sin K =

Whats the answer

Sin K =Whats The Answer

Answers

Answer 1

Answer:

1/2

Step-by-step explanation:

sin(K)=5/10=1/2

Answer 2
Final answer:

The sine function in mathematics relates angles of a right triangle to the ratios of its side lengths. The value of sin(K) depends on the value of angle K, measured in radians.

Explanation:

In mathematics, the sine function is a trigonometric function that relates the angles of a right triangle to the ratios of the side lengths. The value of sin(K) depends on the value of angle K, which is measured in radians.

For example, if K = π/2, then sin(K) = 1. If K = 0, then sin(K) = 0.

To find the value of sin(K), you can use a calculator or reference table that provides the values of sine for different angles.


Related Questions

The area of a rectangle is 144 square centimeters. The width is 9 centimeters. Which of the following statements is true? Select all that apply. A. The length is 3 times the width. B. The length is 63 centimeters. C. The length is less than 2 times the width. D. The perimeter is 50 centimeters. E. The rectangle is a square since its length and width are equal.

Answers

Answer:

Option C and D are correct.

Step-by-step explanation:

Area of rectangle = 144 cm^2

Width of rectangle = 9 cm

Length of rectangle = ?

We know,

Area of rectangle = Length * Width

144 = Length * 9

144/9 = Length

=> length = 16 cm

Option A is incorrect as 3 times width = 3* 9 = 27 but our length = 16 cm

Option B is incorrect as length = 16 cm and not 63 cm

Option C is correct as Length < 2(Width)

=> 16 < 2(9) => 16 < 18 which is true.

Option D is correct.

Perimeter = 2(Length + Width)

Perimeter = 2(16+9)

Perimeter = 50 cm

Option E is incorrect as Length ≠ Width

Answer:

C. The length is less than 2 times the width.

D. The perimeter is 50 centimeters.

Step-by-step explanation:

The area of the rectangle is given as 144 square centimeters and its width is 9 centimeters. The formula for the area of a rectangle is given as;

Area = length*width

144 = length*9

length = 144/9

length = 16 centimeters

A. The length is 3 times the width.

3 times the width; 3*9 = 27 cm which is not equal to 16. Hence this statement is false.

B.The length is 63 centimeters.

This statement is also false since the length is 16 cm

C.The length is less than 2 times the width.

Find the area of the shaded regions:

Answers

Final answer:

The area of shaded regions can be found using geometric principles or methods of integration depending on the actual shape and context. In most cases, area is proportional to the square of the distances. Integration techniques would be used if the shaded region is under a curve on a graph.

Explanation:

To find the area of the shaded regions, depending upon the shape and complexity of the region, you'd typically use geometric principles and calculations, potentially including those related to rectangles, triangles, circles, and/or other shapes. In some cases, these calculations might include figuring out the area of a larger shape and then subtracting the area of a smaller, non-shaded shape. For example, the area of a disc could be found by using the equation А = лr², and placing limits of integration from r = 0 to r = R in case the shaded area is comprised of thin rings of different radii. In other cases, you might be using principles of integration if the shaded region is under a curve on a graph, integrating the function f(x) from a certain lower limit x₁ to upper limit x₂. Also, keep in mind that the area is usually proportional to the square of the distances in a certain set-up.

Learn more about Area Calculation here:

https://brainly.com/question/34380164

#SPJ12

The data table represents the distance between a well-known lighthouse and a cruise ship over time. The cruise ship is travelling at uniform speed. What will be the distance between the cruise ship and the lighthouse after 5 hours?

Number of Hours

Distance from Lighthouse (in oceanic miles)

2 53
4 95.5
6 138
8 180.5
10 223
12 265.5
14 308
16 350.5

84.50 oceanic miles
89.75 oceanic miles
116.75 oceanic miles
128.50 oceanic miles
223.00 oceanic miles

Answers

Answer:

116.75 oceanic miles

Step-by-step explanation:

A graph of the data shows the distance to be between 110 and 120 miles (closer to 120). There is only one answer choice in that range.

In 2 hours, the ship travels 42.5 miles, so in 1 hour will travel 21.25 miles. Adding that distance to the distance at 4 hours gives the distance at 5 hours, ...

  95.5 +21.25 = 116.75 . . . . "oceanic" miles

_____

In order for the distance from the lighthouse to be uniformly increasing, the ship must be traveling directly away from the lighthouse. Traveling at any other angle, the distances will not fall on a straight line. (That is one reason I wanted to graph the data.)

Verify that the given differential equation is not exact. (−xy sin(x) + 2y cos(x)) dx + 2x cos(x) dy = 0 If the given DE is written in the form M(x, y) dx + N(x, y) dy = 0, one has My = Nx = . Since My and Nx equal, the equation is not exact. Multiply the given differential equation by the integrating factor μ(x, y) = xy and verify that the new equation is exact. If the new DE is written in the form M(x, y) dx + N(x, y) dy = 0, one has My = Nx = . Since My and Nx equal, the equation is exact. Solve.

Answers

The ODE

[tex]M(x,y)\,\mathrm dx+N(x,y)\,\mathrm dy=0[/tex]

is exact if

[tex]\dfrac{\partial M}{\partial y}=\dfrac{\partial N}{\partial x}[/tex]

We have

[tex]M=-xy\sin x+2y\cos x\implies M_y=-x\sin x+2\cos x[/tex]

[tex]N=2x\cos x\implies N_x=2\cos x-2x\sin x[/tex]

so the ODE is indeed not exact.

Multiplying both sides of the ODE by [tex]\mu(x,y)=xy[/tex] gives

[tex]\mu M=-x^2y^2\sin x+2xy^2\cos x\implies(\mu M)_y=-2x^2y\sin x+4xy\cos x[/tex]

[tex]\mu N=2x^2y\cos x\implies(\mu N)_x=4xy\cos x-2x^2y\sin x[/tex]

so that [tex](\mu M)_y=(\mu N)_x[/tex], and the modified ODE is exact.

We're looking for a solution of the form

[tex]\Psi(x,y)=C[/tex]

so that by differentiation, we should have

[tex]\Psi_x\,\mathrm dx+\Psi_y\,\mathrm dy=0[/tex]

[tex]\implies\begin{cases}\Psi_x=\mu M\\\Psi_y=\mu N\end{cases}[/tex]

Integrating both sides of the second equation with respect to [tex]y[/tex] gives

[tex]\Psi_y=2x^2y\cos x\implies\Psi=x^2y^2\cos x+f(x)[/tex]

Differentiating both sides with respect to [tex]x[/tex] gives

[tex]\Psi_x=-x^2y^2\sin x+2xy^2\cos x=2xy^2\cos x-x^2y^2\sin x+\dfrac{\mathrm df}{\mathrm dx}[/tex]

[tex]\implies\dfrac{\mathrm df}{\mathrm dx}=0\implies f(x)=c[/tex]

for some constant [tex]c[/tex].

So the general solution to this ODE is

[tex]x^2y^2\cos x+c=C[/tex]

or simply

[tex]x^2y^2\cos x=C[/tex]

We are to verify and confirm if the given differential equations are exact or not. Then solve for the exact equation.

The first differential equation says:

[tex]\mathbf{(-xy \ sin x + 2y \ cos x) dx + 2(x \ cos x) dy = 0 }[/tex]

Recall that:

A differential equation that takes the form [tex]\mathbf{M(x,y)dt + N(x, y)dy = 0 }[/tex] will be exact if and only if:

[tex]\mathbf{\dfrac{\partial M }{\partial y} = \dfrac{\partial N }{\partial x}}[/tex]

From equation (1), we can represent M and N as follows:

[tex]\mathbf{M = (-xy \ sin x + 2y \ cos x)}[/tex][tex]\mathbf{N = (2x \ cos x)}[/tex]    

Thus, taking the differential of M and N, we have:

[tex]\mathbf{ \dfrac{\partial M}{\partial y }= M_y = -x sin x + 2cos x}[/tex]

[tex]\mathbf{ \dfrac{\partial N}{\partial x }= N_x = 2 cos x + 2x sin x}[/tex]

From above, it is clear that:

[tex]\mathbf{\dfrac{\partial M }{\partial y} \neq \dfrac{\partial N }{\partial x}}[/tex]

We can conclude that the equation is not exact.

Now, after multiplying the given differential equation in (1) by the integrating factor μ(x, y) = xy, we have:

[tex]\mathbf{ = \mathsf{(-x^2y^2 sin x + 2xy^2cos x ) dx +(2x^2ycos x ) dy = 0 --- (2)}}[/tex]

Representing the equation into form M and N, then:

[tex]\mathbf{M = -x^22y^2 sin x +2xy^2 cos x}[/tex]

[tex]\mathbf{N = 2x^2y cos x}[/tex]

Taking the differential, we have:

[tex]\mathbf{\dfrac{\partial M}{\partial y }= M_y = -2x^2y sin x + 4xy cos x }[/tex]

[tex]\mathbf{\dfrac{\partial N}{\partial x} =N_x= 4xycos \ x -2x^2 y sin x}[/tex]

Here;

[tex]\mathbf{\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x} }[/tex]

Therefore, we can conclude that the second equation is exact.

Now, the solution of the second equation is as follows:

[tex]\int_{y } M dx + \int (not \ containing \ 'x') dy = C[/tex]

[tex]\rightarrow \int_{y } (-x^2y^2 sin(x) +2xy^2 cos (x) ) dx + \int(0)dy = C[/tex]

[tex]\rightarrow-y^2 \int x^2 sin(x) dx +2y ^2 \int x cos (x) dx = C[/tex]    ---- (3)

Taking integrations by parts:

[tex]\int u v dx = u \int v dx - \int (\dfrac{du}{dx} \int v dx) dx[/tex]

[tex]\int x^2 sin (x) dx = x^2 \int sin(x) dx - \int (\dfrac{d}{dx}(x^2) \int (sin \ (x)) dx) dx[/tex]

[tex]\to x^2 (-cos (x)) \ - \int 2x (-cos \ (x)) \ dx[/tex]

[tex]\to -x^2 (cos (x)) \ + \int 2x \ cos \ (x) \ dx[/tex]   ----- replace this equation into (3)

[tex]\rightarrow-y^2( -x^2 cos (x) \ + \int 2x \ cos \ (x) \ dx) +2y ^2 \int x cos (x) dx = C[/tex]

[tex]\mathbf{\rightarrow -x^2 y^2 cos (x) \ -2y ^2 \int x \ cos \ (x) \ dx +2y ^2 \int x cos (x) dx = C}[/tex]

[tex]\mathbf{x^2y^2 cos (x) = C\ \text{ where C is constant}}[/tex]

Therefore, from the explanation, we've can conclude that the first equation is not exact and the second equation is exact.

Learn more about differential equations here:

https://brainly.com/question/353770?referrer=searchResults

Find the value of x in the figure below. Show all your work.

Answers

Answer:

x = 52/9

Step-by-step explanation:

The exterior angle is half the difference of the intercepted arcs, so we have ...

9x -5 = (158 -64)/2

9x = 52 . . . . . . . . . . . add 5

x = 52/9 = 5 7/9

Convert 88 square yards to square meters (to the nearest tenth).

Answers

Final answer:

To convert 88 square yards to square meters, we use the conversion factor 1 square yard = 1.196 square meters. By multiplying 88 by 1.196, we find that 88 square yards is approximately 105.3 square meters.

Explanation:

The question is part of the mathematics subject, specifically in the area of unit conversion. We have a conversion factor to use, which is 1 square yard = 1.196 square meters, based on the provided reference information.

So to convert 88 square yards to square meters, you multiply 88 by 1.196.

88 yards2 * 1.196 m2/yard2 = 105.3 m2.

so 88 square yards is approximately = 105.3 square meters.

Learn more about Unit Conversion here:

https://brainly.com/question/19420601

#SPJ3

Which of the following is not an equation of a simple, even polynomial function? y = | x | y = x2 y = x3 y = -x2

Answers

Answer:

y = | x |y = x^3

Step-by-step explanation:

The absolute value function prevents the expression from being a polynomial. The degree of 3 in y^3 is an odd number so that polynomial function will not be even.

Answer:

The equation [tex]y=x^3[/tex] is not an equation of a simple , even polynomial function.

Step-by-step explanation:

Even  function : A function  is even when its graph is symmetric with respect to y-axis.

Algebrically , the function f is even if and only if

f(-x)=f(x) for all x in the domain of f.

When the function does not satisfied the above condition then the function is called non even function.

f(x)[tex]\neq[/tex] f(-x)

Now , we check given function is even or not

A. y= [tex]\mid x\mid[/tex]

If x is replaced by -x

Then we get the function

f(-x)=[tex]\mid -x \mid[/tex]

f(-x)=[tex]\mid x \mid[/tex]

Hence, f(-x)=f(x)

Therefore , it is even  polynomial function.

B. [tex]y=x^2[/tex]

If x is replace by -x

Then we get

f(-x)=[tex](-x)^2[/tex]

f(-x)=[tex]x^2[/tex]

Hence, f(-x)=f(x)

Therefore, it is even polynomial function.

C. [tex]y=x^3[/tex]

If x is replace by -x

Then we get

f(-x)=[tex](-x)^3[/tex]

f(-x)=[tex]-x^3[/tex]

Hence, f(-x)[tex]\neq[/tex] f(x)

Therefore, it is not even polynomial function.

D.[tex]y= -x^2[/tex]

If x is replace by -x

Then we get

f(-x)= - [tex](-x)^2[/tex]

f(-x)=-[tex]x^2[/tex]

Hence, f(-x)=f(x)

Therefore, it is even polynomial function.

Answer: C. [tex]y=x^3[/tex] is not simple , even polynomial function.

14/30÷14.00 show all work

Answers

1 Simplify \frac{14}{30}

​30

​14

​​  to \frac{7}{15}

​15

​7

​​ .

\frac{7}{15}\div 14.00

​15

​7

​​ ÷14.00

2 Use this rule: a\div \frac{b}{c}=a\times \frac{c}{b}a÷

​c

​b

​​ =a×

​b

​c

​​ .

\frac{7}{15}\times \frac{1}{14.00}

​15

​7

​​ ×

​14.00

​1

​​  

3 Use this rule: \frac{a}{b}\times \frac{c}{d}=\frac{ac}{bd}

​b

​a

​​ ×

​d

​c

​​ =

​bd

​ac

​​ .

\frac{7\times 1}{15\times 14.00}

​15×14.00

​7×1

​​  

4 Simplify 7\times 17×1 to 77.

\frac{7}{15\times 14.00}

​15×14.00

​7

​​  

5 Simplify 15\times 14.0015×14.00 to 210210.

\frac{7}{210}

​210

​7

​​  

6 Simplify.

1/30

Nickola swam at a rate of 2 km/hr and ran at a rate of 15 km/hr for a total distance traveled of 90.5 km. If he completed the race in 9.5 hours, how long did he take to
complete each part of the race?

The time Nickola spent swimming is______? hours, and the time he spent running is_____? hours.


I NEED HELP PLEASE

Answers

Answer:

Nickola swam for 4 hours and ran for 5.5 hours

Step-by-step explanation:

To solve this, we can use a system of equations.

First we can set up a system of equations like this

[tex]2s+15r=90.5[/tex] and

[tex]s+r=9.5[/tex]

Next we will use substitution to solve for one of the values. We can solve the second equation such that

[tex]s=9.5-r[/tex]

Now we can substitute this into the first equation for s

[tex]2(9.5-r)+15r=90.5[/tex]

Now we can solve for r

[tex]19-2r+15r=90.5[/tex]

[tex]19+13r=90.5[/tex]

[tex]13r=71.5[/tex]

[tex]r=5.5[/tex]

Now we can plug this value into the second equation to get the value for s

[tex]s+5.5=9.5[/tex]

[tex]s=4[/tex]

Now we can plug these values into the first equation to make sure we have the right values

[tex]2(4)+15(5.5)=90.5[/tex]

[tex]90.5=90.5[/tex]

What is the value when c =6 and d= 10 5c2 - 3d + 15​

Answers

Answer:

165

Step-by-step explanation:

[tex]5c^{2} -3d+15[/tex]

c = 6 and d = 10

[tex]5c^{2}[/tex] = 5 × 6² = 5 × 36 = 180

[tex]5c^{2}[/tex] - ( 3 d ) = 180 - ( 3 × 10 ) = 180 - 30 = 150

[tex]5c^{2}[/tex] -  3 d  ( + 15 ) = 150 + 15 = 165

Answer:

165

Step-by-step explanation:

Substitutet 6 for c and 10 for d in  5c^2 - 3d + 15​ .

Note that " ^ " is used here to denote exponentiation; c2 is meaningless.

Then we have 5(6)^2 - 3(10) + 15, or   180 - 30 + 15, or 165.

rowan wants to justify that f(x) 3x-7 is a linear function. If she evaluates f(x) for consecutive integer values, which statement justices the claim that f is a linear function?
a. there is a common difference of -7 for f(x) when x increase by 1
b. there is a common factor of -7 for f(x) when x increase by 1
c. there is a common different of 3 for f(x) when x increase by 1
d. there is a common factor of 3 for f(x) when x increase by 1

Answers

Answer:

C. there is a common difference of 3 for f(x) when x increases by 1

Step-by-step explanation:

As 3 is the slope of this function, there will be a common difference of 3 when x increases by 1.

f(x) = 3x  - 7

Let's think, whenever we add 1 to x it i'll increase 3 in the result

f(0) = 3.0 - 7 = 0 - 7 = -7

f(1) = 3.1 - 7 = 3 - 7 = -4

f(2) = 3.2 - 7 = 6 - 7 = -1

So we can know that there's a common difference of 3 for f(x) when x increase by 1.

Find an equation of the tangent to the curve x =5+lnt, y=t2+5 at the point (5,6) by both eliminating the parameter and without eliminating the parameter.

Answers

ANSWER

[tex]y = 2x -4[/tex]

EXPLANATION

Part a)

Eliminating the parameter:

The parametric equation is

[tex]x = 5 + ln(t) [/tex]

[tex]y = {t}^{2} + 5[/tex]

From the first equation we make t the subject to get;

[tex]x - 5 = ln(t) [/tex]

[tex]t = {e}^{x - 5} [/tex]

We put it into the second equation.

[tex]y = { ({e}^{x - 5}) }^{2} + 5[/tex]

[tex]y = { ({e}^{2(x - 5)}) } + 5[/tex]

We differentiate to get;

[tex] \frac{dy}{dx} = 2 {e}^{2(x - 5)} [/tex]

At x=5,

[tex] \frac{dy}{dx} = 2 {e}^{2(5 - 5)} [/tex]

[tex]\frac{dy}{dx} = 2 {e}^{0} = 2[/tex]

The slope of the tangent is 2.

The equation of the tangent through

(5,6) is given by

[tex]y-y_1=m(x-x_1)[/tex]

[tex]y - 6 = 2(x - 5)[/tex]

[tex]y = 2x - 10 + 6[/tex]

[tex]y = 2x -4[/tex]

Without eliminating the parameter,

[tex] \frac{dy}{dx} = \frac{ \frac{dy}{dt} }{ \frac{dx}{dt} } [/tex]

[tex]\frac{dy}{dx} = \frac{ 2t}{ \frac{1}{t} } [/tex]

[tex]\frac{dy}{dx} = 2 {t}^{2} [/tex]

At x=5,

[tex]5 = 5 + ln(t) [/tex]

[tex] ln(t) = 0[/tex]

[tex]t = {e}^{0} = 1[/tex]

This implies that,

[tex]\frac{dy}{dx} = 2 {(1)}^{2} = 2[/tex]

The slope of the tangent is 2.

The equation of the tangent through

(5,6) is given by

[tex]y-y_1=m(x-x_1)[/tex]

[tex]y - 6 = 2(x - 5) =[/tex]

[tex]y = 2x -4[/tex]

The equation of the tangent to the curve at the point (5,6) is [tex]\(y = 2x - 4\)[/tex].

To find the equation of the tangent to the curve given by the parametric equations [tex]\(x = 5 + \ln(t)\)[/tex] and [tex]\(y = t^2 + 5\)[/tex] at the point (5,6), we can approach this problem in two ways: by eliminating the parameter \(t\) and without eliminating the parameter.

Method 1: Eliminating the Parameter

Step 1: Express (t) in terms of (x)

[tex]\[ x = 5 + \ln(t) \implies \ln(t) = x - 5 \implies t = e^{x-5} \][/tex]

Step 2: Substitute (t) into (y)

[tex]\[ y = t^2 + 5 \implies y = (e^{x-5})^2 + 5 \implies y = e^{2(x-5)} + 5 \][/tex]

Step 3: Find [tex]\(\frac{dy}{dx}\)[/tex]

[tex]\[ y = e^{2(x-5)} + 5 \][/tex]

[tex]\[ \frac{dy}{dx} = 2e^{2(x-5)} \][/tex]

Step 4: Evaluate [tex]\(\frac{dy}{dx}\)[/tex] at (x = 5)

[tex]\[ \frac{dy}{dx}\bigg|_{x=5} = 2e^{2(5-5)} = 2e^0 = 2 \][/tex]

Step 5: Equation of the tangent line

The slope (m = 2). The tangent line at (5,6) is:

[tex]\[ y - 6 = 2(x - 5) \][/tex]

[tex]\[ y = 2x - 10 + 6 \][/tex]

[tex]\[ y = 2x - 4 \][/tex]

Method 2: Without Eliminating the Parameter

Step 1: Find [tex]\(\frac{dx}{dt}\)[/tex] and [tex]\(\frac{dy}{dt}\)[/tex]

[tex]\[ x = 5 + \ln(t) \implies \frac{dx}{dt} = \frac{1}{t} \][/tex]

[tex]\[ y = t^2 + 5 \implies \frac{dy}{dt} = 2t \][/tex]

Step 2: Find [tex]\(\frac{dy}{dx}\)[/tex]

[tex]\[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2t}{\frac{1}{t}} = 2t^2 \][/tex]

Step 3: Find (t) at the point (5,6)

From [tex]\(x = 5 + \ln(t)\)[/tex]:

[tex]\[ 5 = 5 + \ln(t) \implies \ln(t) = 0 \implies t = e^0 = 1 \][/tex]

Step 4: Evaluate [tex]\(\frac{dy}{dx}\)[/tex] at (t = 1)

[tex]\[ \frac{dy}{dx}\bigg|_{t=1} = 2(1)^2 = 2 \][/tex]

Step 5: Equation of the tangent line

The slope (m = 2). The tangent line at (5,6) is:

[tex]\[ y - 6 = 2(x - 5) \][/tex]

[tex]\[ y = 2x - 10 + 6 \][/tex]

[tex]\[ y = 2x - 4 \][/tex]

Thus, using both methods, the equation of the tangent to the curve at the point (5,6) is [tex]\(y = 2x - 4\)[/tex].

Solve this gear problem.

Gear 1 = 30 teeth
Speed, gear 1 = 150 r.p.m.
Speed, gear 2 = 50 r.p.m.
Teeth, gear 2 = ?

Answers

Hello!

The answer is:

The number of teeth of Gear 2 is 90 teeth.

[tex]N_{2}=90teeth[/tex]

Why?

To calculate the number of teeth for the Gear 2, we need to use the following formula that establishes a relation between the number of RPM and the number of teeth of two or more gears.

[tex]N_{1}Z_{1}=N_{2}Z_{2}[/tex]

Where,

N, are the rpm of the gears

Z, are the teeth of the gears.

We are given the following information:

[tex]Z_{1}=30teeth\\N_{1}=150RPM\\N_{2}=50RPM[/tex]

Then, substituting and calculating we have:

[tex]N_{1}Z_{1}=N_{2}Z_{2}[/tex]

[tex]150RPM*30teeth=N_{2}50RPM[/tex]

[tex]N_{2}=\frac{150RPM*30teeth}{50RPM}=90teeth[/tex]

[tex]N_{2}=90teeth[/tex]

Hence, we have that the number of teeth of Gear 2 is 90 teeth.

Have a nice day!

Eric, George, and Denzel have invested $400,000, $300,000, and $300,000, respectively, in a business venture. They have decided that they will divide the profits among themselves in the ratio of their respective investments. If their business makes a profit of $75,000, what would be Eric’s share in the profit? A. $22,500 B. $30,000 C. $32,500 D. $45,000

Answers

Answer:

Eric’s share in the profit is $30,000 ⇒ answer B

Step-by-step explanation:

* We will use the ratio to solve this problem

- At first lets find the ratio between their invested

∵ Eric has invested $400,000

∵ George has invested $300,000

∵ Denzel has invested $300.000

- To find the ratio divide each number by 100,000

∴ Eric : George : Denzel = 4 : 3 : 3

- They will divide the profits among themselves in the ratio of their

  respective investments

- The total profit will divided by the total of their ratios

∵ The total of the ratios = 4 + 3 + 3 = 10

∴  Eric : George : Denzel : Sum = 4 : 3 : 3 : 10

- That means the profit will divided into 10 equal parts

- Eric will take 4 parts, George will take 3 parts and Denzel will take

 3 parts

∵ The profit = $75,000

- Divide the profit by the sum of the ratio

∴ Each part of the profit = 75,000 ÷ 10 = $7,500

- Now lets find the share of each one

∴ The share of Eric = 4 × 7,500 = $30,000

∴ The share of George = 3 × 7,500 = $22,500

∴ The share of Denzel = 3 × 7,500 = $22,500

* Eric’s share in the profit is $30,000

# If you want to check your answer add the shares of them, the answer

  will be the total profit (30,000 + 22,500 + 22,500 = $75,000), and if

  you find the ratio between their shares it will be equal the ratio

  between their investments (divide each share by 7,500 to simplify

  them the answer will be 4 : 3 : 3)

Answer:

B

Step-by-step explanation:

Write the ordered pair that represents yz. Then find the magnitude of yz . y(-2,5),z(1,3)

Answers

ANSWER

[tex]|^{ \to} _{YZ}| = \sqrt{13} [/tex]

EXPLANATION

Given the points, y(-2,5),z(1,3)

[tex] ^{ \to} _{YZ} = \binom{1}{3} - \binom{ - 2}{5} = \binom{3}{ - 2} [/tex]

Therefore the ordered pair is <3,-2>

The magnitude is

[tex] |^{ \to} _{YZ}| = \sqrt{ {3}^{2} + ( - 2)^{2} } [/tex]

[tex] |^{ \to} _{YZ}| = \sqrt{ 9 +4} [/tex]

[tex]|^{ \to} _{YZ}| = \sqrt{13} [/tex]

Answer: AAAAAAAAAAAAAAAAAAAAAAAAAAa

A cone with volume 5000 m^3 is dilated by a scale factor of 1/5

Answers

ANSWER

The volume of the dilated cone is

[tex]40 {m}^{3}[/tex]

EXPLANATION

The volume of the given cone is

[tex]5000 {m}^{3} [/tex]

When this cone is dilated with a scale factor of 1/5, the volume of the dilated cone becomes,

[tex] ({ \frac{1}{5} })^{3} \times 5000 {m}^{3} [/tex]

We simplify to obtain:

[tex] { \frac{1}{125} }\times 5000 {m}^{3} [/tex]

This gives us:

[tex]40 {m}^{3} [/tex]

Final answer:

When a cone is scaled down by a factor of 1/5, its new volume is 40 m³, calculated by cubing the scale factor and multiplying it by the original volume.

Explanation:

When a cone is dilated by a scale factor, its volume changes according to the cube of that scale factor.

Since the original volume of the cone is 5000 m³ and the scale factor is 1/5, we use the proportionality principle which states that the volume of a shape is proportional to the cube of its linear dimensions (V ∝ L3).

Therefore, if we dilate the cone by a scale factor of 1/5, the new volume (V1) would be:

V1 = V-original × (scale factor)³
= 5000 m³ × (1/5)³
= 5000 m³ × 1/125
= 40 m³

This calculation shows that, as a result of applying the scale factor, the volume of the cone has been reduced significantly.

Casie jumped off of a cliff into the ocean while on vacation. Her height as a function of time is modeled by the equation h = −16t2 +16t + 140, where t is the time in seconds and h is the height in feet. How long does it take Casie to hit the water?
A) 3 seconds
B) 3.5 seconds
C) 4 seconds
D) 4.5 seconds

Answers

Answer:

3.5 seconds, B

Step-by-step explanation:

This is an upside down parabola, a function that is extremetly useful in helping us to understand position and velocity and time and how they are all related.  Her upwards velocity is 16 ft/sec and she starts from a height of 140 feet, according to the problem.  The h is the height she ends up at after a certain amount of time has gone by.  You want to know how long it will take her to hit the water.  When she hits the water, she has no more height.  Therefore, her height above the water when she hits the water is 0.  Plug in a 0 for h and factor the quadratic to get t = -2.5 seconds and t = 3.5 seconds.  The only two things in math that will never ever be negative is a distance measure and time, so we can disregard the -2.5 and go with 3.5 seconds as our answer.

Answer:

B

Step-by-step explanation:

A diner has collected data about customer coffee-drinking habits. They have calculated that P(cream) = 0.5, P(sugar) = 0.6, and P(cream or sugar) = 0.7. Determine the P(cream and sugar). (2 points)

Answers

Answer:

P(cream and sugar) = 0.4

Step-by-step explanation:

* Lets study the meaning of or , and on probability

- The use of the word or means that you are calculating the probability

 that either event A or event B happened

-  Both events do not have to happen

- The use the word and, means that both event A and B have to happen

* The addition rules are:

# P(A or B) = P(A) + P(B) ⇒ mutually exclusive (events cannot happen

 at the same time)

# P(A or B) = P(A) + P(B) - P(A and B) ⇒ non-mutually exclusive (if they

 have at least one outcome in common)

- The union is written as A∪B or “A or B”.

- The intersection is written as A∩B or “A and B

* Lets solve the question

∵ P(cream) = 0.5

∵ P(sugar) = 0.6

∵ P(cream or sugar) = 0.7

- To find P(cream and sugar) lets use the rule of non-mutually exclusive

∵ P(A or B) = P(A) + P(B) - P(A and B)

∴ P(cream or sugar) = P(cream) + P(sugar) - P(cream and sugar)

- Lets substitute the values of P(cream) , P(sugar) , P(cream or sugar)

 in the rule

∵ 0.7 = 0.5 + 0.6 - P(cream and sugar) ⇒ add the like terms

∴ 0.7 = 1.1 - P(cream and sugar) ⇒ subtract 1.1 from both sides

∴ 0.7 - 1.1 = - P(cream and sugar)

∴ - 0.4 = - P(cream and sugar) ⇒ multiply both sides by -1

∴ 0.4 = P(cream and sugar)

* P(cream and sugar) = 0.4

Answer:

0.4

Step-by-step explanation:

The pep squad sold c, cheeseburgers and h, hothogs at the friday night football game. A total of 220 were sold. There were 3 times more hotdogs sold than cheeseburgers. Write a system of equations for this situation.

Answers

Answer:

c + h = 220h = 3c

Step-by-step explanation:

The total sold is the sum of the individual numbers sold, hence c+h.

We assume "3 times more" means "3 times as many", so the number of hotdogs sold (h) is 3 times the number of cheeseburgers sold (c), hence 3c.

  c + h = 220

  h = 3c

_____

55 cheeseburgers and 165 hotdogs were sold.

Each player rolls two six sided die once each and the sum of the highest roll wins. The first player rolls a 3 and 4 so that his sum is 7, what is the probability that the secon player will win

Answers

Answer:

5/12 or 41.66%

Step-by-step explanation:

When throwing two six-sided dice, you have 36 possible outcomes:

{1,1} {1,2} {1,3} {1,4} {1,5} {1,6} {2,1} {2,2} {2,3} {2,4} {2,5} {2,6} {3,1} {3,2} {3,3} {3,4} {3,5} {3,6} {4,1} {4,2} {4,3} {4,4} {4,5} {4,6} {5,1} {5,2} {5,3} {5,4} {5,5} {5,6} {6,1} {6,2} {6,3} {6,4} {6,5} {6,6}

To find what is the probability the second player will win, we need to see how many of those 36 possibilities have a combined total of 8 or more (to beat the 7 of the first player):

These 15 combinations have a total of 8 or more:

{2,6} {3,5} {3,6} {4,4} {4,5} {4,6} {5,3} {5,4} {5,5} {5,6} {6,2} {6,3} {6,4} {6,5} {6,6}

So, the probability the second player gets 8 or more and wins is:

15/36 or 5/12 or 41.66%

A football stadium has an attendance of 4997 people. Of​ these, 2118 are cheering for Team A and 2568 are female. Of the people cheering for Team​ A, 982 are female. Find the probability that a randomly selected attendee is female or cheers for Team A. ​(a) Are the events​ "cheering for Team​ A" and​ "being a​ female" mutually​ exclusive? No Yes ​(b) What is the probability that a randomly selected attendee is female or cheers for Team​ A? nothing ​(Type an integer or decimal rounded to three decimal places as​ needed.)

Answers

Final answer:

The events “cheering for Team A” and “being a female” are not mutually exclusive. The probability that a randomly selected attendee is female or cheers for Team A is approximately 0.741.

Explanation:

(a) No, the events “cheering for Team A” and “being a female” are not mutually exclusive. This is because there are females who are cheering for Team A. Mutually exclusive events cannot happen at the same time.

(b) To find the probability that a randomly selected attendee is female or cheers for Team A, we need to add the probabilities of each event happening and subtract the probability of both events happening at the same time. We can use the formula:

P(A or B) = P(A) + P(B) - P(A and B)

In this case, P(A) is the probability of cheering for Team A, P(B) is the probability of being female, and P(A and B) is the probability of being a female who cheers for Team A.

Given the numbers provided, the probability of cheering for Team A is 2118/4997 and the probability of being female is 2568/4997. The probability of being a female who cheers for Team A is 982/4997. Plugging these values into the formula, we get:

P(Female or Team A) = P(Team A) + P(Female) - P(Female and Team A) = 2118/4997 + 2568/4997 - 982/4997 = 3704/4997 ≈ 0.741

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ

what property does the following expression demonstrate 9(3x)=27(x)

Answers

Answer:

Associative property of multiplication

Step-by-step explanation:

To show that 9(3x) = 27(x), we need to show that 9(3x) = (9 * 3)x.

The APM does just that. By this property, in multiplication, the order of which numbers are multiplied do not matter.

So, 9(3x) = (9 * 3)x.

And by multiplication, (9 * 3)x = 27x.

So 9(3x) = 27x

find 2(cos 240+isin 240) ^4 (answer choices below)

Answers

1. C. -512√3+512i

2. B. 16(cos240°+i sin240°)

3. D. 3√2+3√6i, -3√2-3√6i

4. A. cos60°+i sin60°, cos180°+i sin180°, cos300°+i sin300°

5. D. 2√3(cos π/6+i sin π/6), 2√3(cos 7π/6+i sin 7π/6)

We will see that the equivalent expression is:

[tex]8*(cos(240\°) + i*sin(240\°))[/tex]

So the correct option is the first one.

How to rewrite the given expression?

We have the expression:

[2*(cos(240°) + i*sin(240°))]^4

Remember that Euler's formula says that:

[tex]e^{ix} = cos(x) + i*sin(x)[/tex]

Then we can rewrite our expression as:

[tex][2*(cos(240\°) + i*sin(240\°)]^4 = [2*e^{i*240\°}]^4[/tex]

Now we distribute the exponent:

[tex]2^4*e^{4*i*240\°} = 8*e^{i*960\°}[/tex]

Now, we need to find an angle equivalent to 960°.

Remember that the period of the trigonometric functions is 360°, then we can rewrite:

960° - 2*360° = 240°

This means that 960° is equivalent to 240°. Then we can write:

[tex]8*e^{i*960\°} = 8*e^{i*240\°} = 8*(cos(240\°) + i*sin(240\°))[/tex]

So the correct option is the first one.

If you want to learn more about complex numbers, you can read:

https://brainly.com/question/10662770

Sketch the graph of y=2(x-2)2+5 and identify the axis of symmetry.

Answers

Answer:

x=2

Step-by-step explanation:

What transformation has changed the parent function f(x) = log2x to its new appearance shown in the graph below?

logarithmic graph passing through point 2, 4.

f(x + 3)
f(x − 3)
f(x) + 3
f(x) − 3

Answers

Answer: Third Option

[tex]f(x) +3[/tex]

Step-by-step explanation:

The function [tex]y=log_2(x)[/tex] passes through point (2, 1) because the exponential function [tex]2 ^ x = 2[/tex] when [tex]x = 1[/tex].

Then, if the transformed function passes through point (2, 4) then this means that the graph of [tex]y=log_2(x)[/tex] was moved vertically 3 units up.

The transformation that vertically displaces the graph of a function k units upwards is:

[tex]y = f (x) + k[/tex]

Where k is a positive number. In this case [tex]k = 3[/tex]

Then the transformation is:

[tex]f(x) +3[/tex]

and the transformed function is:

[tex]y = log_2 (x) +3[/tex]

If Sally can make 10 free throws in one minute or 3 three-point baskets in one minute, while Jesse can make 8 free throws in one minute or 1 three-point basket in one minute, ___ has an absolute advantage in free throws and ___ has a comparative advantage in free throws. Sally; Sally Sally; Jesse Jesse; Sally Jesse; Jesse

Answers

Answer:

Sally; Sally

Step-by-step explanation:

For the free throws... let's see the stats:

Sally: 10 free throws

Jesse: 8 free throws.

Advantage?: Sally

For the three-points baskets:

Sally: 3

Jesse: 1

Advantage: Sally

Sally dominates in both categories, sorry Jesse.

Answer:

sally sally

Step-by-step explanation:

the numbers are just greater for both stats for her


The lengths of two sides of a parallelogram are 24 cm and 15 cm. One angle measures 120°. Find the length of the longer diagonal.
A) 13.3 cm
B) 34.1 cm
C) 177.5 cm
D) 1161 cm

Answers

Answer:

B) 34.1 cm

Step-by-step explanation:

The longer diagonal is longer than either side, but shorter than their sum. The only answer choice in the range of 24–39 cm is choice B.

_____

You are given sufficient information to use the Law of Cosines to find the diagonal length. If we call it "c", then the angle opposite that diagonal is the larger of the angles in the parallelogram: 120°. The law of cosines tells you ...

c^2 = a^2 +b^2 -2ab·cos(C)

Here, we have a=24, b=15, C=120°, so ...

c^2 = 24^2 +15^2 -2·24·15·cos(120°) = 576 +225 +360 = 1161

c = √1161 ≈ 34.073 . . . . cm

Rounded to tenths, the diagonal length is 34.1 cm.

Please help last question

Answers

Find the total of male students:

4 + 6 + 2 + 2 = 14 total males.

There are 2 male juniors.

The probability of a male being a junior is 2/14 = 1/7 = 0.143 = 14.3 = 14%

Find the total of male students:

4 + 6 + 2 + 2 = 14 total males.

There are 2 male juniors.

The probability of a male being a junior is 2/14 = 1/7 = 0.143 = 14.3 = 14%

please help me asap 12 PTS

Answers

Answer:

D.

Step-by-step explanation:

I also haven't learned this yet but i could tell that in the second image if A.F = 1/2AC and DE = A.F, therefore DE = 1/2AC. The problem is that i don't know if it is B or D.

Sorry .-.

An ice cream store offers a bowl with one giant scoop or two
regular scoops of ice cream for $2.75. A giant scoop is a sphere with a diameter of 6 centimeters. A regular scoop is a
sphere with a diameter of 4 centimeters. Which is closest to
the greatest volume of ice cream that can be purchased for $2.75?

A 67 cm
B 113 cm
C 536
D 905 cm​

Answers

Answer:

B

Step-by-step explanation:

The volume of a sphere is given by

[tex]V=\frac{4}{3}\pi r^3[/tex]

where r is the radius

For $2.75, we can get 1 large  OR  2 small scoops.

Giant scoop has diameter 6, so radius is half of that, which is 3, hence the volume is:

[tex]V=\frac{4}{3}\pi r^3\\V=\frac{4}{3}\pi (3)^3\\V=113.1[/tex]

Regular scoop's diameter is 4, hence radius is 2. So volume of 1 regular scoop is:

[tex]V=\frac{4}{3}\pi r^3\\V=\frac{4}{3}\pi (2)^3\\V=33.51[/tex]

We can get 2 of those, so total volume is 33.51 + 33.51 = 67.02

Hence, the max volume for $2.75 is around 113, answer choice B.

Other Questions
Why do some people think preventative detention is unfair?because people are punished for a crime after a trialbecause people are punished unfairly for a crimebecause jail conditions are often very poorbecause people are punished for a crime before a trial if f(x)=2x-6 and g(x)=x^3 what is (g f)(0) consider the dialogue in this poem. how does the dialogue help develop character in the poem? Is Yawo D'almeida President Of Togo ? Identify the measure of arc UPR. PLEASE HELP!! I don't understand!! Plz answer QUICKLY I REALLY NEED THE ANSWER!!!! If f(4) = 12 and f '(x) 3 for 4 x 9, how small can f(9) possibly be? Immigrants often stayed in neighborhoods with other people from the same country. what were these neighborhoods called apex (THERE IS MORE THAN ONE ANSWER, CHOOSE ALL THAT APPLY)Political machines ______. A) granted favors in exchange for votes B) were controlled by a city boss C) hired precinct captains based on their qualifications D) were an example of corruption during the Gilded Age how do you "Laura is blonde" in spanish Anna has to straighten her arm from 90 to 118. She can straighten itby about 12 every 3 days. How many days will it take to get to 118? Which element's symbol could replace the question mark inthe diagram?O boron (B)O neon (Ne)O rubidium (Rb)O arsenic (As) Find the value of x in the figure below. Show all your work. help pleaseeeeeee! thanks What should you add to a list of sources for a research report, before you begin working on your thesis statement?annotationsadditional research questionsdirect quotesheadings and subheadings 8. The amount f (t)of a certain medicine, in milligrams, in a patient'sbloodstream t minutes after being taken is given by f(t) =Find the amount of medicine in the blood after 20 minutes. Can someone help me with this? sin150 = HELP FIND AREA AND PERIMETER VERY ARGENT PLEASE HELP What is an alignment of text in which the text is evenly aligned on both the left and right margins In 1938 Germany seized this portion of Czechoslovakia, causing international outrage. Steam Workshop Downloader