End of day/Distance from home
1 /383
2 /682
3 /1132
4 /1503
5 /1906
6 /2196
- In the table, Adam recorded the miles he traveled each day while traveling from his home to California. Calculate the average rate
of change between day 1 and day 3.
A)283 miles per day
B)375 miles per day
C)450 miles per day
D)566 miles per day
Answer:
[tex]\large \boxed{\text{B) 374 mi/day}}[/tex]
Step-by-step explanation:
The average rate of change from one point to another is the slope of the straight line joining the two points.
[tex]\text{slope} = \dfrac{ y_{2} - y_{1}}{ x_{2} - x_{1}}[/tex]
From Day 1 to Day 3, your points are (1, 383) and (3, 1132).
[tex]\text{Slope} = \dfrac{1132 - 383 }{3 - 1} = \dfrac{749 }{2} = \textbf{374 mi/day}\\\\\text{The average rate of change from Day 1 to Day 3 was $\large \boxed{\textbf{374 mi/day}}$}[/tex]
The graph below shows the rate of change from Day 1 to Day 3 as a black line. It appears from the graph that Adam and his dad kept the same rate of change for the whole trip.
A pipe of length 1/2 yd is cut into 5 equal pieces. What is the length of each piece in yards?
The length of each piece is 0.1 yard.
Step-by-step explanation:
The length of the pipe is [tex]\frac{1}{2}[/tex] yard.
The pipe is cut into 5 equal pieces.
We have to find the length of the each piece.
The length of the each piece is calculated by dividing the pipe's initial length(L) by the the number of pieces(N).
Length of the each piece = [tex]\frac{L}{N}[/tex].
=[tex]\frac{\frac{1}{2}}{5}[/tex]. ( 5 is also written as [tex]\frac{5}{1}[/tex] ⇒ [tex]\frac{\frac{1}{2} }{\frac{5}{1} }[/tex].)
=[tex]\frac{1}{2}[/tex]×[tex]\frac{1}{5}[/tex].
= [tex]\frac{1}{10}[/tex].
= 0.1 yard.
Length of the each piece = 0.1 yard.
What is the slope between the points (0,-3) and
(-6, 7)?
Answer:
-5/3
Step-by-step explanation:
The figure shows the 50 - foot side of a house and a proposed rectangular garden to be fences in on 3 sides.
The 3 sides, a,b, and x will be made of 40 feet of fencing.
Which of the following is an expression for a in terms of x?
A. 2x+40
B. 2x-40
C. 40-2x
D. 40-x+x
What is the area, in square feet, for the garden if 40 feet of fencing are used and x=15?
Option C 40-2 x
150 square feet
Step-by-step explanation:
Step 1 :
Given that the 3 sides, a,b, and x will be made of 40 feet of fencing,
we have a + b + x = 40
Since this is a rectangular garden , b= x
substituting b= x, we have a + x + x = 40
=> a+2 x = 40
=> a= 40-2 x
Step 2 :
To find the area in square feet,
when x = 15, a = 40 - 2 * 15 = 40-30 = 10 feet
The length and breadth of the rectangular garden are therefore 5 and 10 feet respectively
Hence, the area of the garden = length * breadth = 15 * 10 = 150 square feet
A box of printer paper cost $25 each. Your school purchased 9 boxes of paper for $225. Which equation uses the distributive property to show that your school spent $225 on 9 boxes of paper? A) 9 x 25 = 225 B) 225 ÷ 25 = 9 C) 9 × (20 + 5) = 225 D) 25 + 25 + 25 + 25 + 25 + 25 + 25 + 25 + 25 = 225
Answer:
Step-by-step explanation:
Answer:
C) 9 × (20 + 5) = 225
Step-by-step explanation:
The answer is c
9 x (20 + 5 )
9x20 + 9x5
180 + 45 = 225
HELP PLEASE
The area of a rectangle is 4w - 10 square units.
Factor this expression.
Given your answer in part A, describe what you can conclude about the dimensions of the rectangle in two or more complete sentences.
Answer:
Dimension is the square root of 4w-10
Step-by-step explanation:
The length=Breadth=√4w-10
Final answer:
The expression for the area of the rectangle, 4w - 10, can be factored as 2(2w - 5). This implies that one of the rectangle's dimensions could be 2 units and the other could be a linear expression of 2w - 5 units.
Explanation:
To factor the expression 4w - 10 square units, we can find the greatest common factor (GCF) of the two terms. The GCF of 4w and 10 is 2, so we can factor out 2 from the expression:
4w - 10 = 2(2w - 5)
Given the factored form, we can conclude something about the dimensions of the rectangle. The factored expression, 2(2w - 5), suggests that one dimension of the rectangle could be 2 units, and the other is a linear expression of width, specifically 2w - 5 units. This aligns with the area formula for rectangles, A = length × width, where one dimension is considered the length and the other the width for calculation purposes.
4p2-p=0 how do you solve this
combine you like terms
4p and -p = 3p
3p+2=0
subtracts 2 from itself and 0
3p=-2
divide 3p from itself and -2
p=-2/3
Final answer: [tex]4p^2[/tex]- p = 0, factor out the greatest common factor (p) and solve for p by setting each factor equal to zero. The solutions are p = 0 and p = 1/4.
Explanation:
To solve the quadratic equation [tex]4p^2[/tex] - p = 0, we can use the factoring method or the quadratic formula. In this case, factoring is convenient:
First, factor out the greatest common factor, which is p:p(4p - 1) = 0Then, set each factor equal to zero and solve for p:p = 0 or 4p - 1 = 0When 4p - 1 = 0, solving for p gives us p = 1/4.Therefore, the solutions to the equation are p = 0 and p = 1/4.
Graph the solution for the following linear inequality system. Click on the graph until the final result is displayed. y ≥ 0 y < x x + y < 6
Answer:
see below
Step-by-step explanation:
The graph of the first inequality is the half-plane above and including the x-axs.
The graph of the second inequality will be the half-plane below the dashed line y = x.
The graph of the third inequality will be the half-plane below the dashed line y = 6 -x.
So, the solution space will be a triangle above the x-axis and below the two (dashed) lines that cross at (x, y) = (3, 3).
Answer:
I think, from what sqdancefan explained, the graph is this one..
when looking at an equation how do you know if it is a function?
8x+4(4x-3)=4(6x+4)-4
Answer:
x = 24
Step-by-step explanation:
8x + 4(4x - 3) = 4(6x + 4) - 4
8x + 16x - 12 = 24x + 16 - 4
24x - 12 = 24x + 12
24x = 24x + 12 + 12
24x = 24x + 24
24x/24x = 24
x = 24
A man purchased a magazine at the airport for $ 2.89 . The tax on the purchase was $ 0.18 .What is the tax rate at the airport? Round to the nearest percent.
The tax rate is __%. (Round to the nearest percent as needed.)
The tax rate is 6 %
Solution:
Given that, A man purchased a magazine at the airport for $ 2.89
The tax on the purchase was $ 0.18
To find: tax rate in percentage
From given,
Magazine price = 2.89
Tax amount = 0.18
Therefore, tax percent is given as:
Let "x" be the tax percent
x % of magazine price = tax amount
x % of 2.89 = 0.18
Solve the equation for "x"
[tex]x \% \times 2.89 = 0.18\\\\\frac{x}{100} \times 2.89 = 0.18\\\\2.89x = 0.18 \times 100\\\\2.89x = 18\\\\Divide\ both\ sides\ by\ 2.89\\\\x = 6.22 \approx 6[/tex]
Thus tax rate is 6 %
Joey calculated that the circumference of the steering wheel in his car is 43.96 inches what is the steering wheel’s diameter
Answer:
Therefore,
The steering wheel’s diameter is 14 inches.
Step-by-step explanation:
Given:
Circumference of Steering Wheel ,
C = 43.96 inches
pi = 3.14
To Find:
Diameter = d = ?
Solution:
The Formula for Circumference is given as,
[tex]Circumference = \pi\times Diameter[/tex]
Substituting the values we get
[tex]C=\pi\times d\\43.96=3.14\times d\\d=\dfrac{43.96}{3.14}=14\ inches[/tex]
Therefore,
The steering wheel’s diameter is 14 inches.
When you have the circumference of a circle and need to find the diameter, you can use the formula Diameter = Circumference / π. Using this formula, Joey's steering wheel, with a circumference of 43.96 inches, would have a diameter of approximately 14 inches.
Explanation:To find the diameter of a circle when you know the circumference, use the formula Circumference = π * Diameter. Circumference is the given 43.96 inches.
So, you can rearrange the formula to find the diameter: Diameter = Circumference / π.
Substituting the given values, we have Diameter = 43.96 inches / 3.14. This gives approximately 14 inches as the diameter of the steering wheel in Joey's car.
Learn more about Circle Measurementsbrainly.com/question/14687103
#SPJ12
If 3 out of every 5 students in Mr.Pringles math class prefers pepperoni pizza topping how many of his 110 students would you expect to prefer pepperoni topping?
Answer:
Therefore out of Mr. Pringles 110 students we can expect the number that would prefer pepperoni pizza topping would be 66 students.
Step-by-step explanation:
If 3 out of every 5 students in Mr.Pringles math class prefers pepperoni pizza topping then the probability of a randomly selected student in Mr. Pringles prefers pepperoni pizza is [tex]\frac{3}{5} = 0.6[/tex].
Therefore out of Mr. Pringles 110 students we can expect the number that would prefer pepperoni pizza topping would be = 0.6 [tex]\times[/tex] 110 = 66 students.
What is 125% of 88?
Answer:
110 is 125% of 88
Step-by-step explanation:
125% is the same as 125/100
Set this 125/100 equal to x/88
125/100 = x/88
Cross-Multiply (Numerator * Denominator = Numerator * Denominator)
125(88) = 100(x)
11,000 = 100x
Divide both sides of the equation by 100
110 = x
110 is 125% of 88
Hope this helps :)
Answer: x = 110
Step-by-step explanation: Well percent means over 100 so we can set up an equation for this problem by reading it from left to right.
What means x, is means equals, 125% is 125/100, of means times, 250.
So we have the equation [tex]x = \frac{125}{100} (88)[/tex].
Simplifying on the right side of the equation, notice that 125/100 reduces to 5/4 so we have x = 5/4 · 88.
Think of the 88 as 88/1.
So we can cross cancel the 88 and 4 to 22 and 1.
So we have x = 5 · 22 over 1 · 1 or x = 110.
2(4x-9)=14 simplify your answer as much as possible
Which graph represents f(x)=6cos(4πx) ?
Answer:
The graph representing f(x)=6cos(4πx) is shown in the attached file.
Step-by-step explanation:
The graph representing f(x)=6cos(4πx) is shown in the attached file.
Answer:
Correct answer below
Step-by-step explanation:
K12 quiz :)
what is value of (4g+h)(8)? G(x)= x+7; h(x)= (x-3)^2
Answer:
85
Step-by-step explanation:
hello :
if : g(x)= x+7; h(x)= (x-3)² so : (4g+h)(x)=4g(x)+h(x) = 4(x+7)+(x-3)²
(4g+h)(8)= 4(8+7)+(8-3)² = 60+25=85
3 = 3/2 ( 7x + 10 )
Answer:
x = -1.142857
Step-by-step explanation:
Start by distributing the 3/2 in the parentheses.
3 = 10.5x + 15
Next, get the variables on one side. There are a few way to do this, the easiest being to subtract 15 from both sides.
-12 = 10.5x
Now you need to get the variable alone. Do this by dividing both sides by 10.5.
-1.142857 = x
Hope this helps you out.
If the 4th and 7th terms of a GP are 250 and 31250 respectively. Find the two possible values of a and r
Answer:
a = 2 , r = 5
Step-by-step explanation:
The n th term of a geometric progression is
[tex]a_{n}[/tex] = a[tex]r^{n-1}[/tex]
where a is the first term and r the common ratio
Given the 4 th term is 250, then
ar³ = 250 → (1)
Given the 7 th term is 31250, then
a[tex]r^{6}[/tex] = 31250 → (2)
Dividing the 2 equations gives
[tex]\frac{ar^6}{ar^3}[/tex] = [tex]\frac{31250}{250}[/tex], that is
r³ = 125 ← take the cube root of both sides
r = [tex]\sqrt[3]{125}[/tex] = 5
Substitute r = 5 into (1)
a × 5³ = 250, that is
125a = 250 ( divide both sides by 125 )
a = 2
Answer: a = 2, and r = 5
Step-by-step explanation: What we have been given here is a geometric progression. Every term in the sequence of numbers is derived by multiplying the previous term by a particular number called the common ratio, otherwise known as r. Hence if the first term is 1 for instance, the second term would be derived as 1 x r (which equals 1r), the third term would be derived as 1r x r (which equals 1r squared) and so on.
Having this in mind , we can calculate the Nth term of a geometric progression as
Nth term = a x r{to the power of n - 1}
So if we want to calculate the 4th term for instance, that would be
4th = a x r{to the power of 4 - 1} OR
4th = a x r{to the power of 3}
Similarly to calculate the 7th term would be
7th = a x r{to the power of 7 - 1}
7th = a x r{to the power of 6}
Now that we have been given the 4th (250) and 7th (31250) terms, what we now have is
a x r{to the power of 3} = 250 AND
a x r{to the power of 6} = 31250
a x r{to the power of 6}/a x r{to the power of 3} = 31250/250
After reducing both sides to their simplest form, what we now have is
r{to the power of 3} = 125
If we add the cube root sign to both sides of the equation we would have
r = 5
Having computed r as 5, we can now go back to calculate a as follows;
If a x r{to the power of 3} = 250, then
a x 125 = 250
Divide both sides of the equation by 125
a = 2
Therefore, a = 2 and r = 5
Find the area of a circle with a circumference of 81.68cm
Answer:
A= 20959.52 cm
Step-by-step explanation:
Formula: A= π x r^2
A= π x 81.68^2
A= 20959.52
Write an algebraic expression for the following word phrase the quotient of 38 and x
Answer:
38/x
Step-by-step explanation:
quotient is / (division)
just fill in the slots
__ / __
38 / __
38 / x
The algebraic expression for the phrase 'the quotient of 38 and x' is
38 ÷ x.
The word phrase "the quotient of 38 and x" can be translated into an algebraic expression as follows:
"The quotient" refers to division, so we will use the division symbol (÷).
"38" represents the numerator of the quotient, the number that is being divided.
"x" represents the denominator of the quotient, the number by which we are dividing.
Therefore, the algebraic expression for "the quotient of 38 and x" is:
38 ÷ x
In this expression, 38 is divided by x, and the result of this division is the value of the expression.
Depending on the value of x, the result will change accordingly.
If x were equal to 2, for example, then the expression would evaluate to 38 ÷ 2 = 19. If x were equal to 5, the expression would evaluate to 38 ÷ 5 = 7.6, and so on.
Learn more about Algebraic expression here:
https://brainly.com/question/32436021
#SPJ3
What’s is 97 square root
The square root of 97 is 8.48857802, but you can round to 8.49 or 8.5 if you so desire.
Is it possible to show that G is congruent
Every jump a game piece makes measures 8/9 . The piece starts at point A = 7 and jumps to the right. As soon as the piece jumps over B = 24, it switches direction and jumps to the left. The piece then stops at point A. How many jumps did the game piece take?
Answer:
There will be a total 40 jumps.
Step-by-step explanation:
Every jump a game piece makes measures [tex]\frac{8}{9} = 0.889[/tex].
Now, the piece starts at point A = 7 and jumps to the right.
So, the piece will jump over B = 24 after [tex]\frac{24 - 7}{0.889} = 19.122[/tex] ≈ 20 complete jumps.
Then it switches direction to the left and the piece then stops at point A.
So, there will be a total (20 + 20) = 40 jumps. (Answer)
The game piece took a total of 153/8 jumps.
Explanation:To determine how many jumps the game piece took, we need to find the total distance it traveled. The piece starts at point A = 7 and jumps to the right, so it covers a distance of 8/9. As soon as it jumps over B = 24, it switches direction and jumps to the left, covering a distance of -8/9. The piece continues this pattern until it reaches point A again.
To find the number of jumps, we can divide the total distance traveled by the distance covered in each jump. The total distance is 24 - 7 = 17. Dividing 17 by 8/9 gives us:
17 / (8/9) = 17 * (9/8) = 153/8
So, the game piece took a total of 153/8 jumps.
Learn more about game piece jumps here:https://brainly.com/question/14709467
#SPJ3
9+6 (10-7x)
Please ♥️♥️I really need it answer n you get 5 coins
Answer:
x = 23/14
Step-by-step explanation:
Step 1: Distribute
9 + 6(10 - 7x)
9 + 6(10) + 6(-7x)
9 + 60 - 42x
69 - 42x
Step 2: Solve for x
Subtract 69 from both sides: 69 - 42x - 69 = 0 - 69
Divide both sides by -42: -42x / -42= -69 / -42
Simplify: x = 23/14
Questions are on the paper please help!
Answer:
1: 110 degrees / Opposite angles theorem
2: 70 degrees / Supplementary angles -> 110 + ___ = 180 -> ___ = 70
3: 38 degrees / Supplementary angles -> 142 + ___ = 180 -> ___ = 38
4: 142 degrees / Opposite angles theorem
5: 38 degrees / Supplementary angles -> 142 + ___ = 180 -> ___ = 38
6: 142 degrees
7: 142 degrees / Opposite angles theorem
8: 38 degrees / Supplementary angles -> 142 + ___ = 180 -> ___ = 38
9: I cant see
10: 137 degrees / Opposite angles theorem
11: 43 degrees / Supplementary angles -> 137 + ___ = 180 -> ___ = 43
12: I cant see
13: 43 degrees / Supplementary angles -> 137 + ___ = 180 -> ___ = 43
14: 137 degrees
Geno withdrew $50 from his savings account. If he now has no more than $425 in his savings account, how much money did Geno have originally?
solve the inequality
The money with Geno originally is not more than $ 475
Solution:
Given that,
Geno withdrew $50 from his savings account
If he now has no more than $425 in his savings account
To find: Money had by geno originally
Let "x" be the money with Geno originally
From given,
He withdrew $ 50 from "x"
Then we can say,
[tex]x - 50\leq 425[/tex]
Here, we used "less than or equal " because he now has no more than $425 in his savings account
Solve the inequality
Add 50 to both sides
[tex]x - 50 + 50 \leq 425 + 50\\\\x\leq 425 + 50\\\\x\leq 475[/tex]
Thus the money with Geno originally is not more than $ 475
Angle1 and Angle2 are vertical angles. If Angle1 = (7x-17) and Angle2 = (4x+40), find angle 2
I need the answer asap!!
Yo sup??
since the two angles are vertically opposite angles therefore they must be equal
7x-17=4x+40
3x=57
x=19
Angle2=4x+40
=116
Hope this helps.
Question 7 of 33
1 Point
What is the measure of the angle of intersection when AB is the perpendicular
bisector of xy?
Answer:
90°.
Step-by-step explanation:
When two straight lines intersects obliquely then there will be two angle of intersection, one angle is acute and the other one is obtuse.
But, here the two straight lines AB and xy intersects perpendicularly and AB bisects xy.
Therefore, the two angle of intersection are 90° each.
Hence, the angle of intersection in our case will be equal to 90°. (Answer)
Answer:90 degrees
Step-by-step explanation:
Suppose that 22 inches of wire costs 88 cents.
At the same rate, how much (in cents) will 41 inches of wire cost?
cents