Answer:
c d a b d
Step-by-step explanation:
Answer:
C, D, A, B, and D
Step-by-step explanation:
In the triangle below what ratio is cot G
Answer:
h/g
Step-by-step explanation:
we know that
The cotangent of angle G is equal to divide the adjacent side angle G to the opposite side angle G
so
cot(G)=h/g
A homeowner has 5 zucchini plants in her garden. Over the course of the season, the yields (number of zucchinis per plant) are: Plant 1 2 3 4 5 Yield 15 12 17 14 22 Using the information in the table provided, to the nearest tenth, calculate the average yield per plant and the standard deviation. A. average yield per plant: a0 B. standard deviation: a1
Answer:
Average = 16, standard deviation =
Step-by-step explanation:
15+12=27
27+(17+14)+22=27+31+22=80
80/5=16
Distance from 22 to 16=6, from 12 to 16=4, so deviation = 5
Answer:
Average yield per plant is 16 and standard deviation is 3.4058.
Step-by-step explanation:
Given : A homeowner has 5 zucchini plants in her garden.
Plant 1 2 3 4 5
Yield 15 12 17 14 22
Average : [tex]\frac{\text {Sum of all yields}}{\text{Total no. of plants}}[/tex]
Average : [tex]\frac{15+12+17+14+22}{5}[/tex]
Average : [tex]16[/tex]
Standard deviation =[tex]\sqrt{\frac{\sum(x_i-\bar{x})^2}{n}[/tex]
=[tex]\sqrt{\frac{(15-16)^2+(12-16)^2+(17-16)^2+(14-16)^2+(22-16)^2}{5}[/tex]
=[tex]3.4058[/tex]
Hence average yield per plant is 16 and standard deviation is 3.4058.
Find the measures of the indicated angles in circle O. Which statement is NOT true? (The figure is not drawn to scale.)
b = 106
d = 37
a = 53
c = 73
ANSWER
a=53°
b=106°
c=74°
d=37°
EXPLANATION
A semicircle creates a right angle on the circumference.
d+53°=90°
d=90°-53°
d=37°
Angle subtended at the center by an arc is twice the angle subtended at the circumference by the same arc.
c=2d
c=2(37)
c=74°
Adjacent angles on a straight line add up to 180°
c+b=180°
b=180°-c
b=180°-74°
b=106°
The sum of interior angles in an isosceles triangle is 180°
a+a+c=180°
2a+74=180
2a=180-74
2a=106
a=53°
What are the domain and range of the function below????
Answer:
Domain is set of all real numbers
Range is set of all real numbers
Step-by-step explanation:
Domain is the set of x values for which the function is defined
to find domain we look at the graph and check if there is any restriction for x
WE have line graph for all x values
So there is no restriction for x. Hence, Domain is set of all real numbers
Range is the set of y values for which the function is defined
to find range we check the continuity on graph
The graph is contininious and there is no break . The graph is continious for all y values
So range is set of all real numbers
Answer:
its d.
i just took it
Step-by-step explanation:
Find dy/dx and d2y/dx2. x = t2 + 4, y = t2 + 3t dy dx = d2y dx2 = for which values of t is the curve concave upward? (enter your answer using interval notation.)
Use the chain rule:
[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\mathrm dy}{\mathrm dt}\cdot\dfrac{\mathrm dt}{\mathrm dx}[/tex]
So we have
[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\frac{\mathrm dy}{\mathrm dt}}{\frac{\mathrm dx}{\mathrm dt}}[/tex]
[tex]x=t^2+4\implies\dfrac{\mathrm dx}{\mathrm dt}=2t[/tex]
[tex]y=t^3+3t\implies\dfrac{\mathrm dy}{\mathrm dt}=3t^2+3[/tex]
[tex]\implies\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{3t^2+3}{2t}[/tex]
Now write [tex]f(t)=\dfrac{\mathrm dy}{\mathrm dx}[/tex]. Then by the chain rule,
[tex]\dfrac{\mathrm d^2y}{\mathrm dx^2}=\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac{\mathrm dy}{\mathrm dx}\right]=\dfrac{\mathrm df}{\mathrm dx}=\dfrac{\mathrm df}{\mathrm dt}\cdot\dfrac{\mathrm dt}{\mathrm dx}=\dfrac{\frac{\mathrm df}{\mathrm dt}}{\frac{\mathrm dx}{\mathrm dt}}[/tex]
so that
[tex]\dfrac{\mathrm d^2y}{\mathrm dx^2}=\dfrac{\frac{\mathrm d}{\mathrm dt}\left[\frac{3t^2+3}{2t}\right]}{2t}=\dfrac{3(t^2-1)}{4t^3}[/tex]
The curve is concave upward when the second derivative is positive:
[tex]\dfrac{3(t^2-1)}{4t^3}>0\implies t^2>1\implies\sqrt{t^2}>\sqrt1\implies|t|>1[/tex]
or equivalently, when [tex]t<-1[/tex] or [tex]t>1[/tex].
The dy/dx is equal to 1 + 3/2t, and the d2y/dx2 is 3/2t. The curve is concave upward for t values in the (0, Infinity) interval.
Explanation:To answer your question, we first need to take the derivatives of x and y with respect to t. The derivatives of x = t^2 + 4 and y = t^2 + 3t by t yield dx/dt = 2t and dy/dt = 2t + 3. Now, dy/dx = (dy/dt) / (dx/dt) = (2t + 3) / 2t = 1 + 3/2t.
Next the second derivative d2y/dx2 (concavity), is obtained as the derivative of dy/dx = 1 + 3/2t with respect to t, which is 3/2t. Now, the curve will be concave upward whenever d2y/dx2 > 0. Solving 3/2t > 0 gives the interval for t as (0, Infinity), which indicates the values of t for which the curve is concave upward.
Learn more about Derivatives and Concavity here:https://brainly.com/question/33446764
#SPJ11
a coin is flipped 20 times. the results are 12 heads and 8 tails. the theoretical probability of getting heads is 60% true or false
Answer:
FALSE
Step-by-step explanation:
What we have here is experimental probability: 12 heads out of 20 tosses.
The fraction 12/20 reduces to 6/10, or 0.60, which corresponds to 60%.
The answer to this question is FALSE, because this is not theoretical probability.
Answer:
false
Step-by-step explanation:
a cone with radius 3 units is shown below. its volume is 57 cubic units
Answer:
6.05 units
Step-by-step explanation:
We are given that radius,r=3 units
Volume of cone=57 cubic units
We have to find the height of cone.
We know that
Volume of cube=[tex]\frac{1}{3}\pi r^2 h[/tex]
Where [tex]\pi=3.14[/tex]
Using the formula
[tex]57=\frac{1}{3}\times 3.14\times (3)^2\times h[/tex]
[tex]h=\frac{3\times 57}{3.14(3)^2}[/tex]
h=6.05 units
Hence, the height of cone=6.05 units
What is the volume of this oblique cone? 80π cm³ 160π cm³ 240π cm³ 320π cm³ An oblique cone with radius of eight centimeters and height of fifteen centimeters.
Answer:
The volume is equal to [tex]320\pi\ cm^{3}[/tex]
Step-by-step explanation:
we know that
The volume of the cone is equal to
[tex]V=\frac{1}{3}\pi r^{2} h[/tex]
we have
[tex]r=8\ cm[/tex]
[tex]h=15\ cm[/tex]
substitute the values
[tex]V=\frac{1}{3}\pi (8)^{2}(15)[/tex]
[tex]V=320\pi\ cm^{3}[/tex]
Final answer:
volume of 320π cm³.
Explanation:
To calculate the volume of the oblique cone with the given dimensions, use the formula for the volume of a cone,
The volume of the oblique cone can be calculated using the formula V = 1/3 * π * r^2 * h.
Substitute the values of the radius (8 cm) and the height (15 cm) into the formula.Calculate the volume by plugging in the values: V = 1/3 * π * 8^2 * 15 = 320π cm³.Hence, the correct volume of the oblique cone is 320π cm³.A roulette wheel has 38 slots around the rim. the first 36 slots are numbers from 1 to 36. half of these 36 slots are red, and the other half are black. the remaining 2 slots are numbered 0 and 00 and are green. if the roulette wheel is spun 152 times predict about how many times the ball will land on 17 or 20
Answer:
15 or 16 times
Step-by-step explanation:
The ball will land on 6 or 29 about 14 times.
What is Probability?Probability refers to potential. A random event's occurrence is the subject of this area of mathematics.
The range of the value is 0 to 1. Mathematics has incorporated probability to forecast the likelihood of various events.
The degree to which something is likely to happen is basically what probability means.
Given:
There are 2 slots that have a "6" or a "29" on them. The other 36 slots have different numbers.
The probability of landing on "6" or "29"
= 2/38
= 1/19
Now, Multiply this probability by the number of trials to get
= 266 x (1/19)
= 14
Hence, we expect the ball will land on 6 or 29 about 14 times.
Learn more about probability here:
https://brainly.com/question/11234923
#SPJ5
The probability of a student getting an A....
Answer:
[tex]P (M\ and\ C) = \frac{1}{4}=25\%[/tex]
Step-by-step explanation:
We call M the event in which a student gets an A in math and we call C the event in which a student gets an A in chemistry. As the events are not mutually exclusive, then.
[tex]P (M\ or\ C) = P (M) + P (C) - P (M\ and\ C)[/tex]
In this case we know that:
[tex]P (M\ or\ C) = \frac{7}{10}[/tex]
[tex]P (M) =\frac{17}{20}[/tex]
[tex]P (C) =\frac{1}{10}[/tex]
So
[tex]P (M\ and\ C) = P (M) + P (C) - P (M\ or\ C)[/tex]
[tex]P (M\ and\ C) = \frac{17}{20} + \frac{1}{10} -\frac{7}{10}[/tex]
[tex]P (M\ and\ C) = \frac{1}{4}[/tex]
The systems shown have the same solution set.
A) True
B) False
Answer:
True
Step-by-step explanation:
True.
The solution to a system of equations is the point where two equations intercept. In both cases, we can see that the interception of the two systems shown occurs at (0, 1). So the statement is correct.
Answer:
It's True
Step-by-step explanation:
a party rental company has chairs and tables for rent. the total cost to rent 12 chairs and 2 tables is $47. the total cost to rent 3 chairs and 5 tables is $50. what is the cost to rent each chair and each table.
cost to rent each chair: $ ?
cost to rent each table: $ ?
Answer:
t= $ 6.75 cost for table
c= $ 1.50 chair cost
Step-by-step explanation:
Answer:
chair 2.50
table 8.50
Step-by-step explanation:
Math please help??????
Answer:
B
Step-by-step explanation:
You are given the inequality
[tex]8a-15>73[/tex]
Add 15 to both sides:
[tex]8a-15+15>73+15\\ \\8a>88[/tex]
Now divide both sides by 8:
[tex]a>11[/tex]
You should choose option B, because this number line shows all values of x which are greater than 11.
Hold on I’m figuring it out right now
A cylindrical can containing pieces of fruit is filled to the top with syrup before being sealed. The base of the can has an area of 75 cm2, and the height of the can is 10cm. If 110 cm3 of syrup is needed to fill the can to the top, what is the total volume of the pieces of fruit in the can?
Answer:
The total volume of the pieces of fruit in the can is [tex]640\ cm^{3}[/tex]
Step-by-step explanation:
step 1
Find the volume of the cylindrical can
The volume of the can is equal to
[tex]V=BH[/tex]
where
B is the area of the base of the can
H is the height of the can
we have
[tex]B=75\ cm^{2}[/tex]
[tex]H=10\ cm[/tex]
substitute
[tex]V=(75)(10)=750\ cm^{3}[/tex]
step 2
Find the volume of the pieces of fruit in the can
The volume of the pieces of fruit in the can is equal to subtract the volume of syrup from the volume of the can
[tex]750\ cm^{3}-110\ cm^{3}=640\ cm^{3}[/tex]
The volume of the cylinder is defined as the product of the base or height.
The total volume of the pieces of fruit in the can is 640 cubic cm.
GivenThe base of the can has an area of 75 cm2, and the height of the can is 10cm.
If 110 cm3 of syrup is needed to fill the can to the top then the total volume of the pieces of fruit.
What is the volume of a cylinder?
The volume of the cylinder is defined as the product of the base or height.
The volume is the cylinder is given by;
[tex]\rm Volume \ of \ the \ cylinder = Base \times Height[/tex]
Substitute all the values in the formula;
[tex]\rm Volume \ of \ the \ cylinder = Base \times Height\\\\\rm Volume \ of \ the \ cylinder = 75 \times 10\\\\\rm Volume \ of \ the \ cylinder = 750[/tex]
Therefore,
The total volume of the pieces of fruit in the can is,
[tex]= 750 -110\\\rm \\=640 \ cm^3[/tex]
Hence, the total volume of the pieces of fruit in the can is 640 cubic cm.
To know more about the Volume of Cylinder click the link given below.
https://brainly.com/question/14013015
An increase in which of the following will decrease the monthly payment ?
Answers:
A: interest rate
B: Down payment
C: Principal
D: None or the above
Answer:
B: down payment
Step-by-step explanation:
An increase in the down payment decreases the amount of money that has to be paid over time.
The monthly payment decrease with the increase in down payment of the loan amount. Option B is correct.
What is monthly payment?Monthly payment is the payment which has to paid against the loan amount or the borrowed money calculated with interest rate.
The monthly payment is the amount which is required to pay each month to pay off the borrowed principal amount.
It can be calculated with the following formula.
[tex]M=P\left(\dfrac{r}{1-(1+r)^{-nt}}\right)[/tex]
Here, (P) is the principal amount, (r) is the interest rate and (t) is time.
The monthly payment is inversely proportional to the down payment. When the money paid as down payment is more, then the monthly payment of loan is less.
Thus, the monthly payment decrease with the increase in down payment of the loan amount. Option B is correct.
Learn more about the monthly payment here;
https://brainly.com/question/2151013
#SPJ2
The formula for the surface area, a, of a prism is given by A=2lw +2lh +2wh where is the length of the prism, w is the width, and h is the height. Which formula is the result of solving for the formula l
Answer:
[tex]l=\frac{A-2wh}{2w+2h}[/tex]
Step-by-step explanation:
We were given that; the formula for the surface area, A, of a prism is given by
[tex]A=2lw +2lh +2wh[/tex]
where is the length of the prism, w is the width, and h is the height.
We want to solve this formula for l,
Group the l terms;
[tex]A-2wh=2lw +2lh [/tex]
Factor l on the right;
[tex]A-2wh=(2w +2h)l [/tex]
Divide both sides by 2w +2h
[tex]\frac{A-2wh}{2w+2h}=l[/tex]
Therefore:
[tex]l=\frac{A-2wh}{2w+2h}[/tex]
Answer:
What he said.
Step-by-step explanation:
In 2010, the estimated population of Los Angeles was 3.79 × 106 people. The population of California that same year was about 9.84 times this number. Which expression shows the approximate population of the state of California in 2010?
Answer:
The approximate population of the state of California in 2010 was [tex]37,293,600\ people[/tex]
Step-by-step explanation:
Let
x----->the estimated population of Los Angeles in 2010
y----->the estimated population of the state of California in 2010
we know that
[tex]y=9.84x[/tex] ------> equation A
we have
[tex]x=3.79*10^{6}\ people[/tex]
Substitute the value of x in the equation A and solve for y
[tex]y=9.84(3.79*10^{6})=37.2936*10^{6}\ people[/tex]
[tex]37.2936*10^{6}=37,293,600\ people[/tex]
Answer:
3.73 × 10^7 people
Step-by-step explanation:
The original equation 3.79 × 10^6 = 3790000. 3790000× 9.84=37293600. 37293600 estimated is about 37300000. That would make 3.73 × 10^7 the expression that represents the amount of people in California.
What is the probability of drawing any face card from a standard deck of 52 playing cards?
Answer:
Counting aces: 30%.
Not counting aces: 23%
Step-by-step explanation:
If you're counting aces, it's 30%. But if you're only counting Queens, Kings and Jokers then it's about 23%.
I hope this helps
(9Q) Find the domain and range of f(x) = = -2x + 3 | 3 sin x |
Answer:
Option A
Domain = Range = (-∞,∞)
Step-by-step explanation:
We can easily solve this question by using a graphing calculator or any plotting tool.
The function is
f(x) = -2x + | 3 sin(x) |
Which can be seen in the picture below
We can notice that f(x) is a line with periodical ups and downs thanks to the sinusoidal term, but there are no restrictions over the domaoin or range of the function.
It can take any real value as an input, and can produce any real value as an output
Simplify the complex fraction
((3x-7)/x^2)/(x^2/2)+(2/x)
I really need steps on how to do this properly cause I really can't figure it out
Answer:
[tex]\frac{6x-14}{x^{4} +4x}[/tex]
Step-by-step explanation:
I have to [tex]\frac{\frac{3x-7}{x^{2} } }{\frac{x^{2} }{2}+\frac{2}{x}}[/tex]
Let's start by joining the macro denominator with a common denominator. So, by applying a minimum common multiple [tex]\frac{x^{2} }{2} +\frac{2}{x}=\frac{x^{3}+ 4 }{2x}[/tex]
Now I can write the expression as
[tex]\frac{\frac{3x-7}{x^{2}}}{\frac{x^{3}+ 4 }{2x}}[/tex]
Now to convert both fractions into one, I multiply the numerator of the one above by the denominator of the one below, and the denominator of the one above with the numerator below, remaining that way.
[tex]\frac{\frac{3x-7}{x^{2}}}{\frac{x^{3}+4}{2x}}=\frac{(3x-7)(2x)}{(x^{2})(x^{3}+ 4)}[/tex]
Having the fraction in this way, I could simplify the x of the "2x" of the numerator with an x^2 (x^2=x*x) of the denominator
[tex]\frac{(3x-7)(2x)}{(x^{2})(x^{3}+4)}=\frac{2(3x-7)}{x(x^{3}+ 4)}[/tex]
finally, applying distributive property, I have to
[tex]\frac{(6x-14)}{(x^{4}+ 4x)}[/tex]
Done
Combine fractions with common denominator [tex]\(2x^2\),[/tex] then simplify numerator and denominator separately: [tex]\(\frac{12x^2 - 28x^3}{x^4 + 8x^3}\).[/tex]
let's simplify the complex fraction step by step:
1. Start by finding a common denominator for all the fractions involved. In this case, the least common denominator is [tex]\(2x^2\).[/tex]
2. Rewrite each fraction with the common denominator:
- [tex]\(\frac{3x - 7}{x^2}\)[/tex] becomes [tex]\(\frac{3x - 7}{x^2} \cdot \frac{2}{2}\)[/tex] to match the denominator [tex]\(2x^2\).[/tex] So, it becomes[tex]\(\frac{6 - 14x}{2x^2}\).[/tex]
-[tex]\(\frac{x^2}{2}\)[/tex] remains the same.
- [tex]\(\frac{2}{x}\)[/tex] becomes [tex]\(\frac{2}{x} \cdot \frac{2x}{2x}\)[/tex] to match the denominator [tex]\(2x^2\).[/tex] So, it becomes [tex]\(\frac{4x}{2x^2}\).[/tex]
3. Now, combine all the fractions:
[tex]\[ \frac{\frac{6 - 14x}{2x^2}}{\frac{x^2}{2} + \frac{4x}{2x^2}} \][/tex]
4. Combine the terms in the numerator and denominator:
- The numerator remains the same: [tex]\(6 - 14x\).[/tex]
- The denominator becomes[tex]\(\frac{x^4 + 8x^3}{2x^2}\).[/tex]
5. Divide the numerator by the denominator:
[tex]\[ \frac{6 - 14x}{\frac{x^4 + 8x^3}{2x^2}} \][/tex]
6. Multiplying the numerator by the reciprocal of the denominator:
[tex]\[ (6 - 14x) \cdot \frac{2x^2}{x^4 + 8x^3} \][/tex]
7. Distribute the numerator:
[tex]\[ \frac{12x^2 - 28x^3}{x^4 + 8x^3} \][/tex]
So, the simplified form of the complex fraction is [tex]\(\frac{12x^2 - 28x^3}{x^4 + 8x^3}\).[/tex]
what the domain and range is for the function f(x) = x2 + 4x - 21.
Answer:
Step-by-step explanation:
Please use " ^ " to denote exponentiation: f(x) = x^2 + 4x - 21.
This function has a graph which is a parabola that opens up.
Its vertex is found by completing the square:
x² + 4x + 4 - 4 - 21, or
(x + 2)² - 25
Comparing this to the standard equation
(x - h)² + k, we see that h = -2 and k = -25.
Thus, the vertex (and the minimum of this function) is (-2, -25).
Thus, the range is [-25, ∞ ). This being a polynomial function, it has no restrictions on the domain: the domain is (-∞, ∞ )
24) The student body of 10 students wants to
elect four representatives.
A) Combination: 210
(B) Combination: 270
C) Permutation: 420
D) Combination: 630
Answer:
210
Step-by-step explanation:
There are calculators online that can help you with questions like this, and give you a step by step explaination to show the work
The Combination to elect four representatives out of 10 students is 210.
The correct option is (A).
What is permutation and combination?permutations and combinations, the various ways in which objects from a set may be selected, generally without replacement, to form subsets. This selection of subsets is called a permutation when the order of selection is a factor, a combination when order is not a factor.
Firstly, n=10 and r=4
Combination: C(n,r)=C(10,4)
= [tex]\frac{10!}{4!(10-4)!}[/tex]
= [tex]\frac{10!}{4!* 6!}[/tex]
= [tex]\frac{10*9*8*7}{4*3*2*1}[/tex]
= 210
and permutation: P(n,r)=P(10,4)
= [tex]\frac{10!}{(10-4)!}[/tex]
= 10*9*8*7
= 5040
Hence, the combination of data is 210 and permutation is 5040.
Learn more about permutation and combination here:
https://brainly.com/question/24285809
#SPJ2
Please help me.... (:
Answer:
x = 5
Step-by-step explanation:
The line segment divides the sides in proportion, that is
[tex]\frac{14}{10}[/tex] = [tex]\frac{2x-3}{x}[/tex] ( cross- multiply )
10(2x - 3) = 14x ← distribute left side
20x - 30 = 14x ( subtract 14x from both sides )
6x - 30 = 0 ( add 30 to both sides )
6x = 30 ( divide both sides by 6 )
x = 5
The following graph shows the preimage, P(x)=x−−√, and the image after a vertical dilation of I(x)=k⋅P(x).
What is the value of k in this transformation?
Answer:
k = 3
Step-by-step explanation:
The graph P(x) is a square root function. It has a vertex of (0,0) and has the following points:
x f(x)
0 0
1 1
2 √2
3 √3
4 2
P(x) appears to be the function √x.
The image of l(x) changes the points of the function to
x f(x)
0 0
1 3
2 3√2
3 3√3
4 6
You can divide the function values of l(x) by P(x).
3/1 = 3
6/2 = 3
The scale factor for the dilation is 3. k= 3.
(Two questions)The temperature in an office is controlled... PLEASE
Answer:
a) the temperature is y = 16° C at 9 AM.
b) The probability of selecting 2 vowels at the same time is 2.8%
Step-by-step explanation:
a)
Temperature = y=?
Time = x = 9 A.M
The given equation is:
[tex]y = 19 + 6 sin (\frac{\pi }{12}(x-11))[/tex]
Putting x = 9 and solving
[tex]y = 19 + 6 sin (\frac{\pi }{12}(9-11))\\y = 19 + 6 sin (\frac{\pi }{12}(-2))\\y = 19 + 6 sin (\frac{-\pi }{6})\\y = 19 + 6(-0.5)\\y = 19 - 3\\y = 16[/tex]
So, the temperature is y = 16° C at 9 AM.
b)
WORD CLEMSON
Total Words = 7
Vowels = e, o = 2
Probability of selecting 2 vowels at the same time = P(2 Vowels) =?
We will use the formula of combinations nCr = n! / r! (n-r)!
As we are selecting three letter out of 7, the sample space will be 7C3
And
As there are only two vowels in the given word, and we have to find the probability of selecting two vowels so our event space will be 2C2.
P(2 Vowels) = 2C2 / 7C3
= 1/35
= 0.028 = 2.8%
So, The probability of selecting 2 vowels at the same time is 2.8%
HELPPPP 15 POINTS!!! I need an answer fast
Answer:The answer is B
Step-by-step explanation:Because the exponent is 6 for Silver Town and 8 for Lake City
Answer:
Step-by-step explanation:
10^6=1000000
1000000x8.2
silver town 8200000
lake city 164000000
Which statement defines the horizontal asymptote?
m < n, so y = 0 is the horizontal asymptote.
m = n, so y = am / bn is the horizontal asymptote.
m = n, so y = 0 is the horizontal asymptote.
m > n, so there is no horizontal asymptote.
Answer:
(B) The correct answer is B: m = n, so y = am / bn is the horizontal asymptote.
The second part is The horizontal asymptote is y = 5
The horizontal asymptote is a horizontal line that guides the graph for values of x, but is not part of the graph
The correct option that defines the horizontal asymptote is the option;
m = n, so the horizontal asymptote is [tex]\underline {y = \dfrac{a_m}{b_n}}[/tex]Reason:
The possible function of the question is [tex]f(x) = \dfrac{20 + 5 \cdot x}{x}[/tex]
The general form of the rational function is presented as follows;
[tex]f(x) = \dfrac{x^m+...+ a \cdot x + c}{x^n + ...+b\cdot x + d}[/tex]
The power or degree of the numerator and denominator of a rational function determine the nature of the horizontal asymptote
Where highest power in numerator is less than the highest power or degree of the denominator, the horizontal asymptote is at y = 0
Therefore;
m < n the horizontal asymptote is y = 0
Where the power of the numerator is larger than the power of the denominator by one, the asymptote is slant, and the graph has no asymptote
m > n, there is no horizontal asymptote
In a rational function where the power of the numerator is equal to the power of the denominator, the horizontal asymptote occurs at the ratio of the leading zeros, [tex]y = \dfrac{a_m}{b_n}[/tex]
m = n, the horizontal asymptote is [tex]y = \dfrac{a_m}{b_n}[/tex]
Therefore;
In the given function, [tex]f(x) = \dfrac{20 + 5 \cdot x}{x}[/tex], the power of the numerator is equal to the power of the denominator, therefore, we have;
m = n, so the horizontal asymptote is [tex]\underline {y = \dfrac{a_m}{b_n}}[/tex]The horizontal asymptote of the function is [tex]y = \dfrac{5}{1} = 5[/tex]
Learn more here:
https://brainly.com/question/12730051
Solve.
ln(–x + 1) – ln(3x + 5) = ln(–6x + 1)
Please help i don't understand:(
On the left side, you can condense the logarithms into one:
[tex]\ln(1-x)-\ln(3x+5)=\ln\dfrac{1-x}{3x+5}[/tex]
Then
[tex]\ln\dfrac{1-x}{3x+5}=\ln(1-6x)\implies e^{\ln((1-x)/(3+5))}=e^{\ln(1-6x)}\implies\dfrac{1-x}{3x+5}=1-6x[/tex]
From here it's a purely algebraic equation. Multiply both sides by [tex]3x+5[/tex] to get
[tex]1-x=(1-6x)(3x+5)[/tex]
[tex]1-x=5-27x-18x^2[/tex]
[tex]18x^2+26x-4=0[/tex]
[tex]9x^2+13x-2=0[/tex]
By the quadratic formula,
[tex]x=\dfrac{-13\pm\sqrt{241}}{18}[/tex]
or about [tex]x\approx-1.5847[/tex] and [tex]x\approx0.14023[/tex].
Before we finish, first note that in order for the original equation to make sense, we need [tex]x[/tex] to satisfy 3 conditions:
[tex]-x+1>0\implies x<1[/tex]
[tex]3x+5>0\implies x>-\dfrac53\approx-1.67[/tex]
[tex]-6x+1>0\implies x<\dfrac16\approx0.17[/tex]
or taken together,
[tex]-\dfrac53<x<\dfrac16[/tex]
so both solutions found above are valid.
To solve the logarithmic equation, combine the logarithms, set the arguments equal to each other, solve for x, and check the solution.
Explanation:To solve the given equation ln(–x + 1) – ln(3x + 5) = ln(–6x + 1), we can use the properties of logarithms to simplify it.
1. Combine the logarithms using the quotient rule: ln((–x + 1)/(3x + 5)) = ln(–6x + 1).
2. Set the arguments equal to each other: (–x + 1)/(3x + 5) = –6x + 1.
3. Solve for x by cross-multiplying and simplifying the equation.
4. Check the solution in the original equation for validity.
The solution to the equation is x = -1.
Learn more about Solving logarithmic equations here:https://brainly.com/question/36026737
#SPJ2
Dwayne wanted to open a checking account but the bank required him to have a minimum of $100 to open the account. Do I needed to increase the amount he had by 25%, how much money did Duanne originally have
Answer:
$80
Step-by-step explanation:
If $100 is 25% more than Dwayne's original amount (a), you have ...
a + 0.25a = 100
1.25a = 100
a = 100/1.25 = 80
Dwayne originally had $80.
Question 5 Gradpoint Math Question Please Help
Answer:
The answer is: yes; k = -3 and y = -3x ⇒ the 3rd answer
Step-by-step explanation:
* Lets revise how to know the relation is direct proportion
- If all the ratios of x/y are proportion (equal ratios), then they
are varies directly
* Now lets check the relation between x and y
∵ x = 1 and y = -3
∴ y/x = -3/1 = -3
∵ x = 3 and y = -9
∴ y/x = -9/3 = -3
∵ x = 5 and y = -15
∴ y/x = -15/5 = -3
∵ All ratios are equal -3 (they are proportion)
∴ y varies directly with x
* y ∝ x
∴ y = k x
∴ The constant of variation k is -3
∴ y = -3x
* The answer is: yes; k = -3 and y = -3x