Answer:
[tex]n=\frac{0.4(1-0.4)}{(\frac{0.05}{1.96})^2}=368.79[/tex]
n=369
Step-by-step explanation:
1) Notation and definitions
[tex]X=40[/tex] number of the selected labourers opt for a new incentive scheme.
[tex]n=100[/tex] random sample taken
[tex]\hat p=\frac{40}{100}=0.4[/tex] estimated proportion of the selected labourers opt for a new incentive scheme.
[tex]p[/tex] true population proportion of the selected labourers opt for a new incentive scheme.
A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".
The margin of error is the range of values below and above the sample statistic in a confidence interval.
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The population proportion have the following distribution
[tex]p \sim N(p,\sqrt{\frac{p(1-p)}{n}})[/tex]
2) Solution tot he problem
In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 95% of confidence, our significance level would be given by [tex]\alpha=1-0.95=0.05[/tex] and [tex]\alpha/2 =0.025[/tex]. And the critical value would be given by:
[tex]z_{\alpha/2}=-1.96, z_{1-\alpha/2}=1.96[/tex]
The margin of error for the proportion interval is given by this formula:
[tex] ME=z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex] (a)
And on this case we have that [tex]ME =\pm 0.05[/tex] and we are interested in order to find the value of n, if we solve n from equation (a) we got:
[tex]n=\frac{\hat p (1-\hat p)}{(\frac{ME}{z})^2}[/tex] (b)
And replacing into equation (b) the values from part a we got:
[tex]n=\frac{0.4(1-0.4)}{(\frac{0.05}{1.96})^2}=368.79[/tex]
And rounded up we have that n=369
The size of the sample that must be selected to have a precision of ± 5% with 95% confidence is 369
How to find the margin of error of sample proportion?For large enough sample, let the population proportion of a quantity be denoted by random variable [tex]p[/tex]
Then, we get:
[tex]p \sim N(\hat{p}, \sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}})[/tex]
where
[tex]\hat{p}[/tex] = estimated (mean value) proportion of that quantity, andn = size of sample drawn.It is visible that as we increase the value of n, the standard deviation decreases, therefore, forcing the values of population proportion to be closer to the estimated proportion.
Margin of error is the distance between the mean and one of the end point of the confidence interval(assuming its equal on both the sides of the mean). The margin of error with level of significance [tex]\alpha[/tex] is calculated as:
[tex]MOE = Z_{\alpha/2}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]
where
[tex]Z_{\alpha/2}[/tex]
is the critical value of the test statistic for level of significance [tex]\alpha[/tex]
For the considered case, we have following facts:
Size of the preliminary sample = 100The precision needed = Margin of error = 5% =0.05Confidence level = 95%Count of labors in sample who opt for a new incentive scheme = 40Thus, if we denote p = proportion of labors opting for a new incentive scheme in the considered population, then,
[tex]\hat{p} = 40/100 = 0.4[/tex] (estimate from the sample about the proportion of such labors who opt for new incentive scheme to the total count of labors of the sample).
For 95% confidence interval, level of significance is 100% - 95% = 5% = 0.05
At this level of significance, the critical value of Z is ±1.96
Let the needed sample size be 'n', then:
[tex]MOE = Z_{\alpha/2}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}\\\\0.05= \pm 1.96 \sqrt{\dfrac{0.4(1-04)}{n}}\\\\n = \dfrac{0.4 \times 0.6}{(0.05/1.96)^2} \approx 369[/tex]
Thus, the size of the sample that must be selected to have a precision of ± 5% with 95% confidence is 369
Learn more about margin of error for proportion here:
https://brainly.com/question/15967946
13. Identify the y-intercept and the slope for each equation.
a. y=6x-3
b. y=-2 (x + 5)
c. y = 4 (-x + 1)
HELP ASAP
Answer:
For a ) y = 6x - 3
[tex]slope = m = 6\\y-intercept = c = -3\\[/tex]
For b ) y = -2x - 10
[tex]slope = m = -2\\y-intercept = c = -10\\[/tex]
For c ) y = -4x + 4
[tex]slope = m = -4\\y-intercept = c = 4\\[/tex]
Step-by-step explanation:
Given:
a. y = 6x - 3
b. y = -2 (x + 5)
y = -2x - 10
c. y = 4 (-x + 1)
y = -4x + 4
To Find:
y-intercept and the slope for each equation = ?
Solution:
Slope-intercept Formula is given by
[tex]y=mx+c[/tex]
Where,
m = slope
c = y-intercept
So on comparing the Given equations with the above Equation we get
For a ) y = 6x - 3
[tex]slope = m = 6\\y-intercept = c = -3\\[/tex]
For b ) y = -2x - 10
[tex]slope = m = -2\\y-intercept = c = -10\\[/tex]
For c ) y = -4x + 4
[tex]slope = m = -4\\y-intercept = c = 4\\[/tex]
HELP PLESE!!!!!! Subtract. State the difference in simplest form.
COO
1. ABCD is a parallelogram. The diagram is not drawn to scale. If mZCDA = 125°, then mZDCB
(1 point)
m
mm
125°
65°
55°
120°
Answer:
Therefore
m∠ DCB is 55°
Step-by-step explanation:
Given:
ABCD is a parallelogram. The diagram is not drawn to scale.
m∠CDA = 125°,
To FInd
m∠DCB = ?
Solution:
ABCD is a parallelogram.
AD || BC .......{opposite sides of a parallelogram are parallel}
∴∠CDA+∠DCB = 180°{SUM of the interior angles between parallel are supplementary}
substituting the values we get
[tex]125+m\angle DCB=180\\\\m\angle DCB =180-125=55\\\\m\angle DCB =55\°[/tex]
Therefore
m∠ DCB is 55°
84.19 take away 49.79 equal
Answer:
34.4
Step-by-step explanation:
Answer:
34.4
Step-by-step explanation:
USE A CALCULATOR!!!!
Apple produce pays it's employees by the formula P(b)=7/2b+35, where P(b) is the employee's total daily pay and b is the number of bushels of apples picked . According to the formula,what is the rate employees are paid per bushels of apples picked?
Answer:
Apple Produce pays employees 38.5 for per bushels of apples picked.
Step-by-step explanation:
Given:
Apple produce pays it's employees by the formula;
[tex]P(b) = \frac{7}{2}b+35[/tex]
[tex]P(b)[/tex] ⇒ Employee's Total daily pay
[tex]b[/tex] ⇒ Number of bushels of apples
We need to find the Rate employees are paid per bushels of apples picked.
Rate employees are paid per bushels of apples picked can be calculated by substituting the value of "b = 1" in above formula.
Substituting the value of b = 1 in above formula we get;
[tex]P(1) = \frac{7}{2} \times 1+35\\[/tex]
Now We will take LCM to make the Denominator common.
[tex]P(1) = \frac{7}{2} +\frac{35\times 2}{2} = \frac{7}{2} +\frac{70}{2} = \frac{77}{2}= 38.5[/tex]
Hence Apple Produce pays employees 38.5 for per bushels of apples picked.
Which of the following Platonic solids is also a cone?
O
A. Octahedron
B. Hexahedron
I C. None of these
D. Icosahedron
O
E. Tetrahedron
OF. Dodecahedron
Answer:
c
Step-by-step explanation:
got it right on app fuller l filler
Please help me with polynomials. What is the zeros of x^2 + 2x + 4
Answer:
-1 ± i√3
Step-by-step explanation:
You can rearrange the expression to vertex form:
x^2 +2x +1 +3
(x +1)^2 +3
You want to find the values of x that make this zero:
(x +1)^2 +3 = 0 . . . . . . . set the expression equal to zero
(x +1)^2 = -3 . . . . . . . . . subtract 3 to get the square alone
x +1 = ±√(-3) = ±i√3 . . .take the square root
x = -1 ±i√3 . . . . . . . . . . subtract 1
The zeros are the complex numbers -1+i√3 and -1-i√3.
What is the answer to -x = 12
the value of x is x=1/12'
HOPE IT HELPS U.
86,700,000-3.45•10^7
Answer:8.65
Step-by-step explanation:
The graph of the function y = x2 + 2 is shown. Which equation will shift the graph of the function down 4 units?
A) y = x2 + 6
B) y = x2 - 2
C) y = (x + 4)2 + 2
D) y = (x - 4)2 + 2
Answer: OPTION B.
Step-by-step explanation:
Below are shown some transformations for a function f(x):
1) If [tex]f(x)+k[/tex], the function is shifted up "k" units.
2) If [tex]f(x)-k[/tex], the function is shifted down "k" units.
In this case you have the following function, which you can call f(x):
[tex]y =f(x)= x^2 + 2[/tex]
Based on the transformations explained before, if this function is shifted down 4 units, you know that function obtained g(x) is:
[tex]g(x)= x^2 + 2-4\\\\g(x)= x^2 -2[/tex]
Therefore, the equation that will shift the graph of the function down 4 units, is:
[tex]y= x^2 -2[/tex]
Complete the statement to describe the expression (a+b+c)(d+e+f)
The expression consists of _ factors, and each factor contains _ terms.
fill in the blanks.
Answer:
The expression consists of two factors, and each factor contains three terms.
Step-by-step explanation:
Factors are numbers that multiply. The two brackets are written stuck to each other without any symbol between them, which means they are multiplying.
(a+b+c) is the first factor.
(d+e+f) is the second factor
Terms are numbers that separated by addition or subtraction.
Inside the first bracket, the terms are "a", "b", and "c".
Inside the second bracket, the terms are "d"", "e", and "f".
solve 4x-3y=-1 and 2x+3y=13 using the elimination method
Answer:
Step-by-step explanation:
Answer:
Step-by-step explanation:
4x-3y=-1 ...(1)
2x+3y=13..(2)
add (1) and (2) : 4x-3y + 2x+3y = -1 +13
6x =12
x = 12/6 = 2
put x = 6 in (2) : 2(2)+3y = 13
4+3y =13
3y =9
y=3
A sporting goods stores sells footballs, basketballs, and volleyballs. A football costs $35, a basketball costs
s , and a volleyball costs $15. On a given day, the store sold 5 times as many footballs as volleyballs. They
brought in a total of $3750 that day, and the money made from basketballs alone was 4 times the money
made from volleyballs alone. How many footballs, basketballs, and volleyballs were sold? Just set up the
problem
Answer:
The number of footballs, basketballs and volleyballs were sold are 75, 36 and 15 respectively.
Step-by-step explanation:
Consider the provided information.
A football costs $35, a basketball costs $25 and a volleyball costs $15.
Let F represents the football, B represents the basketball and V represents the volleyball.
On a given day, the store sold 5 times as many footballs as volleyballs.
[tex]F=5V[/tex]......(1)
They brought in a total of $3750 that day,
[tex]35F+25B+15V=3750[/tex]......(2)
The money made from basketballs alone was 4 times the money.
[tex]25B=4(15V)[/tex]......(3)
By equation 1, 2 and 3.
[tex]35(5V)+4(15V)+15V=3750[/tex]
[tex]250V=3750[/tex]
[tex]V=15[/tex]
Substitute the value of V in equation 1 and 3.
[tex]F=5(15)=75[/tex]
[tex]25B=4(15\times 15)\\B=36[/tex]
Hence, the number of footballs, basketballs and volleyballs were sold are 75, 36 and 15 respectively.
The system of equations is as follows:
35F + 25B + 15V = 3750
1 F = 5V
25B = 60V
Let's define the variables first:
F: Number of footballs soldB: Number of basketballs soldV: Number of volleyballs soldWe are given the following information:
A football sells for $35, then the money made from footballs is 35F.A basketball sells for $25, then the money made from basketballs is 25B.A volleyball sells for $15, then the money made from volleyballs is 15V.The store sold 5 times as many footballs as volleyballs: F = 5VThe total sales amounted to $3750: 35F + 25B + 15V = 3750The money made from basketballs was four times the money made from volleyballs: 25B = 4 × 15VWe can write the system of equations as:
35F + 25B + 15V = 3750
F = 5V
25B = 60V
Complete question:
A sporting goods store sells footballs (F), basketballs (B), and volleyballs (V). A football sells for $35 a basketball sells for $25, and a volleyball sells for $15. On a given day, the store sold 5 times as many footballs as volleyballs. The sales brought in a total of $3750 that day, and the money made from basketballs alone was four times the money made from volleyballs. Write the system of equations to determine how many of each type of ball were sold by entering relevant numbers in the boxes provided below to complete each equation. Do not solve the system.
___ F + ___ B + ___ V = 3750
___ F = ___ V
____ B = ____ V
i need help figuring out how to factor
[tex]3 {x}^{2} - 11x - 4[/tex]
Answer:
Step-by-step explanation:
Simplify x0y-3/x2y-1 A.1/x2y2 B. Y/x6 C. 4y3/x3 D.y3/2
Answer:
Option A) [tex]\frac{1}{x^2y^2}[/tex] is correct.
Therefore the simplified given expression [tex]\frac{x^0y^{-3}}{x^2y^{-1}}=\frac{1}{x^2y^2}[/tex]
Step-by-step explanation:
Given expression is [tex]\frac{x^0y^{-3}}{x^2y^{-1}}[/tex]
To simplify the given expression:
[tex]\frac{x^0y^{-3}}{x^2y^{-1}}[/tex]
Above expression can be written as
[tex]\frac{x^0y^{-3}}{x^2y^{-1}}=\frac{(1)y^{-3}}{x^2y^{-1}}[/tex]
(since [tex]x^0=1[/tex] ,anything variable to the power "0' is 1)
[tex]\frac{x^0y^{-3}}{x^2y^{-1}}=\frac{y^{-3}}{x^2y^{-1}}[/tex]
[tex]\frac{x^0y^{-3}}{x^2y^{-1}}=\frac{1}{x^2y^{-1}y^3}[/tex] (since [tex]a^{-m}=\frac{1}{a^m}[/tex] )
[tex]\frac{x^0y^{-3}}{x^2y^{-1}}=\frac{1}{x^2y^{-1+3}}[/tex] (using the property [tex]a^m+a^n=a^{m+n}[/tex])
[tex]\frac{x^0y^{-3}}{x^2y^{-1}}=\frac{1}{x^2y^2}[/tex]
Therefore [tex]\frac{x^0y^{-3}}{x^2y^{-1}}=\frac{1}{x^2y^2}[/tex]
Therefore Option A) [tex]\frac{1}{x^2y^2}[/tex] is correct.
Therefore the simplified given expression [tex]\frac{x^0y^{-3}}{x^2y^{-1}}=\frac{1}{x^2y^2}[/tex]
Evaluate the determinant for the following 1 4 4]
5 2 2
1 5 5
The determinant of given matrix is zero
Step-by-step explanation:
Given matrix is:
[tex]\left[\begin{array}{ccc}1&4&4\\5&2&2\\1&5&5\end{array}\right][/tex]
The determinant of a 3x3 matrix is calculated by selecting a single row.
We are choosing the first row.
So,
[tex]= 1\left|\begin{array}{ccc}2&2\\5&5\\\end{array}\right|-4\left|\begin{array}{ccc}5&2\\1&5\\\end{array}\right|+4\left|\begin{array}{ccc}5&2\\1&5\\\end{array}\right|\\=1(10-10) -4(25-2)+4(25-2)\\=0-4(23)+4(23)\\=-92+92\\=0[/tex]
The determinant of given matrix is zero
Keywords: Matrices, determinant
Learn more about matrices at:
brainly.com/question/9720317brainly.com/question/9621364#LearnwithBrainly
If cosA = 3/5 and A ∈ (630,720), find sin2A
Answer:
- [tex]\frac{24}{25}[/tex]
Step-by-step explanation:
Given 630 < A > 720 then A is in the fourth quadrant where
cosA > 0 and sinA < 0
Given
cosA = [tex]\frac{3}{5}[/tex] = [tex]\frac{adjacent}{hypotenuse}[/tex]
Then the triangle is a 3- 4 - 5 with opposite side 4, thus
sinA = - [tex]\frac{opposite}{hypotenuse}[/tex] = - [tex]\frac{4}{5}[/tex]
Using the trigonometric identity
sin2A = 2sinAcosA
= 2 × - [tex]\frac{4}{5}[/tex] × [tex]\frac{3}{5}[/tex]
= [tex]\frac{2(-4)(3)}{5(5)}[/tex] = - [tex]\frac{24}{25}[/tex]
What is the value of a? Enter your answer in the box. a = A right triangle with base labeled as 20. The hypotenuse is labeled as 25. The perpendicular is labeled as a. The angle made between the base and the perpendicular is marked as a right angle.
Answer:
x= 33.49
Step-by-step explanation:
Answer:
15 according to the test
Step-by-step explanation:
santa has nine reindeer that pull his sleigh on christmas eve what is the ratio of legs ears as it relates to santad reindeer?
Final answer:
The ratio of legs to ears for Santa's reindeer is 2 legs/ear.
Explanation:
The question is asking for the ratio of legs to ears as it relates to Santa's reindeer. We know that Santa has 9 reindeer and reindeer typically have 4 legs and 2 ears. So the total number of legs would be 9 reindeer * 4 legs/reindeer = 36 legs. And the total number of ears would be 9 reindeer * 2 ears/reindeer = 18 ears. To find the ratio of legs to ears, we divide the number of legs by the number of ears: 36 legs / 18 ears = 2 legs/ear.
how many solutions does 12=12 have?
Answer:
There is not solution to that it is just 12 because there is no variable
Step-by-step explanation:
Answer:
I would say one because the solution is 12.
12 = 12.
(1,5) and (2,3) write a linear function in the form y=Mx+b for the line
Answer:
y= -2x + 7
Step-by-step explanation:
What is the remainder when x4 - 5x3 + 3x2 - 2x +7 is divided by x - 1?
Answer:The remainder can be calculated by doing the following steps;
Step-by-step explanation:
The remainder when f(x) = x⁴ - 5x³ + 3x² - 2x +7 is divided by x - 1 is 4.
Polynomial is an expression that involves only the operations of addition, subtraction, multiplication of variables.
The remainder theorem states that when a polynomial, f(x), is divided by a linear polynomial , x - a, the remainder of that division will be equivalent to f(a).
Given that f(x) = x⁴ - 5x³ + 3x² - 2x +7 is divided by x - 1
x - 1 = 0
x = 1
f(1) = 1⁴ - 5(1)³ + 3(1)² - 2(1) + 7 = 4
The remainder when f(x) = x⁴ - 5x³ + 3x² - 2x +7 is divided by x - 1 is 4.
Find out more on polynomial at: https://brainly.com/question/2833285
Point G is the incenter of the triangle.
What is the value of x?
4
8
24
32
Answer:
b.) 8 on ed2020
Evaluate the following numerical expression 2+(-3)+7
Answer:
Step-by-step explanation:
2 + (-3) + 7 = 2 - 3 + 7 = 9 - 3 = 6 <==
a positive multiplied by a negative will be negative
a box 12 cm long, 5 cm wide and 12 cm height. A cardboard rectangle is inserted along the diagonal to divide the box vertically into two equal spaces. Determine the dimensions f the cardboard rectangle.
Answer:
The Cardboard dimensions are 13cm in length and 12cm in breadth
Step-by-step explanation:
We can use Pythagoras Theorem to find the length the Cardboard (a²+b²=c²). Let A be 5 and B be 12, we find that C is equivalent to 13. The height is 12, thus the breadth of the Cardboard is also 12. Hope this helps :)
Final answer:
The dimensions of the cardboard rectangle are 5 cm by 12√2 cm.
Explanation:
To determine the dimensions of the cardboard rectangle inserted diagonally into a box with given dimensions, we first need to calculate the diagonal of the box that lies in the length-height plane. The box is 12 cm long and 12 cm high.
By using the Pythagorean theorem, we can find the length of the diagonal 'd' using the formula √(l² + h²), where 'l' is the length of the box and 'h' is the height.
In this case, 'd' = √(12² + 12²) = √(144 + 144) = √(288) = 12√2 cm.
Thus, the dimensions of the cardboard rectangle are its width, which is 5 cm (the width of the box), and its diagonal, which is 12√2 cm.
Write the ratio as a fraction in simplest form.
6 out of 9
Answer: 2/3
Step-by-step explanation: We can rewrite the ratio 6 out of 9 as the fraction 6/9 by putting 6 in the position of the numerator and 9 in the position of the denominator.
Notice however, 6/9 is not in lowest terms so we need to divide the numerator and the denominator by the greatest common factor of 6 and 9 which is 3 to get the equivalent fraction 2/3.
Therefore, the ratio 6 out of 9 can be rewritten as the fraction 2/3.
Justin is considering two websites for downloading music.The costs are detailed here.
Website 1: a yearly fee of $30 and $1.50 for each download
Website 2: $2 for each download
What is a system of equations to represent the costs for one year?
Express your equations in the form of y=mx+b where x is the number of downloads for the year and y is the total cost for the year.
Enter your equations in the boxes.
Answer:
y = 30 + 1.5x and y = 2x
Step-by-step explanation:
Website 1 has a plan for a yearly fee of $30 and $1.5 for each download.
Therefore, if x is the number of downloads for a year and y is the total cost for the year, then we can model the conditions as
y = 30 + 1.5x ......... (1)
Website 2 has a plan of $2 for each download.
Therefore, we can models the condition as
y = 2x ........ (2)
Therefore, equations (1) and (2) represent the costs for one year. (Answer)
there are 2.54 centimeters in 1 inch. there are 100 centimeters in 1 meter. to the nearest inch, how many inches are in 7 meters
There are approximately 275.59 inches in 7 meters.
To find out how many inches are in 7 meters, we will first convert meters to centimeters, and then centimeters to inches.
Since there are 100 centimeters in one meter, we can calculate:
7 meters × 100 centimeters/meter = 700 centimeters
Now, we know there are 2.54 centimeters in one inch, we can convert the 700 centimeters to inches:
700 centimeters × 1 inch/2.54 centimeters ≈ 275.59 inches
To the nearest inch, there are approximately 275.59 inches in 7 meters.
87.5% of 64 =
38
48
58
56
87.5% of 64 is 0.875 • 64 = 56
Hope this helps.
Final answer:
To find 87.5% of 64, convert 87.5% to a decimal (0.875) and multiply by 64 to get 56.
Explanation:
To calculate 87.5% of 64, convert the percentage to a decimal and multiply by the number. Here's how you do it:
Convert the percentage to a decimal: 87.5% = 0.875.Multiply this decimal by the number: 0.875 × 64.Calculate the product to get the answer.Calculating this, we get:
0.875 × 64 = 56
Plz help really fast 4 mins left
Answer:
Options A, B, and D are correct.
Step-by-step explanation:
The given function is p(x) = x³ - 6x² - x + 30
Given that p(5) = 0, p(3) = 0 and p(-2) = 0
Therefore, putting x = 5, or x = 3, or x = -2, the function p(x) vanishes to zero.
Therefore, those are the roots of the given function p(x).
Hence, we can conclude that (x - 5), (x - 3) and (x + 2) are the factors of the function p(x) = x³ - 6x² - x + 30.
So, options A, B, and D are correct. (Answer)