Intramolecular Sn2 reaction is a bimolecular, second-order, elementary reaction. It involves a single, concerted step in which a nucleophile attacks the substrate, leading to a transition state, and then to expulsion of a leaving group. The stereochemistry of the molecule is usually inverted at the reaction centre.
Explanation:To best describe the properties of an intramolecular Sn2 reaction mechanism, we can say that it's a bimolecular reaction, which means it involves two reactant species. In this case, the reaction mechanism involves a single, concerted step where a nucleophile attacks the substrate, leading to a transition state and finally the expulsion of a leaving group. This makes Sn2 a type of elementary reaction.
In these reactions, the rate is dependent on the concentration of both reactants, leading to a second-order rate law. Further, the rate-determining step (the slowest in the mechanism) for an Sn2 reaction is the single concerted step itself. One important aspect to remember about Sn2 mechanisms is the stereochemical alteration that takes place, typically resulting in inversion of configuration at the reaction centre.
Learn more about Sn2 reaction here:https://brainly.com/question/34676424
#SPJ11
The intramolecular SN2 reaction mechanism is a bimolecular and concerted process characterized by inversion of configuration at the reaction center, second-order kinetics, and sensitivity to steric hindrance.
The intramolecular SN2 reaction mechanism is characterized by several distinct properties. Firstly, it is a bimolecular reaction, meaning the rate of the reaction depends on the concentration of two reactants: the nucleophile and the electrophile. Secondly, the reaction proceeds via a concerted process where bond-forming and bond-breaking occur simultaneously, leading to an inversion of configuration at the carbon center where the substitution takes place.
Lastly, the SN2 mechanism exhibits second-order kinetics, as the reaction rate depends on the concentration of both the nucleophile and the electrophile. It is important to note that SN2 reactions are sensitive to steric hindrance; bulky groups near the reactive site can inhibit the reaction by limiting the nucleophile's access to the electrophile.
If the vapor pressure of a liquid is less than the atmospheric pressure, the liquid will not boil. TRUE FALSE
Answer: The given statement is true.
Explanation:
Boiling point is defined as the point at which vapor pressure of a substance becomes equal to atmospheric pressure. During this point, the liquid changes into vapor state and temperature remains constant till all the liquid changes into vapor state.
Vapor pressure is defined as the pressure exerted by vapors or gas on the surface of a liquid.
Thus, we can conclude that the statement if the vapor pressure of a liquid is less than the atmospheric pressure, the liquid will not boil, is true.
The atomic mass of sulfur is 32.1 amu, and the atomic mass of oxygen is 16.0 amu. To the nearest tenth of a percent, what is the percent by mass of sulfur in sulfur trioxide (SO3)?
Answer:
[tex]\%\ Composition\ of\ sulfur=40.1\ \%[/tex]
Explanation:
Percent composition is percentage by the mass of element present in the compound.
Given , Mass of sulfur= 32.1 amu
Mass of oxygen = 16.0 amu
Mass of sulfur trioxide [tex]SO_3[/tex] = 32.1 amu + 3*16.0 amu = 80.1 amu
[tex]\%\ Composition\ of\ sulfur=\frac{Mass_{sulfur}}{Mass_{SO_3}}\times 100[/tex]
[tex]\%\ Composition\ of\ sulfur=\frac{32.1\ amu}{80.1\ amu}\times 100=40.1\ \%[/tex]
Final answer:
To determine the percent by mass of sulfur in sulfur trioxide (SO3), calculate the molar mass of the compound and divide the atomic mass of sulfur by the total molar mass. The percent by mass of sulfur in SO3 is found to be 40.0%.
Explanation:
To find the percent by mass of sulfur in sulfur trioxide (SO3), we first calculate the molar mass of the compound. We have one sulfur atom and three oxygen atoms in SO3.
Molar mass of S = 32.07 amuMolar mass of O = 16.00 amu (for one oxygen atom)Next, we calculate the molar mass of SO3:
Molar mass of SO3 = Molar mass of S + 3 × Molar mass of O
= 32.07 amu + 3 × 16.00 amu
= 32.07 amu + 48.00 amu
= 80.07 amu
To find the percent composition of sulfur, we divide the molar mass of sulfur by the total molar mass of the compound and multiply by 100:
Percent by mass of S in SO3 = (Molar mass of S / Molar mass of SO3) × 100%
= (32.07 amu / 80.07 amu) × 100%
= 40.0% (to the nearest tenth of a percent)
State the number of solutions for Matrix B. a. No Solution b. One Solution c. Infinitely Many Solutions
Answer:
C. Infinitely Many Solutions
Explanation:
No solution case : This is the case when all given variables are not equal to any constant, for example: there is one row of zeros in matrix e.g 0=3. matrix B don't have any zero row. So, Not True.
One Solution case: This is the case when all variables are independent variables like if they are equal to some constant. e.g x=1,y=2,z=4 , Matrix B have more than one variable in first row due to which it made equation look like x+y=-5. so matrix B can't have only one solution. So, Not True.
Infinitely Many Solutions case: when there is one or more variables which is not equal to any constant and acting as linearly dependent variable, then that matrix have infinite solutions. Matrix B have that variable which is linearly dependent as show in the attachment solution. So, True.
Make a drawing of the particles in an NaCl solution to show why this solution conducts electricity. Make a drawing of the particles in an NaCl crystal to show why pure salt does not conduct.
Answer:
See the image attached. It is taken from an online chemistry textbook.See the explanation below.Explanation:
Sodium chloride consits of sodium cations (positive ions), Na⁺, and chloride anions (negative ions), CL⁻.
Pure sodium chloride is packed in crystals: sodium ions and chloride ions are packed together and the ions are in fixed positions. There are not free electrons that can move. Thus, sodium chloride doesn't conduct electricity, because there are no electrons or ions which are free to move.
In aqueous solution, sodium chloride units dissociates into their ions:
[tex]NaCl\rightarrow Na^++Cl^-[/tex]
Those ions are freely to move in the solution, and such they are charge carriers, which conduct the electricity.
As explained above, in solid sodium chloride, the ions cannot move and there is not flow of current.
That is why solid pure salt of NaCl does not conduct electricity and the solutions of NaCl do conduct electricity.
The image attached show both diagrams. In the diagram A, the ions are packed together, showing that they cannot move. In the diagram B, the ions are dissolved in water, showing that they can move and carry the charge, allowing the flow of current.
You conduct an experiment in which you measure the temperature (T) and volume (V) of a mysterious sphere of gas at several different temperatures. The sphere can expand or shrink to any volume without changing the pressure of the gas inside. As a result of your experiment, you find that the volume (V) of the gas divided by its temperature (T) is always equal to 1.75. What would the volume (V) of the gas be at a temperature of 300K? (assume the unit for volume is liters) Show your work and answer the question with a clear statement. Show each step of your calculations for full points. After showing your calculations, answer the question with a clear statement.
Volume of the gas at 300K will be 525l itres.
Explanation:According to Charles' law, the volume of a gas is inversely proportional to its absolute temperature when the pressure of the gas is constant.
Here the V/T is given to be constant and equal to 1.75.
The temperature of the gas = T = 300K.
Let the volume of the gas be V liters.
So according to the question,
V / T = 1.75.
So,V / 300 = 1.75.
So, V = 300 × 1.75.
Or, V = 525 litres.
So, the volume of the gas at 300K will be 525 litres.
The Volume of the gas at 300K will be 525l liters.
Charles law:As per Charles' law, the volume of gas should be inversely proportional to the absolute temperature at the time when the pressure of the gas is constant.
Calculation of the volume of the gas:Here the V/T should be constant and equivalent to 1.75.
The temperature of the gas = T = 300K.
Also, we assume that the volume of the gas is V liters.
So,
V / T = 1.75.
V / 300 = 1.75.
V = 300 × 1.75.
V = 525 litres.
Find out more information about the Temperature here:https://brainly.com/question/7510619?referrer=searchResults
When a variable is determined by a factor outside of the function or model being evaluated, it is said to be A. statistically insignificant. B. exogenous. C. endogenous. D. unexplained.
Answer:
The correct answer is B. exogenous
Explanation:
Let us try to describe exogenous and endogenous variables an exogenous variable value is influenced only by factors outside a model or system and is forced onto the model, while a change in an exogenous variable is known as an exogenous change. Also an endogenous variable is one whose value is influenced only by the system or model under study.
Which type of intermolecular attractive force operates between (part A) all molecules, (part B) polar molecules, (part C) the hydrogen atom of a polar bond and a nearby small electronegative atom
Answer:
PART A: The LDF occurs between all molecules. Dispersion forces result from shifting electron clouds, which cause weak, temporary dipole.
PART B: Dipole dipole operates only between polar molecules. This is when two polar molecules get near each other and the positively charged portion of the molecule is attracted to the negatively charged portion of another molecule.
PART C: Dipole dipole and in some cases hydrogen bonding operate between the hydrogen atom of a polar bond and a nearby small electronegative atom. Only if the atom bonded to it were F, O or N it would be hydrogen bonding. Otherwise it is dipole dipole.
All molecules - Dispersion force.
Polar molecules - Dipole–Dipole interaction.
The hydrogen atom of a polar bond and a nearby small electronegative atom - Dipole–Dipole and Hydrogen Bonding.
What are intermolecular attractive force?Intermolecular force is a force that connect molecules to each other.
There are four types of forces present
DispersionDipole–DipoleHydrogen Bonding Ion-DipoleThus, the bonds present are: All molecules - Dispersion force.
Polar molecules - Dipole–Dipole interaction.
The hydrogen atom of a polar bond and a nearby small electronegative atom - Dipole–Dipole and Hydrogen Bonding.
Learn more about bonds, here:
https://brainly.com/question/13559242
The diameter of a biscuit is approximately 51 millimeters (mm). An atom of bismuth (Bi) is approximately 320. picometers (pm) in diameter. Calculate the number of bismuth atoms needed to span the diameter of a biscuit in a line. Express your answer in scientific notation, showing the correct number of significant figures. (Enter your answer using one of the following formats: 1.2e-3 for 0.0012 and 1.20e+2 for 120. 1 m = 103 mm = 1012 pm)
Answer:
1.5e+8 atoms of Bismuth.
Explanation:
We need to calculate the ratio of the diameter of a biscuit respect to the diameter of the atom of bismuth (Bi):
[tex] \\ \frac{diameter\;biscuit}{diameter\;atom(Bi)}[/tex]
For this, it is necessary to know the values in meters for any of these diameters:
[tex] \\ 1m = 10^{3}mm = 1e+3mm[/tex]
[tex] \\ 1m = 10^{12}pm = 1e+12pm[/tex]
Having all this information, we can proceed to calculate the diameters for the biscuit and the atom in meters.
Diameter of an atom of Bismuth(Bi) in meters1 atom of Bismuth = 320pm in diameter.
[tex] \\ 320pm*\frac{1m}{10^{12}pm} = 3.20*10^{-10}m[/tex]
Diameter of a biscuit in meters[tex] \\ 51mm*\frac{1}{10^{3}mm} = 51*10^{-3}m = 5.1*10^{-2}m [/tex]
Resulting RatioHow many times is the diameter of an atom of Bismuth contained in the diameter of the biscuit? The answer is the ratio described above, that is, the ratio of the diameter of the biscuit respect to the diameter of the atom of Bismuth:
[tex] \\ Ratio_{\frac{biscuit}{atom}}= \frac{5.1*10^{-2}m}{3.20*10^{-10}m}[/tex]
[tex] \\ Ratio_{\frac{biscuit}{atom}}= \frac{5.1}{3.20}\frac{10^{-2}}{10^{-10}}\frac{m}{m}[/tex]
[tex] \\ Ratio_{\frac{biscuit}{atom}}= \frac{5.1}{3.20}\frac{10^{-2}}{10^{-10}}\frac{m}{m}[/tex]
[tex] \\ Ratio_{\frac{biscuit}{atom}}= 1.5*10^{-2+10}[/tex]
[tex] \\ Ratio_{\frac{biscuit}{atom}}= 1.5*10^{8}=1.5e+8[/tex]
In other words, there are 1.5e+8 diameters of atoms of Bismuth in the diameter of the biscuit in question or simply, it is needed to put 1.5e+8 atoms of Bismuth to span the diameter of a biscuit in a line.
What is the osmotic pressure of a solution formed by dissolving 44.3 mg of aspirin (C9H8O4) in 0.358 L of water at 25 ∘C?
The osmotic pressure of a solution formed by dissolving 44.3 mg of aspirin in 0.358 L of water at 25 ∘C is 0.01633 atm. This is calculated using the formula for osmotic pressure 'Pi = n/V RT', inserting the required values including the mole of aspirin, the volume, the gas constant, and temperature.
Explanation:To calculate the osmotic pressure, we need to use the formula Pi = n/V RT, where 'n' is the number of moles of the solute, 'V' is the volume in liters, 'R' is the gas constant (0.08206 L atm/mol K), and 'T' is the temperature in Kelvin. Firstly, we need to find the molar mass of aspirin (C9H8O4) which is approximately 180.16 g/mol. Consequently, we can determine the mole of aspirin used as 44.3 mg / 180.16 g/mol = 0.000246 moles. Now knowing all values, plug them into the formula: Pi = 0.000246 moles /0.358L * 0.08206 atm mol^-1K^-1 * 298.15K which equals 0.01633 atm, the osmotic pressure of the solution.
Learn more about Osmotic Pressure here:https://brainly.com/question/37985044
#SPJ3
For the osmotic pressure of an aspirin solution, first convert the mass of aspirin to moles, find the molarity, convert the temperature to Kelvin, and then apply the osmotic pressure formula. The osmotic pressure is found to be approximately 0.0168 atm.
The question asks to determine the osmotic pressure of a solution containing aspirin at a certain temperature. The osmotic pressure can be calculated using the formula:
\(\Pi = MRT\)
Where:
\(\Pi\) is the osmotic pressure,
\(M\) is the molarity of the solution (moles of solute per liter of solution),
\(R\) is the gas constant (0.0821 L atm K^{-1} mol^{-1}), and
\(T\) is the temperature in Kelvin.
First, convert the mass of aspirin to moles using the molecular weight of aspirin (C9H8O4), which is 180.16 g/mol:
\(44.3 mg = 0.0443 g\)
\(0.0443 g \times \dfrac{1 mol}{180.16 g} \approx 2.46 \times 10^{-4} mol\)
Next, find the molarity \(M\) by dividing the number of moles by the volume in liters:
\(M = \dfrac{2.46 \times 10^{-4} mol}{0.358 L} \approx 6.87 \times 10^{-4} M\)
Now convert the temperature to Kelvin:
\(T = 25 \degree C + 273.15 = 298.15 K\)
Finally, calculate the osmotic pressure:
\(\Pi = (6.87 \times 10^{-4} M)(0.0821 L atm K^{-1} mol^{-1})(298.15 K)\)
\(\Pi \approx 0.0168 atm\)
Therefore, the osmotic pressure of the aspirin solution is approximately 0.0168 atm.
What is the limiting factor in determining the accumulation of siliceous ooze/calcareous ooze, respectively?
Answer:
productivity and water depth
Explanation:
The productivity and the depth of water are both equally important as it directly affects the accumulation of biogenic sediments such as the siliceous ooze and calcareous ooze. In the equator and the coastal upwelling areas, and at the site of divergence of oceans, there occurs a high rate and amount of productivity, and these are considered to be the primary productivity.
The siliceous oozes are a good indicator of extensively high productivity in comparison to the carbonate oozes. The main reason behind this is that the silica can be easily dissolved in the surface water. On the other hand, the carbonates dissolve at a relatively lower ocean water depth, so there requires a high amount of surface productivity in order to allow these siliceous oozes to reach the ocean bottom.
Thus, the water depth and productivity, both are considered as the limiting factor in determining the accumulation of biogenic oozes.
A is a homogenous mixture of particles so small they cannot be seen and will not settle to the bottom of their container. a. colloid c. suspension b. solution d. heterogenous
Answer: solution
Explanation:
. The order of a chemical reaction with respect to one of its reactants is 0. If you double the concentration of that reactant, the reaction rate will _______. A. be cut in half B. double C. increase by an undetermined amount D. remain unchanged E. None of the Abov
Answer:
D. remain unchanged
Explanation:
A Zero-order reaction is defined as a chemical reaction wherein the rate doesn't vary with the increase or decrease in the concentration of the reactants.
Thus, If you double the concentration of that reactant, the reaction rate will:
D. remain unchanged
I hope it helps!
When 2−bromo−3,3−dimethylbutane is treated with K⁺ −OC(CH₃)₃, a single product T having molecular formula C₆H₁₂. When 3,3−dimethyl−2−butanol is treated with H₂SO₄, the major product U has the same molecular formula. Given the following ¹H NMR data, what are the structures of T and U?
Answer:
T = 3,3-dimethylbut-1-ene
U = 2,3-dimethylbut-2-ene
Explanation:
The chemical reactions for the two reactions and the mechanisms of reaction are shown in the two attachments to this answer.
Hope it helps!
Water's ability to dissolve a wide variety of molecules is important, but more important is the hydrophobic effect, which drives the aggregation of nonpolar molecules and plays a role in the folding of proteins and formation of lipid bilayers. What forces drive the hydrophobic effect?a. Decreased entropy of water is the largest driving force.b. Water repels the hydrophobic molecules. c. Increased entropy of water is the largest driving force. d. Hydrophobic molecules are attracted to each other.
Answer:
d. Hydrophobic molecules are attracted to each other.
Explanation:
The term “hydrophobic effect” is associated with the spontaneous tendency of macromolecules, such as proteins, to prefer a conformation in an aqueous medium, with hydrophobic groups facing the interior of the mac romolecule, favoring attractive intramolecular interactions, and hydrophilic groups exposed on the surface, for maximize interactions with water molecules in the medium. This is because the hydrophobic molecules are attracted to each other, allowing them to turn inward.
the temperature of a sample of copper increased by 23.0 C when 265 J of heat was applied. What is the mass of the sample?
To find the mass of the copper sample, we use the formula for heat transfer Q = mcΔT. By substituting the given values of specific heat capacity of copper, the amount of heat applied and the change in temperature into the formula and solving for mass, we find the mass of the copper sample to be 29.54g.
Explanation:The subject of this question is physics, specifically dealing with the concept of heat transfer. To determine the mass of the copper sample, we'll use the formula for heat transfer: Q = mcΔT, where 'Q' is the amount of heat transferred, 'm' is the mass of the substance, 'c' is the specific heat capacity, and 'ΔT' is the change in temperature.
In this case, we know that the specific heat capacity of copper is 0.39 J/g °C, the amount of heat applied (Q) is 265 J and the change in temperature ΔT is 23.0 °C. By substituting these values into the formula, we can solve for 'm' (mass). Rearranging the formula gives us m = Q / (cΔT). Substituting the given values, we find m = 265 J / (0.39 J/g°C * 23.0°C) gives us the mass of the copper sample to be 29.54 g.
Learn more about Heat Transfer here:
https://brainly.com/question/13433948
#SPJ12
How many unhybridized p atomic orbitals are present when a central atom exhibits trigonal planar geometry?
Answer:
1
Explanation:
Trigonal planar geometry is shown by the compounds where hybridization of central atom is [tex]sp^2[/tex].
In [tex]sp^2[/tex] hybridization, three hybrid orbitals are equally spaced at an angle of 120°.
Some of the compounds having [tex]sp^2[/tex] hybridization are [tex]CO_3^{2-}[/tex], [tex]SO_3[/tex], etc
In [tex]sp^2[/tex] hybridizationm, one s-orbital and 2 p-orbitals are involved.
Total no. of orbitals present in p-subshell is 3.
As 2 is involved in [tex]sp^2[/tex] hybridization, therefore no. of unhybridized orbital in [tex]sp^2[/tex] hybridization is 1.
The physicals properties of a substance can be used to identify the substance, because_____. Select all that apply.
1. at any given location, the physical properties of a substance do not change
2. when the substances are chemically reacted the physical properties remain the same
3. each substance has a unique set of physical properties
4. no two substances have any of the same properties
Answer:
1. at any given location, the physical properties of a substance do not change.
2. Each substance has a unique set of physical properties
Explanation:
The physical property of a substance is a feature of a substance that can be noticed or measured without changing the key identity of the substance. Physical properties include density, hardness, melting point, colour etc...
Answer:
1. at any given location, the physical properties of a substance do not change
3. each substance has a unique set of physical properties
Explanation:
1. The physical properties of a substance do not change provided that the physical conditions in the niche environment remain same.
3. Every substance on Earth has a unique set and arrangement of atoms and molecules that give them their own unique properties.
A 50 W engine generates 50 J of energy. How long did it run for?
A. 10 s
B. 1 s
C. 5 s
D. 100 s
Answer: A Explanation:
Which states of matter can flow?
1) gas and liquid
2) gas
3) gas, liquid, and solids
4) liquid
Answer:
1) Gas and Liquid
Explanation:
hope it helps
What common household element can, over time, reduce airflow, insulate components, reduce heat exchange or even cause the system to hang or reboot?
Answer:
The correct answer is Dust
Explanation
Dust is a dry dirt in powder form usually found on surfaces of items in a building, it comprises of very small particles of soil, sand and sometimes includes toxic substances, skin cells,bacteria, soil particles, particles of clothing material, tiny pieces of dead insects and pollen
Answer: Dust
Explanation:
Dust is a solid matter with fine particles, it mostly hangs in the atmosphere and are produced from various sources such as pollutions, loose soil which are lifted through aeolian process. Continuous exposure to dust in house holds or work place can make someone sick and affect one's health. Apart from that, it also reduces comfort and can even affect the efficient functioning of home or office appliances and gadgets.
If the amount of energy required to break bonds in the reactants is more than the amount of energy released in forming bonds in the products, then the reaction will have a negative change in enthalpy (−ΔH).
True
False
Answer:
The given statement is false.
Explanation:
Endothermic reactions are defined as the reactions in which energy of products is more than the energy of the reactants. In these reactions, energy is absorbed by the system.
The total enthalpy of the reaction [tex](\Delta H)[/tex] comes out to be positive.
Exothermic reactions are defined as the reactions in which energy of reactants is more than the energy of the products. In these reactions, energy is released by the system.
The total enthalpy of the reaction [tex](\Delta H)[/tex] comes out to be negative.
What mass of strontium nitrate (Sr(NO3)2) would be required to prepare 2.000 L of a 0.0150 M aqueous solution of this salt?
Final answer:
To prepare a 0.0150 M solution of strontium nitrate in 2.000 L, you would need to use 4.49 grams of strontium nitrate.
Explanation:
To calculate the mass of strontium nitrate required to prepare the solution, we can use the formula:
moles = concentration x volume
First, convert the concentration to moles per liter:
moles/liter = concentration = 0.015 M
Next, multiply the moles per liter by the volume in liters to find the moles of strontium nitrate:
moles = (0.015 M) x (2.000 L) = 0.030 mol
Finally, calculate the mass of strontium nitrate using the molar mass:
mass = moles x molar mass = 0.030 mol x 149.6 g/mol = 4.49 g
Explain the difference between an endpoint and equivalence point in a titration
Answer:
Endpoint is point in which indicator change the color, and equivalence point is point in which there is equal amount of two chemicals. Endpoint is after Equivalence point.
Explanation:
To know the end point we use phenolphthalein as indicator. Therefore, endpoint is point in which indicator change the color, and equivalence point is point in which there is equal amount of two chemicals.
What is titration?Titration is a technique by which we know the concentration of unknown solution using titration of this solution with solution whose concentration is known. To know the end point we use phenolphthalein as indicator. End point is a point where completion of reaction happen.
Endpoint is point in which indicator change the color, and equivalence point is point in which there is equal amount of two chemicals. Endpoint is after Equivalence point.
Therefore, endpoint is point in which indicator change the color, and equivalence point is point in which there is equal amount of two chemicals.
To know more about titration, here:
https://brainly.com/question/13307013
#SPJ2
How much heat (in joules) is required to raise the temperature of 30.0 kg of water from 15o C to 95o C?
Answer : The amount of heat required is, [tex]1.004\times 10^6J[/tex]
Explanation :
Formula used :
[tex]q=m\times c\times (T_{final}-T_{initial})[/tex]
where,
q = heat required = ?
m = mass of water = 30.0 kg = 3000 g
c = specific heat of water = [tex]4.184J/g^oC[/tex]
[tex]T_{final}[/tex] = final temperature = [tex]95^oC[/tex]
[tex]T_{initial}[/tex] = initial temperature = [tex]15^oC[/tex]
Now put all the given values in the above formula, we get:
[tex]q=3000g\times 4.184J/g^oC\times (95-15)^oC[/tex]
[tex]q=1004160J=1.004\times 10^6J[/tex]
Thus, the amount of heat required is, [tex]1.004\times 10^6J[/tex]
Final answer:
To raise the temperature of 30.0 kg of water from 15°C to 95°C, 10,041,600 joules of heat energy are required. This is calculated using the product of the mass of the water, the specific heat capacity of water, and the change in temperature.
Explanation:
The amount of heat transfer required to change the temperature of a substance can be calculated using the formula Q = mcΔT, where Q is the heat energy in joules, m is the mass of the substance in kilograms, c is the specific heat capacity (for water it's 4,184 J/kg/°C), and ΔT is the change in temperature in degrees Celsius.
For the given problem of raising the temperature of 30.0 kg of water from 15°C to 95°C, the temperature change (ΔT) is 95°C - 15°C = 80°C. The calculation would be as follows: Q = (30.0 kg) × (4,184 J/kg/°C) ×(80°C).
Calculation:
Q = 30.0 kg × 4,184 J/kg/°C * 80°CQ = 125,520 kg·°C ×J/kg/°CQ = 10,041,600 JTherefore, the heat required is 10,041,600 joules.
Calculate the fraction of atoms in a sample of argon gas at 400 K that have an energy of 10.0 kJ or greater.
Answer:
The answer to this can be arrived at by clculating the mole fraction of atoms higher than the activation energy of 10.0 kJ by pluging in the values given into the Arrhenius equation. The answer to this is 20.22 moles of Argon have energy equal to or greater than 10.0 kJ
Explanation:
From Arrhenius equation showing the temperature dependence of reaction rates.
[tex]K = Ae^{\frac{Ea}{RT} }[/tex] where
k = rate constant
A = Frequency or pre-exponential factor
Ea = energy of activation
R = The universal gas constant
T = Kelvin absolute temperature
we have
[tex]f = e^{\frac{Ea}{RT} }[/tex]
Where
f = fraction of collision with energy higher than the activation energy
Ea = activation energy = 10.0kJ = 10000J
R = universal gas constant = 8.31 J/mol.K
T = Absolute temperature in Kelvin = 400K
In the Arrhenius equation k = Ae^(-Ea/RT), the factor A is the frequency factor and the component e^(-Ea/RT) is the portion of possible collisions with high enough energy for a reaction to occur at the a specified temperature
Plugging in the values into the equation relating f to activation energy we get
[tex]f = e^{\frac{10000J}{(8.31J/((mol)(K)))(400K)} }[/tex] or f = [tex]e^{3.01}[/tex] = 20.22 moles of argon have an energy of 10.0 kJ or greater
The question asks for the fraction of argon atoms at 400 K with an energy of 10.0 kJ or higher, which would require integrating the Maxwell-Boltzmann distribution, but key information is missing for a definitive answer.
Explanation:To calculate the fraction of argon atoms in a gas sample at 400 K with an energy of 10.0 kJ or greater, the principles of statistical mechanics and the Maxwell-Boltzmann distribution are applied. The Maxwell-Boltzmann distribution gives the fraction of particles at a certain energy level within a system at thermal equilibrium. However, we are missing some key information like the Maxwell-Boltzmann distribution function for the particular conditions set by the question, which is essential for performing such a calculation.
Typically, the calculation would require integrating the partition function over all energy states equal to or greater than 10.0 kJ. Without the exact form of the energy distribution, it is not possible to provide an accurate answer. The question pertains to a high level of physical chemistry or statistical mechanics typically studied at the college or university level.
N2(g) + 3 H2(g) ⇌ 2 NH3(g) + Energy
For the reaction of nitrogen gas and hydrogen gas to make methane, what stresses would shift the equilibrium to the left toward the reactants?
Answer:
The answer to your question is below
Explanation:
Reaction
N₂ + 3H₂ ⇔ 2 NH₃ + energy
a) The concentration of NH₃, if the concentration of NH₃ increases, the reaction will move to the left.
b) Diminishing the temperature, no more energy will be released and the reaction will move to the reactants.
You add 4.7 gg iron to 27.10 mL of water and observe that the volume of iron and water together is 27.70 mLmL . Calculate the density of iron.
Answer : The density of iron is, 7.8 g/mL
Explanation : Given,
Mass of iron = 4.7 g
Volume of water = 27.10 mL
Volume of water and iron = 27.70 mL
First we have to calculate the volume of iron.
Volume of iron = Volume of water and iron - Volume of water
Volume of iron = 27.70 mL - 27.10 mL
Volume of iron = 0.6 mL
Now we have to calculate the density of iron.
[tex]\text{Density of iron}=\frac{\text{Mass of iron}}{\text{Volume of iron}}[/tex]
Now put all the given values in this expression, we get:
[tex]\text{Density of iron}=\frac{4.7g}{0.6mL}[/tex]
[tex]\text{Density of iron}=7.8g/mL[/tex]
Thus, the density of iron is, 7.8 g/mL
A waterbed mattress has the following dimensions: 210 cm X 160 cm X 25 cm. The density of water is 62.4lb/ft3. What is the weight of the bed in pounds?
Answer: The weight of water bed in pounds is 1850.16 lb
Explanation:
To calculate the volume of cuboid, we use the equation:
[tex]V=lbh[/tex]
where,
V = volume of cuboid
l = length of cuboid = 210 cm
b = breadth of cuboid = 160 cm
h = height of cuboid = 25 cm
Putting values in above equation, we get:
[tex]V=210\times 160\times 25=8.4\times 10^5cm^3=29.65ft^3[/tex] (Conversion factor: [tex]1cm^3=3.53\times 10^{-5}ft^3[/tex] )
To calculate the mass of waterbed, we use the equation:
[tex]\text{Density of substance}=\frac{\text{Mass of substance}}{\text{Volume of substance}}[/tex]
Density of waterbed = [tex]62.4lb/ft^3[/tex]
Volume of waterbed = [tex]29.65ft^3[/tex]
Putting values in above equation, we get:
[tex]62.4lb/ft^3=\frac{\text{Mass of waterbed}}{29.65ft^3}\\\\\text{Mass of waterbed}=(62.4lb/ft^3\times 29.65ft^3)=1850.16lb[/tex]
Hence, the weight of water bed in pounds is 1850.16 lb
How does William Jennings Bryan respond to the criticism that the free and unlimited coinage of silver will disrupt ""business interests""?
Answer:
He responded by saying their business definition was far too narrow.
Explanation:
Williams Bryan relates the battle for free silver with the revolution in the United States.
His iconic "Cross of Gold" address ignited the Democratic National Convention in 1896 where he begged the american people not to be "crucified on the cross of gold." He was said this because of the Republicans plan to introduce a firm gold standard and abolish silver coinage.
100. mg of an unknown protein are dissolved in enough solvent to make 5.00mL of solution. The osmotic pressure of this solution is measured to be 0.0766 atm at 25.0 degree C . Calculate the molar mass of the protein. Be sure your answer has the correct number of significant digits.
Answer:
molar mass is [tex]6.39\times10^3\ g/mol[/tex]
Explanation:
Osmotic pressure is related with concentration as follows:
[tex]\pi =CRT[/tex]
Where, C is concentration or molarity , R is gas constant and T is temperature.
Osmostic pressure given is 0.0766 atm
R is [tex]0.0821 L \ atm \ K^{1}mol^{-1}[/tex]
T = 25 + 273 = 298 K
Rearrange the above equation to calculate concetration of the solution as follows:
C = P/RT
[tex]C=\frac{0.0766}{0.0821 \times 298} \\=0.00313\ M[/tex]
molarity = moles/volume in L
moles = molarity × volume in L
volume = 5.00 mL = 0.005 L
moles = 0.00313 × 0.005
=[tex]1.565 \times 10^{-5}[/tex]
[tex]molar\ mass=\frac{mass\ in\ g}{moles} \\=\frac{0.1\ g}{1.565\times 10^{-5}mol} \\=6.389\times 10^3\ g/mol\\[/tex]
Therefore, molecular mass of protein is [tex]6.39\times10^3\ g/mol[/tex]