizontally at a rate of 1.0 m s 2 ? (b) You suggest that the custodian will have an easier time if he uses a longer rope, which will decrease the angle. If the longer rope results in an angle of 30. ◦ , much force will the custodian need to apply in order to cause the 100. kg desk to accelerate horizontally at 1.0 m s 2 ?
a) The custodian needs to apply 200 N of force
b) The custodian needs to apply 115.4 N of force
Explanation:
a)
We can solve this problem by applying Newton's second law: in fact, the net force along the horizontal direction must be equal to the product between the mass of the desk and the horizontal acceleration. Mathematically,
[tex]F_x = ma_x[/tex]
where
[tex]F_x = F cos \theta[/tex] is the net force on the horizontal direction, with F being the magnitude of the force applied by the custodian, and
[tex]\theta=60^{\circ}[/tex] the angle at which the force is applied
m is the mass of the desk
[tex]a_x[/tex] is the horizontal acceleration
In this problem we have:
m = 100 kg
[tex]a_x = 1.0 m/s^2[/tex]
Solving for F, we find the force that the custodian must apply:
[tex]F=\frac{ma_x}{cos \theta}=\frac{(100)(1.0)}{cos 60^{\circ}}=200 N[/tex]
b)
In this case, the rope has an angle of [tex]30^{\circ}[/tex] with the horizontal: this means that the force is applied at an angle of
[tex]\theta=30^{\circ}[/tex]
with the horizontal.
As before, we can apply Newton's second law:
[tex]F_x = ma_x[/tex]
And we have again
m = 100 kg (mass of the desk)
[tex]a_x=1.0 m/s^2[/tex] (horizontal acceleration)
This can be rewritten as
[tex]Fcos \theta = ma_x[/tex]
And solving for F, we find
[tex]F=\frac{ma_x}{cos \theta}=\frac{(100)(1.0)}{cos 30^{\circ}}=115.4 N[/tex]
Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
The custodian should apply 200 N of force at a 60 degree angle and approximately 115.5 N of force at a 30 degree angle to accelerate the 100 kg desk horizontally at 1 m/s^2.
Explanation:The question is asking about the force the custodian would need to apply to move a 100 kg desk on a dolly at a certain angle to accelerate it horizontally at 1 m/s^2. This concerns the application of Newton's second law in the context of force and acceleration, taking into account the angle at which the force is applied.
(a) To find the force at a 60 degrees angle, we need to use Newton's second law in the vertical component: F=ma. The force applied in the direction of movement (horizontal) would be F=100 kg * 1 m/s^2=100 N. However, because the force is applied at an angle, the horizontal component of the force is F * cos(60), which equals 100 N. Thus, the actual force applied by the custodian must be 100 N / cos(60) = 200 N.
(b) If the angle is reduced to 30 degrees, it becomes easier to move the desk because the horizontal component of the force is greater. In this case, the actual force applied would be 100 N / cos(30) = approximately 115.5 N. So, the custodian would need to apply less force to achieve the same acceleration.
Learn more about Force and Acceleration here:https://brainly.com/question/25116504
#SPJ11
Which of the following is the equation used to calculate power?
Answer:
Power = Force x Velocity
Explanation:
Mathematically, it is computed using the following equation. The standard metric unit of power is the Watt. As is implied by the equation for power, a unit of power is equivalent to a unit of work divided by a unit of time. Thus, a Watt is equivalent to a Joule/second.
The equation used to calculate Power is Force multiplied velocity.
What is Power?This is defined as the amount of energy conversion which takes place per unit time and the unit is Watts.
Power = Force × Velocity
We cab however calculate Power by multiplying the applied force with the velocity of the object in order to arrive as the answer.
Read more about Power here https://brainly.com/question/911620
One day in second grade, Chris drank chocolate milk before recess. She then played hard during recess and got sick from the heat. That was years ago, but Chris never drank chocolate milk again because even thinking about chocolate milk makes her feel sick. Chris is most likely experiencing __________. A. food aversion B. superstition C. phobia D. learned helplessness
Answer:
A. Food Aversion
It's right on ED2020, good luck!! Stay healthy and safe!!
Final answer:
Chris is experiencing food aversion, which is an associative learning process where one learns to avoid certain tastes associated with past sickness.
Explanation:
Chris is most likely experiencing a food aversion. This type of conditioning occurs when an individual associates the taste of a certain food or drink with a negative experience, such as illness, and then avoids it in the future. The event where Chris felt sick after playing hard in heat post-drinking chocolate milk exemplifies how a single adverse incident can lead to a long-lasting aversion. This aversion is a learned response when the conditioned stimulus (in Chris's case, chocolate milk) is paired with an unconditioned stimulus (feeling sick) resulting in a conditioned aversion to the food or drink.
Similar to Chris's experience with chocolate milk, taste aversion conditioning can happen when flavors associated with stomach pain or illness become avoided and disliked, an evolutionary mechanism important for animals and humans to avoid potential toxins. An example is how cancer patients may develop aversions to certain foods right before chemotherapy since the treatment often leads to nausea or sickness, strengthening the association between the flavor and the negative reaction.
Which information is necessary to determine an object's speed?
1. distance and period of time.
2. distance and direction
3. period of time and direction
4. distance and change in position
Answer:
1. distance and period of time.
Explanation:
The speed is calculated using the formula [tex]k = \frac{d}{t}[/tex]
"k" is the speed, "d" is the distance and "t" is the time.
You need distance and time to calculate the speed.
Speed is how fast an object is going. The direction is irrelevant to speed, not to be confused with velocity, which is speed in a given direction.
Answer: 1. distance and period of time.
Explanation:
An airplane takes off from Boston for
the 980 km trip to Detroit. The plane
lands two hours later. Which of the
following best describes the average
speed and direction of the airplane's
flight?
A. 325 km/h W
B. 490 km/h W
C. 980 km/h W
D. 1960 km/h W
Answer:B
Explanation:
Calculate speed using equation:V=S/t
S=980 km ------------ distance Boston-Detroit
t=2h --------------------- time
v=?
------------------------
V=S/t
V=980km/2h
V=490km/h
Final answer:
The average speed of the airplane for the trip from Boston to Detroit, covering a distance of 980 km in two hours, is 490 km/h. The direction of flight is westward.
Explanation:
The subject of this question is Physics, and it would typically be encountered by students at the High School level. The question involves calculating the average speed and direction of an airplane's flight from Boston to Detroit, which is a 980 km trip that the airplane completes in two hours. To find the average speed, we divide the total distance traveled by the total time of the trip.
The calculation would be Average speed = Total distance / Total time = 980 km / 2 hours = 490 km/h. Since the plane is flying from Boston to Detroit, the general direction is westward. Therefore, the best description of the airplane's average speed and direction is 490 km/h West.
9. The most important member of the convention was a ___-year-old scholarly lawyer from
Virginia, James Madison
A. 46
B. 26
C. 36
D. None of the above
A train is moving with the speed of light(c=3*10^8m/s) around the Earth. How much time will it take to complete one round trip along the equator on the surface of the Earth if it's radius is 6400km
Answer:
t = 0.13 [s]
Explanation:
We know that the speed of light is equal to c = 3 * 10^8m/ s, equivalent to 300000000 [m / s] and the radius of the Earth equal to 6400 [km] or 6400000 [m].
The speed definition is given as:
[tex]c = \frac{x}{t} \\where:\\c = velocity or speed light [m/s]\\t = time [s]\\x = distance [m][/tex]
But we need to know the value of x.
We know that the Earth's equator resembles a circumference, and we need to know the length of the circumference that will be the value of x.
[tex]x =2*\pi *r\\where:\\r = Earth radius [m]\\replacing:\\x = 2*\pi *6400000 = 40212385.97[m][/tex]
Then we can find the time.
[tex]t=\frac{40212385.97}{300000000} \\t=0.13[s][/tex]
A .005kg projectile leaves a 1500kg launcher with a velocity of 750 m/s. What is the recoil velocity of the projectile
Answer:
The recoil velocity of the projectile is 0.0025m/s
Explanation:
Given:
Mass of the projectile =0.005kg
Mass of the launcher = 1500kg
Velocity = 750 m/s.
To Find:
The recoil velocity of the projectile = ?
Solution:
The recoil velocity is the obtained by dividing the "recoil momentum" by the "mass of the recoil body". The recoil momentum is equal to the momentum of the other body. The momentum of the other body is equal to it mass times its velocity.
Lets find the recoil momentum,
Recoil momentum = mass of the projectile X velocity
Recoil momentum =[tex]0.005 \times 750[/tex]
Recoil momentum = 3.75
Now Recoil Velocity,
Recoil Velocity = [tex]\frac{\text { Recoil Momentum}}{\text {Mass of the launcher}}[/tex]
Recoil Velocity = [tex]\frac{ 3.75}{1500}[/tex]
Recoil Velocity = 0.0025m/s
In a solid, the atoms are tightly locked in position and do not change position.
(B) True
(A) False
Answer:
(B) True
The answer is true.
Infrared waves from the sun are what make our skin feel warm on a sunny day. If an infrared wave has a frequency of 3.0 x 1012 Hz, what is its wavelength?
Answer:
The wavelength of the infrared wave is 0.0001 m.
Explanation:
Given:
Frequency of an infrared wave is, [tex]f=3.0\times 10^{12}\ Hz[/tex]
We know that, infrared waves are electromagnetic waves. All electromagnetic waves travel with the same speed and their magnitude is equal to the speed of light in air.
So, speed of infrared waves coming from the Sun travels with the speed of light and thus its magnitude is given as:
[tex]v=c=3.0\times 10^8\ m/s[/tex]
Where, 'v' is the speed of infrared waves and 'c' is the speed of light.
Now, we have a formula for the speed of any wave and is given as:
[tex]v=f\lambda[/tex]
Where, [tex]\lambda \to \textrm{Wavelength of infrared wave}[/tex]
Now, rewriting the above formula in terms of wavelength, [tex]\lambda[/tex], we get:
[tex]\lambda=\dfrac{v}{f}[/tex]
Now, plug in [tex]3.0\times 10^8[/tex] for 'v', [tex]3.0\times 10^{12}[/tex] for 'f' and solve for [tex]\lambda[/tex]. This gives,
[tex]\lambda=\frac{3.0\times 10^8}{3.0\times 10^{12}}\\\\\lambda=0.0001\ m[/tex]
Therefore, the wavelength of the infrared wave is 0.0001 m.
To find the wavelength of an infrared wave with a frequency of 3.0 x 10¹² Hz, use the formula λ = c / f. Substituting the speed of light and the given frequency, we get a wavelength of 1.0 x 10⁻⁴ meters.
Infrared waves are part of the electromagnetic spectrum and have longer wavelengths than visible light. To find the wavelength of an infrared wave given its frequency, we use the formula:
λ = c / f
where:
λ (lambda) is the wavelengthc is the speed of light in a vacuum (approximately 3.00 x 10⁸ meters per second)f is the frequencyGiven the frequency f = 3.0 x 10¹² Hz, we can substitute the values into the equation:
λ = 3.00 x 10⁸ m/s / 3.0 x 10¹² Hz
λ = 1.0 x 10⁻⁴ meters
Thus, the wavelength of the infrared wave is 1.0 x 10⁻⁴ meters.
A spring has a spring constant of 115 N/m. How much energy is stored in the
spring when it is compressed 0.15 m past its natural length?
O A. 1.33
OB. 0.82
O C. 17.30
O D. 8.6J
Explanation:
Elastic energy stored in a spring is:
EE = ½ kx²
EE = ½ (115 N/m) (0.15 m)²
EE = 1.3 J
Answer: The energy stored in the spring is 1.33 J
Explanation:
To calculate the energy stored in the spring, we use the equation:
[tex]E=\frac{1}{2}kx^2[/tex]
where,
E = energy stored in the spring
k = spring constant = 115 N/m
x = compression of the spring = 0.15 m
Putting values in above equation, we get:
[tex]E=\frac{1}{2}\times 115\times (0.15)^2\\\\E=1.33J[/tex]
Hence, the energy stored in the spring is 1.33 J
__________ is the process of separating one’s identity from a particular aspect of performance or group. A. Stereotyping B. Perception C. Motivation D. Disidentification
Answer:
The answer is dis identification.
Explanation:
Answer:
D
Explanation:
D.
Disidentification
Please help please help
Answer: p= m/v so 90kg/.075m^3 = 1,200
2a. .35 m 1.1 m and .015 m
2b. 35 cm x 110 cm x 1.5 cm = 5,775 cm^3 = 57.75 m^3
mass= pv
2700•57.75= 155,925 kg
mass= 155,925 kg
volume= 57.75 m^3
Explanation: physics
a girl performed 50j of work lifting a heavy box it took her 5 seconds to lift the box what is her power
Answer:
10 W
Explanation:
Power is work over time.
P = W / t
P = 50 J / 5 s
P = 10 W
Answer:
It is 10 W
Explanation:
What does the slope of a Position vs. Time graph represent?
Your question asks what the slope of a Position vs. Time graph represents.
Your answer would be Velocity.
The slope of a Position vs. Time graph would represent the velocity of the object.
If the slope is positive, then the object has a positive velocity ,in which it is going forward.
If the slope is negative, then the object has a negative velocity, which means that it's going the opposite direction, or backwards.
If the slope is at a "horizontal" position, this means that the object is stopped or isn't moving at all.
The slope of a Position vs. Time graph represents velocity, specifically the instantaneous velocity at a given point in time.
Explanation:This means that when you look at a graph and see the position of an object on the y-axis and the time on the x-axis, the steepness of the curve or straight line (slope) that describes the object's motion gives you a measure of how fast the object is moving (velocity). More importantly, the slope of this graph at any particular point corresponds to the instantaneous velocity at that point in time.
To further illustrate, consider a car that is speeding up. The graph representing its position vs time would start at a lower point (indicating zero or smaller velocity) and rise to a high point (indicating a high velocity), showing it is accelerating. The actual value of the slope would give you the car's speed or velocity at any particular time.
Learn more about Velocity here:https://brainly.com/question/39711173
#SPJ11
vector A has a magnitude of 60 units eastward and vector
B has a magnitude of 11 units northward. What is the
magnitude of the resultant between vectors A & B?
Answer:
Resultant Vector will 71 units
Explanation:
if we draw vector A in eastward direction such that its head coincides with the tail of vector B in northward direction then the resultant vector will be equal to
Va+ Vb= 60 +11= 71 units
and its direction will be from the tail of vector A to the head of vector B
When an object rolls over a surface, the kind of friction that occurs is called
round friction
A. True
B. False
Answer:
False, When an object rolls over a surface, the kind of friction that occurs is called ROLLING FRICTION
Explanation:
The correct term for the kind of friction that occurs when an object rolls over a surface is rolling friction, not round friction, making the statement False. Rolling friction, which is different from sliding friction, is weaker and allows a rolling object to travel farther.
The kind of friction that occurs when an object rolls over a surface is not called round friction, making the statement False. When an object rolls over a surface, the friction is correctly called rolling friction. Rolling friction is a force that resists the motion of an object rolling on a surface. It happens due to deformations at the contact area between the rolling object and the surface. Unlike sliding friction, which occurs when there is relative motion between two surfaces in contact without rolling, rolling friction generally requires less force to overcome due to the reduced contact area and the nature of the motion.
During rolling motion, especially without slipping, a kinetic friction force can also arise if there is relative motion between the surfaces. However, rolling friction is primarily responsible for slowing down a rolling object over time, even in the absence of air resistance. It is significantly weaker than sliding friction, allowing a rolling object to travel much farther than it could slide on the same surface. The force of rolling friction is necessary for rolling motion, as it provides the torque needed to change the object’s angular momentum.
A man can jog 10 miles in 90 minutes. What’s his speed in mph?
Answer:
hi there!
the correct answer to this question is: 6.67 mph
Explanation:
you convert minutes to hours
10 miles * 60 mins / 90 mins
Final answer:
To find the man's jogging speed in mph, divide the distance he jogs, 10 miles, by the time it takes in hours. He jogs 10 miles in 1.5 hours (90 minutes), giving him a speed of 6.67 mph.
Explanation:
To calculate the man's speed in mph (miles per hour), we need to divide the distance traveled by the time it took him to travel that distance. The man jogs 10 miles in 90 minutes. Since there are 60 minutes in an hour, we convert 90 minutes to hours by dividing by 60, which equals 1.5 hours.
To find the speed, we use the formula:
Speed = Distance ÷ Time
Speed = 10 miles ÷ 1.5 hours
Speed = 6.67 mph
This calculation shows that the man's jogging speed is 6.67 mph.