Question 1: Factor out the Greatest

Common Factor

3t5s − 15t2s3



Question 1 options:

3(t5s − 5t2s3)

3t2(t3s − 5s3)

3t2s(t3 − 5s2)

-12t3s2

Answers

Answer 1

For this case we have that by definition, the GCF or (Greatest Common Factor) is given by the greatest common factor that divides both terms without leaving a residue.

15: 1,3,5,15

3: 1.3

Then we have the GCF of the expression is:

[tex]3t ^ 2s (t ^ 3-5s ^ 2)[/tex]

ANswer:

Option C


Related Questions

translate the phrase into an Algebraic Expression and Simplify : The Result of Increasing the product of a number x and 9 by 4​

Answers

Answer:

[tex]y =( x +9 )\times 4[/tex]

simplified

[tex]y = 4x + 48[/tex]

Step-by-step explanation:

first know that the result would be y or f(x), because it's the function applied to x that makes it y. so its starts with either y= or, f(x)=

increasing by a number is multiplying, the word and is used for addition so

+9 ×4 will be in the equation

used PEMDAS, distribution, and combining like terms to simplify

Five infinity stones cost $16.80. What is the price per infinity stone ?

Answers

Answer:

The price is $3.36 per infinity stone

Step-by-step explanation:

we know that

Five infinity stones cost $16.80

so

To find the price of each infinity stone (unit rate) divide the total cost by five

[tex]\frac{16.80}{5} =3.36\frac{\$}{infinity\ stone}[/tex]

a+b= 17, ab=70, Find the value of |a-b|

Answers

Answer:

3

Step-by-step explanation:

there are two solutions in the given system of two equations:

a=10; b=7 and a=7; b=10.

|a-b|=3.

Find how much should be invested to have $14,000 in 10 months at 9.1% simple interest.

Answers

Answer:

[tex]\$13,013.17[/tex]

Step-by-step explanation:

we know that

The simple interest formula is equal to

[tex]A=P(1+rt)[/tex]

where

A is the Final Investment Value

P is the Principal amount of money to be invested

r is the rate of interest  

t is Number of Time Periods

in this problem we have

[tex]t=10/12\ years\\ P=?\\ A=\$14,000\\r=0.091[/tex]

substitute in the formula above  

[tex]\$14,000=P(1+0.091*(10/12))[/tex]

[tex]P=\$14,000/(1+0.091*(10/12))[/tex]

[tex]P=\$13,013.17[/tex]

3x3 matrix A. r1(3 -2 0) r2(0 1 1) r3(2 -1 0). don't calculate A^-1 or raise any matrix to a power first. calculate det(2A^-2)

Answers

Answer with explanation:

For, a 3 × 3, matrix

[tex]r_{1}=(3,-2,0)\\\\r_{2}=(0,1,1)\\\\r_{3}=(2,-1,0)[/tex]

which are entries of First, Second and Third Row Respectively.

So, if written in the form of Matrix (A)

 [tex]A=\left[\begin{array}{ccc}3&-2&0\\0&1&1\\2&-1&0\end{array}\right][/tex]

⇒Adjoint A= Transpose of Cofactor of A

[tex]a_{11}=1,a_{12}=2,a_{13}=-2\\\\a_{21}=0,a_{22}=0,a_{23}=-1\\\\a_{31}=-2,a_{32}=- 3,a_{33}=3\\\\Adj.A=\left[\begin{array}{ccc}1&0&-2\\2&0&-3\\-2&-1&3\end{array}\right][/tex]

⇒≡ |Adj.A|=1 ×(0-3) -2×(-2-0)

            = -3 +4

            =1     --------(1)

For, a Matrix of Order, 3 × 3,

| Adj.A |=| A|²---------(2)

[tex]|2 A^{-2}|=2^3\times |A^{-2}|\\\\=2^3\times |A|^{-2}\\\\=\frac{8}{|A^{2}|}\\\\=\frac{8}{|Adj.A|}\\\\=\frac{8}{1}\\\\=8[/tex]

                                              --------------------------------------------(Using 1 and 2)

[tex]\rightarrow|2 A^{-2}|=8[/tex]

         

Suppose you invest $150 a month for 5 years into an account earning 7% compounded monthly. After 5 years, you leave the money, without making additional deposits, in the account for another 23 years. How much will you have in the end?

Answers

Answer:

About 0.3 billion dollars

Step-by-step explanation:

5 years = 60 months.

The 150 of the first month will be 150*1.07^60 in 5 years.

The 150 of the second month will be 150*1.07^59 in 5 years.

The 150 of the third month will be 150*1.07^58 in 5 years.

And so forth.

So we sum that up:

( sum_(n=1)^(60) 150×1.07^n)

And multiply with

× 1.07^(5×23)

to account for the increase in value in the following 23 years.

I need help with Math Homework

Answers

Answer:

Your answer should be -8.

what is the value of X

Answers

I believe it would be 50 degrees because 180-130=50 and this is a straight line.

i think 134 is supposed to throw you off. if no one else answers i would go with this.

let me know if this is correct, if you get the chance. i apologize in advance if i’m wrong.

Answer:

The value of x = 96°

Step-by-step explanation:

Here we consider two angles be <1, <2 and < 3, where <1 is the linear pair of angle measures 130° and <2 be the linear pair of angle measures 134°

To find the value of m<1

m<1 = 180 - 130 = 50°

To find the value of m<2

m<2 = 180 - 134 = 46°

To find the value of m<3

By using angle sum property,

m<1 + m<2 + m< 3 = 180

m<3 =180 - (m<1 + m<2)

 = 180 - (50 + 46 = 96

 = 84°

To find the value of x

Here x and <3 are linear pair,

x + m<3 = 180

x = 180 - m<3

 = 180 - 84 = 96°

Therefore the value of x = 96°

what is the y-coordinate of the vertex of the parabola?

f(x)= -x^2 - 2x +6

Answers

Answer:

  7

Step-by-step explanation:

The function can be written in vertex form as ...

  f(x) = -(x +1)^2 +7

The vertex is then identifiable as (-1, 7). The y-coordinate is 7.

_____

Vertex form is ...

  f(x) = a(x -h)^2 +k

where "a" is the vertical scale factor, and (h, k) is the vertex point. It is convenient to arrive at this form by factoring "a" from the first two terms, then adding and subtracting the square of the remaining x-coefficient inside and outside parentheses.

  f(x) = -(x^2 +2x) +6

  f(x) = -(x^2 +2x +1) + 6 -(-1) . . . . completing the square

  f(x) = -(x +1)^2 +7 . . . . . . . . . . . . vertex form; a=-1, (h, k) = (-1, 7)

The y-coordinate of the vertex of the parabola defined by the function f(x)= -x² - 2x + 6 is 3. This is found by using the vertex formula and then substituting the x-coordinate back into the original function.

To find the y-coordinate of the vertex of the parabola defined by the quadratic function f(x)= -x² - 2x + 6, we can use the vertex formula for a parabola in standard form, which is y = ax² + bx + c. The x-coordinate of the vertex is given by the formula -b/(2a), and the y-coordinate can then be calculated by applying the x-coordinate to the original function.

First, let's find the x-coordinate of the vertex:

a = -1 (coefficient of x²)b = -2 (coefficient of x)

x-coordinate of the vertex, x_v = -(-2)/(2*(-1)) = -(-2)/(-2) = 1

Now, substitute x_v back into the function to find the y-coordinate:

y-coordinate of the vertex, y_v = f(1) = -1² - 2*1 + 6 = -1 - 2 + 6 = 3

Therefore, the y-coordinate of the vertex is 3.

Electric power costs 17.8 cents per kWh in Los Angeles in July 2017 (compared to the national average of 14.3 cents per kWh). How much did it cost (in cents) to run a 1500 W hair dryer for 10 minutes in Los Angeles during July 2017? Assume 3 significant digits in your answer.

Answers

Answer:

The cost to run a 1500 W hair dryer for 10 minutes in Los Angeles during July 2017 is:

                   4.45 cents

Step-by-step explanation:

Electric power costs 17.8 cents per kWh in Los Angeles in July 2017.

Now we are asked to find the cost to run  a 1500 W hair dryer for 10 minutes in Los Angeles during July 2017.

We know that: 1 w=0.001 kW

This means that:

   1500 W= 1.500 kW

Also, it is used for 10 minutes

i.e. 1/6 hours

Hence, the electric power used to run the hair dryer is: 1.500×(1/6)

i.e. Electric power to used by hair dryer is: 0.25 kWh

Cost of 1 kwh is: 17.8 cents

This means that cost of 0.25 kwh is: 17.8×0.25

                                                        =  4.45 cents

Hence, the answer is:

                      4.45 cents

1 point) Let H be the set of all points in the second and fourth quadrants in the plane V That is, H- (e, y)y 0) Is H a subspace of the vector space V? R2 1. Does H contain the zero vector of V? choose 2. Is H closed under addition? If it is, enter CLOSED. If it is not, enter two vectors in H whose sum is not in H, using a comma separated list and syntax such as 3. Is H closed under scalar multiplication? If it is, enter CLOSED. If it is not, enter a scalar in R and a vector in H whose product is not in H, using a comma separated list and syntax such as 2, 3, 4> 4. Is H a subspace of the vector space V? You should be able to justify your answer by writing a complete, coherent, and detailed proof based on your answers to parts 1-3 choose

Answers

Answer:

Step-by-step explanation:

What level of math is this?

To determine if H is a subspace, we need to check three properties: the presence of the zero vector, closure under vector addition, and closure under scalar multiplication.

1. Does H contain the zero vector of V? The answer is no, because the zero vector (0,0) does not lie in the second or fourth quadrants.

2. Is H closed under addition? The answer is no. For example, the vectors (-1, 1) from the second quadrant and (-1, -1) from the fourth quadrant would sum to (-2, 0), which is not part of either quadrant.

3. Is H closed under scalar multiplication? The answer is no, as multiplying a vector in H by a negative scalar will place it in the opposite quadrant, which is outside H. For example, the scalar -1 and the vector (-1, 1) will yield the vector (1, -1), which is not in the second or fourth quadrants.

4. Is H a subspace of the vector space V? The answer is no, because it does not meet the required properties mentioned in parts 1-3.

What is the length of side s of the square shown below?​

Answers

Answer:

C

Step-by-step explanation:

The Pythagorean Theorem tells us that

a^2 + b^2 = c^2

a = b = s because a right angle and a 45 degree angle leaves only 45 degrees which means that both acute angles are 45 degrees

c = 2

2s^2 = 2^2         Divide by 2

s^2 = 4/2

s^2 = 2                Take the square root of both sides.

sqrt(s^2) = sqrt(2)              

s = sqrt(2)

Answer:

C: square root of 2.

Step-by-step explanation:

Ignore the picture that shows option D, jcherry99's description is correct.

if u are 4/7 mile from your home and u can walk 4 5/7 miles per hour , How long will it take for u to walk to your home ????? A) 4/33 hour B) 80/49 hours C) 20/231 hour D) 80/49 hours E) 132/49 hours Which one is the best Answer ..​

Answers

Answer:

A) 4/33 hour

Step-by-step explanation:

This is a distance = rate * time problem

We are given the distance and the rate, now we need to solve for the time:

[tex]\frac{4}{7}=4\frac{5}{7}t[/tex]

Let's change that mixed fraction into an improper one:

[tex]\frac{4}{7}=\frac{33}{7}t[/tex]

Now to solve for t we can multiply the 33/7  by its recirocal:

[tex](\frac{7}{33})\frac{4}{7}=\frac{33}{7}(\frac{7}{33})t[/tex]

Multiplying a fraction by its reciprocal = 1, so that leaves only a t on the right:

[tex](\frac{7}{33})\frac{4}{7}=t[/tex]

The 7's cancel out on the left and that leaves you with

[tex]t=\frac{4}{33}hr[/tex]

The long jump record, in feet, at a particular school can be modeled by f(x) = 19.6 + 2.5ln(x + 1) where x is the number of years since records began to be kept at the school. What is the record for the long jump 11 years after record started being kept? Round your answer to the nearest tenth.

Answers

Answer:

25.8

Step-by-step explanation:

Please help me! Struggling with Geometry! 45 points (proofs)

Answers

Answer:

Step-by-step explanation:

It’s nothing

For each of the following statements, state whether it is true (meaning, always true) or false (meaning, not always true): Let X and Y be two binomial random variables. (a) If X and Y are independent, then X+Y is also a binomial random variable.

Answers

Answer:

yes

Step-by-step explanation:

it is absolutely true that biononmials always gives biononmials when added

If X and Y are independent, then X+Y is not a binomial random variable and so it is a false statement.

What is the sum of independent binomial random variables?

This term is known to be a binomial random variable that occurs when all the parts of the variables is said to have similar success probability.

The best method to check if two random variables are said to be independent is through the  calculation of the covariance of the two specific random variables.

Note that if If the variables are said to be independent (X and Y), then their difference is said to be not binomially distributed.

Learn more about binomial random variable from

https://brainly.com/question/14446233

Find(f/g)(x)for the following functions.

Answers

Answer:

[tex]x^{2} \neq -\frac{1}{14}[/tex]

Step-by-step explanation:

The equation will hold true as long as the denominator does not equal zero:

so take the denominator and set it equal to zero and find x. when you find x, that will be your answer:

-14x^2 -1=0

-14x^2=1

-x^2=1/14

x^2=-1/14

A. The point-slope form of the equation of a line is y ? y1 = m(x ? x1), where m is the slope and (x1, y1) is a point on the line. Write the equation of the line in point-slope form perpendicular to the graph of y = 1/2x -7 passing through the point (6, 5).

B. Write an equation of the perpendicular bisector of JK, where J = (?8, 4) and K = (4, 4).

Can you show work please.

Answers

Answer:

A.

[tex]y - 5 = -2(x-6)[/tex]

Negative reciprocal gives you the perpendicular slope so negative reciprocal of 1/2 is -2.

Then apply point-slope form.

B. The answer is x = 6.

The midpoint of JK is

[tex]\left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) = \left( \frac{8+ 4}{2}, \frac{4 + 4}{2} \right) = \left(6,4\right)[/tex]

The line that goes through JK is just a horizontal line [tex]y = 4[/tex] because the y-coordinate does not change. So its perpendicular bisector is the vertical line that goes through the x-coordinate of the midpoint, that is, [tex]x = 6[/tex].

how the graph does the graph behave as x approaches positive or negative infinity. does it keep going at the same rate or does it approach a value but never touch it ?

Answers

The graph approaches positive infinity at a constant rate.

The end behavior of this graph is:

As x → -∞, f(x) → +∞

For the first notation it looks at the behavior of the left side of the graph. As x approaches negative infinity (or positive xs) y or f(x) approaches positive infinity (or positive ys)

and

As x → +∞, f(x) → +∞

For the second notation it looks at the behavior of the right side of the graph. As x approaches positive infinity (or positive x's) y or f(x) approaches positive infinity (or positive ys)

Hope this helped!

~Just a girl in love with Shawn Mendes

Answer: The graph approaches positive infinity at a constant rate.

Step-by-step explanation:

What side lengths should be used to model the rectangle?
A rectangle with an area of x2 - 4x - 12 square units is
represented by the model
(x + 2) and (x-6)
(x+6) and (x - 2)
(x + 2) and (x - 10)
(x + 10) and (x - 2)

-X
-
+X
-
-
- -
- -
-
-
- -
- -
+X

Answers

For this case we have that by definition, the area of a rectangle is given by:

[tex]A = ab[/tex]

Where:

a, b: They are the sides of the rectangle

We have as data that the area of the rectangle is given by:

[tex]x ^ 2-4x-12[/tex]

IF we factor the expression, we must find two numbers that when multiplied give as a result "-12" and when summed give as result "-4". These numbers are: -6 and +2:

[tex](x-6) (x + 2)[/tex]

Thus, the sides of the rectangle are given by:

[tex](x-6) (x + 2)[/tex]

Answer:

Option A

If the nominal interest rate is 6 percent and the rate of inflation is 10 percent, then the real interest rate is A. -16 percent. B. 4 percent. C. -4 percent. D. 16 percent.

Answers

Answer: C. -4 percent

Step-by-step explanation:

Nominal interest rate is the interest rate before taking inflation into account.

Real interest rate takes the inflation rate into account.

The equation that links all three values is

nominal rate - inflation rate = real rate

6 - 10 = -4

-4 percent

Final answer:

The real interest rate can be calculated by subtracting the inflation rate from the nominal interest rate. In this case, the real interest rate is -4%, suggesting an investor would lose value due to inflation.

Explanation:

The calculation of the real interest rate involves subtracting inflation from the nominal interest rate. This is essential since inflation erodes the purchasing power of money, making it an important factor to consider when dealing with interest rates. In this case, you need to subtract the inflation rate (10 percent) from the nominal interest rate (6 percent).

So, performing this calculation:
6% (Nominal Interest Rate) - 10% (Inflation Rate) = -4%

Thus, in this scenario, the correct option would be C. -4 percent. This implies that an investor would actually lose ground when considering the effect of inflation.

Learn more about Real Interest Rate here:

https://brainly.com/question/34393655

#SPJ3

Multiply Conjugates




(r+1/4)r-1/4)

Answers

Answer:

[tex]\large\boxed{\left(r+\dfrac{1}{4}\right)\left(r-\dfrac{1}{4}\right)=r^2-\dfrac{1}{16}}[/tex]

Step-by-step explanation:

[tex]\text{Use}\ (a+b)(a-b)=a^2-b^2\\\\\left(r+\dfrac{1}{4}\right)\left(r-\dfrac{1}{4}\right)=r^2-\left(\dfrac{1}{4}\right)^2=r^2-\dfrac{1^2}{4^2}=r^2-\dfrac{1}{16}[/tex]

[tex](a+b)(a-b)=a^2-b^2[/tex]

[tex]\left(r+\dfrac{1}{4}\right)\left(r-\dfrac{1}{4}\right)=r^2-\dfrac{1}{16}[/tex]

The width of a rectangle is 4 less than twice its length. If the area of the rectangle is 153 cm2, what is the length of the diagonal?

Give your answer to 2 decimal places.

If anyone could explain this I would appreciate it, all the answers I kept getting on similar questions were a few numbers off and I don't know why.

Answers

Answer:

  diagonal ≈ 18.43 cm

Step-by-step explanation:

Let L represent the length of the rectangle. Then the width is ...

  w = 2L -4 . . . . . . 4 less than twice the length

The area is ...

  A = wL = (2L -4)L = 2L² -4L

The area is said to be 153 cm², so we have ...

  2L² -4L = 153

  2L² -4L -153 = 0 . . . . . . subtract 153 to put into standard form

We can find the solution to this using the quadratic formula. It tells us the solution to ax²+bx+c=0 is given by ...

  x = (-b±√(b²-4ac))/(2a)

We have a=2, b=-4, c=-153, so our solution for L is ...

  L = (-(-4) ±√((-4)²-4(2)(-153)))/(2(2)) = (4±√1240)/4

Only the positive solution is of interest, so L = 1+√77.5.

__

Now we know the rectangle is 1+√77.5 long and -2+2√77.5 wide. The diagonal (d) is the hypotenuse of a right triangle with these leg lengths. Its measure can be found from ...

  d² = w² +L² = (-2+2√77.5)² +(1+√77.5)²

It can work well to simply evaluate this using a calculator, or it can be simplified first.

  d² = 4 -8√77.5 +4·77.5 + 1 +2√77.5 +77.5 = 392.5 -6√77.5

Taking the square root gives the diagonal length:

  d = √(392.5 -6√77.5) ≈ 18.43 . . . . cm

The population of a culture of cells grows according to the function P(t)= 90t/ t + 1, where t> or =0 is measured in weeks. Complete parts (a) and (b) below.
What is the average rate of change in the population over the interval [0,24]?

Answers

Answer:

The average rate of change is [tex]\frac{18}{5}[/tex]

Step-by-step explanation:

Given function that shows the population of a culture of cells,

[tex]P(t)=\frac{90t}{t+1}------(1)[/tex]

Where, t represents the number of weeks.

Thus, the average rate of change in the population over the interval [0,24],

[tex]m=\frac{P(24)-P(0)}{24-0}[/tex]

From equation (1),

[tex]=\frac{\frac{90\times 24}{24+1}-\frac{90\times 0}{0+1}}{24}[/tex]

[tex]=\frac{\frac{2160}{25}-\frac{0+1}{0}}{24}[/tex]

[tex]=\frac{2160}{25\times 24}[/tex]

[tex]=\frac{2160}{600}[/tex]

[tex]=\frac{18}{5}[/tex]

Graph y ≥ -x^2 - 1. Click on the graph until the correct graph appears.

Answers

Answer:

The graph in the attached figure

Step-by-step explanation:

we have

[tex]y\geq -x^{2}-1[/tex]

The solution of the inequality is the shaded area above the solid line of the equation of the  parabola [tex]y= -x^{2}-1[/tex]

The vertex of the parabola is the point (0,-1)

The parabola open downward (vertex is a maximum)

using a graphing tool

see the attached figure

Use the formula for the present value of an ordinary annuity or the amortization formula to solve the following problem. PV $8,000; i 0.01; PMT $400; n = ? (Round up to the nearest integer.) n=

Answers

Answer:

n = 22

Step-by-step explanation:

We will use the formula for the present value of an ordinary annuity :

[tex]P.V.=P(\frac{1-(1+r)^{-n}}{r})[/tex]

where P = periodic payment

          r = rate per period

          n = number of periods

Given P = PMT = $400, P.V. = $8,000, i = 0.01, and we have to find n.

Now we put the values in the formula

[tex]8000=400(\frac{1-(1+0.01)^{-n}}{0.01})[/tex]

After rearranging we have

[tex]\frac{8000\times 0.01}{400}=1-1.01^{-n}[/tex]

[tex]20\times 0.01=1-1.01^{-n}[/tex]

[tex]1.01^{-n}[/tex] = 1 - 0.2

[tex]1.01^{-n}[/tex] = 0.8

Taking log on both sides

-n log 1.01 = log 0.8

[tex]n=\frac{-log0.08}{log1.01}[/tex] = 22.4257

Therefore, n = 22

So there are total 22 payments

Formulate the recursive formula for the following geometric sequence.
{-16, 4, -1, ...}

Answer that question with all work shown. Thanks

Answers

Answer:

a_n=-\frac{1}{4 a_{n-1}

Step-by-step explanation:

The recursive formula for the geometric sequence is given by:

a_n = a_{n-1} \cdot r

where,

r is the common ratio terms

-16, 4, -1, ...

This is a geometric sequence.

Here,  and

Since,

ans so on .....

Substitute the given values we have;

Therefore, the recursive formula for the following geometric sequence is,

Answer:

[tex]A_n= A_{n-1} (\frac{-1}{4})[/tex]

Step-by-step explanation:

Formulate the recursive formula for the following geometric sequence.

{-16, 4, -1, ...}

Here the common difference of two terms are not same.

LEts find the common ratio. To find common ratio, divide the second term by first term

[tex]\frac{4}{-16} =\frac{-1}{4}[/tex]

[tex]\frac{-1}{4} =\frac{-1}{4}[/tex]

So common ratio is -1/4

Recursive formula is

[tex]A_n= A_{n-1} (r)[/tex]

'r' is the common ratio.

Recursive formula becomes

[tex]A_n= A_{n-1} (\frac{-1}{4})[/tex]

We are given three coins: one has heads in both faces, the second has tails in both faces, and the third has a head in one face and a tail in the other. We choose a coin at random, toss it, and it comes heads. What is the probability that the opposite face is tails?

Answers

Answer:

50% chance

Step-by-step explanation:

Answer:

1/3

Step-by-step explanation:

There are 3 coins, and each coin has 2 possible outcomes.  So there are a total of 6 possible outcomes.

Of these 6 outcomes, 3 are heads.  Of these 3, only 1 has tails on the opposite face.

So the probability is 1/3.

We can also show this using conditional probability:

P(A|B) = P(A∩B) / P(B)  

Probability that A occurs, given that B has occurred = Probability that both A and B occur / Probability that B occurs

Here, A = tails on opposite face and B = heads.

P(A|B) = (1/6) / (3/6)

P(A|B) = 1/3

The n candidates for a job have been ranked 1, 2, 3, . . . , n. Let X be the rank of a randomly selected candidate, so the X has the pmf p(x) =    1/n, if x = 1, 2, 3 . . . n, 0, otherwise. This is called the discrete uniform distribution. Compute E(X) and Var(X). (Hint: the sum of the first n positive integers is n(n + 1)/2, whereas the sum of their squares is n(n + 1)(2n + 1)/6.)

Answers

By definition of expectation,

[tex]\displaystyle E[X]=\sum_xx\,P(X=x)=\sum_{x=1}^n\frac xn=\frac{n(n+1)}{2n}=\boxed{\frac{n+1}2}[/tex]

and variance,

[tex]V[X]=E[(X-E[X])^2]=E[X^2-2X\,E[X]+E[X]^2]=E[X^2]-E[X]^2[/tex]

Also by definition, we have

[tex]E[f(X)]=\displaystyle\sum_xf(x)\,P(X=x)[/tex]

so that

[tex]E[X^2]=\displaystyle\sum_{x=1}^n\frac{x^2}n=\frac{n(n+1)(2n+1)}{6n}=\frac{(n+1)(2n+1)}6[/tex]

and finally,

[tex]V[X]=\dfrac{(n+1)(2n+1)}6-\dfrac{(n+1)^2}4=\boxed{\dfrac{n^2-1}{12}}[/tex]

Answer:

[tex]\frac{n^{2} - 1 }{12}[/tex]

Step-by-step explanation:

Data:

We collect the variables and simplify the result:

E[X] = [tex]\SIGMA \\[/tex]Σ x · p(x) = [tex]\frac{1}{n}[/tex]= ....

E[X²] =∑ x²· p(x) = ∑x²·[tex]\frac{1}{n}[/tex] = ....

Var [X] = E[X²] - E[X]² = ...

We then use the identities:

∑x = [tex]\frac{n(n+1)}{2}[/tex] and ∑ x² = [tex]\frac{n(n+1)(2n+1)}{6}[/tex]

simplifying the identities above gives:

[tex]\frac{n^{2-1} }{12}[/tex]

Suppose that there are two types of tickets to a show: advance and same-day. Advance tickets cost $25 and same-day tickets cost $35. For one performance, there were 45 tickets sold in all, and the total amount paid for them was $1375
. How many tickets of each type were sold?

Answers

For this case we propose a system of equations:

x: Variable representing the anticipated tickets

y: Variable representing the same day tickets

So:

[tex]x + y = 45\\25x + 35y = 1375[/tex]

We clear x from the first equation:

[tex]x = 45-y[/tex]

We substitute in the second equation:

[tex]25 (45-y) + 35y = 1375\\1125-25y + 35y = 1375\\10y = 1375-1125\\10y = 250\\y = 25[/tex]

We look for the value of x:

[tex]x = 45-25\\x = 20[/tex]

Thus, 20 of anticipated type and 25 of same day type were sold.

Answer:

20 of anticipated type and 25 of same day type were sold.

Answer: 20 advance tickets and 25 same-day tickets.

Step-by-step explanation:

Set up a system of equations.

Let be "a" the number of advance tickets and "s" the number of same-day tickets.

Then:

[tex]\left \{ {{25a+35s=1375} \atop {a+s=45}} \right.[/tex]

You can use the Elimination method. Multiply the second equation by -25, then add both equations and solve for "s":

[tex]\left \{ {{25a+35s=1,375} \atop {-25a-25s=-1,125}} \right.\\.............................\\10s=250\\\\s=\frac{250}{10}\\\\s=25[/tex]

Substitute [tex]s=25[/tex] into an original equation and solve for "a":

[tex]a+(25)=45\\\\a=45-25\\\\a=20[/tex]

Other Questions
Type the correct answer in the box. stories tell how Earth was created from a vast expanse of water. Solve for y. Py + qy = -4y + 8 The largest possible circle is cut out of a square whose side length is 8 feet. What will be the approximate area, in square feet, of the remaining board? Annual high temperatures in a certain location have been tracked for several years. Let X represent the year and Y the high temperature. Based on the data shown below, calculate the regression line (each value to two decimal places).y=________x=________ please help asap will mark brainliest EditingaLetter for the CorrectUse ofCommasDear Callie,It has been a fun, exciting vacation. The tour guide who has become a good friend is great! I think you would have loved this trip because you love excitement. After I get home, we should plan a trip together.Sincerely,JuliaChoose thebestrevision of the sentence that contains the error.The tour guide who has become, a good friend is, great!The tour guide who has become a good friend, is great!The tour guide, who has become a good friend is great!The tour guide, who has become a good friend, is great! Formulating a Hypothesis: Part I Since the investigative question has two variables, you need to focus on each one separately. Thinking only about the first part of the question, mass, what might be a hypothesis that would illustrate the relationship between mass and kinetic energy? Use the format of "if...then... because when writing your hypothesis PbSO 4, Pb, and H 2SO 4 are chemicals ina.dry cellb.primary batteryc.salt bridged.automobile battery athy's customer base is 2/3 residential and 1/3 business . if she has 350 residential customers, how many total customers does she have? Sorry for all the questions Perform the indicated operation. Choose the table that represents g(x) = 3f(x) when f(x) = x 1.xg(x)122130xg(x)122538xg(x)1528311xg(x)102336 Find the value for b.3x^2 X 10 = 0Entor the correct answer What is the area of the parallelogram?48 sqrt(3)cm248 cm224 sqrt (3) cm224 cm2 can somebody help me Explain why 1 cm3 = 1000 mm3. government company meaning Liquidity Management. Bauman Company's total current assets, total current liabilities, and inventory for each of the past four years. Current assets 2012: $16,950. 2013: $21,900. 2014: $22,500. 2015: $27,000. Total current liabilities 2012: $9,000. 2013: $12,600 2014: $12,600. 2015 $: 17,400. Inventory 2012: $6,000. 2013: $ 6,900. 2014: $ 6,900. 2015: $ 7,200. A. Calculate the firm's current and quick ratios for each year. Compare the resulting time series for these measures of liquidity. B. Comment on the firm's liquidity over the 2012-2013 period. C. If you were told that Bauman Company's inventory turnover for each year in the 2012-2015 period and the industry averages were as follows, would this information support or conflict with your evaluation in part B? Why? Inventory turnover: 2012 Bauman company 6.3. 2013. 6.8. 2014 7.0. 2015 6.4. Industry average: 2012. 10.6. 2013: 11.2. 2014 10.8. 2015 11.0 Given sinA=9/97 and that angle A is in Quadrant I, find the exact value of cos A in simplest radical form using a rational denominator. What is self-control? What is the correct orientation of the bar magnet, based on the magnetic field lines shown? Steam Workshop Downloader