Answer:
y = 32
Step-by-step explanation:
For the given expression √(2y+3) =11, the value of y in this equation is 59.
The given expression is,
√(2y+3) =11
Take square both sides of the equation to eliminate the square root.
This gives us:
(√(2y+3))² = 11²
Simplifying the left side, we have:
2y + 3 = 121
Next, Subtract 3 from both sides to isolate the 2y term:
2y + 3 - 3 = 121 - 3
2y = 118
Finally, Divide both sides by 2 to solve for y:
y = 59
Therefore, the value of y in this equation is 59.
Learn more about the mathematical expression visit:
brainly.com/question/1859113
#SPJ2
Bob is thinking about leasing a car the lease comes with an interest rate of 8% determine the money factor that will be used to calculate bonus payment
Answer:
0.00333
Hope that helps.
Help me solve plz. Use substitution to check. y - 4 = 36
Answer:
y = 40
Step-by-step explanation:
Isolate the variable (y). Note the equal sign, what you do to one side, you do to the other. Add 4 to both sides.
y - 4 = 36
y - 4 (+4) = 36 (+4)
y = 36 + 4
y = 40
Check. Substitute 40 for y.
Plug in 40 for y.
y - 4 = 36
(40) - 4 = 36
36 = 36 (True).
~
sara has 24 sweets
tim also has 24 sweets
sara gives tim x sweets
sara then eats 7 of her sweets
tim then eats half of his sweets
write an expression for the number of sweets sara and tim have now
The answer is:
The expression for the number of sweets that Sara and Tim have now, are:
[tex]Sara=(17-x)Sweets\\\\Tim=\frac{(24+x)Sweets}{2}[/tex]
Why?To write the expressions for the number of sweets that Sara and Tim have now, we need to follow the next steps:
Sara starts with 24 sweets and Tim starts with 24 sweets
[tex]Sara=24 Sweets\\Tim=24 Sweets[/tex]
Then, Sara gives Tim x Sweets
[tex]Sara=(24-x)Sweets\\Tim=(24+x)Sweets[/tex]
Then. Sara eats 7 of her Sweets
[tex]Sara=(24-x-7) Sweets\\Sara=(17-x )Sweets\\Tim=(24+x) Sweets[/tex]
Then, Tim eats half of his sweets
[tex]Sara=(17-x)Sweets\\\\Tim=\frac{(24+x)Sweets}{2}[/tex]
So, the expression for the number of sweets that Sara and Tim have now, are:
[tex]Sara=(17-x) Sweets\\\\Tim=\frac{(24+x)Sweets}{2}[/tex]
Have a nice day!
Use substitution to solve the system of equations
y=x+1.75
substitute for y in equation 2.
4x-2(x+1.75)=4
4x-2x-3.5=4
2x=7.5
x=3.75
y=3.75+1.75
y=5.5
The solution of the system as an ordered pair is (3.75, 5.5).
The correct option is first box.
What is the system of equations?One or many equations having the same number of unknowns that can be solved simultaneously called as simultaneous equation. And simultaneous equation is the system of equation.
Given:
System of equations,
y = x + 1.75 {equation 1}
4x - 2y = 4 {equation 2}.
Substituting the value of y top the equation 2,
4x - 2(x + 1.75) = 4
4x - 2x - 3.5 = 4
2x = 7.5
x = 3.75
And y = 5.5
Therefore, the solution is x = 3.75 and y = 5.5.
To learn more about the system of equation;
brainly.com/question/13729904
#SPJ6
Two sides of a triangle measure 18 meters and 11 meters. If the perimeter of the triangle is 37 meters, what is the length of the third side? 12 m 8 m 66 m 30 m
Answer:
Length of third side = 37-(18+11)
= 37 - 29
= 8 m
Hope this helps!
Answer:
8 m
Step-by-step explanation:
Find the total area of the rectangular prism whose base is 3 feet by 2 feet, and is 5 feet high
Answer:
The total area of the prism is 30 cubic feet
Step-by-step explanation:
To find the area multiply 3 by 2 by 5
Two mechanics worked on a car. The first mechanic to work for 5 Hours in the second mechanic work for 15 Hours. Together they charged a total of $2000. What was the rate charge per hour by each mechanic if the sum of the two rates was $170 Per hour ?
The answers is:
The first mechanic's rate is $70 per hour.
The second mechanic's rate is $110 per hour.
Why?Let's write the given information in order to make the equations that will help us to solve this problem.
Let be "x" the first mechanic's rate and "y" the second mechanic's rate, so:
If the first mechanic worked for 5 hours and the second mechanic worked for 15 hours, and the together charged a total of $2000.
[tex]5x+15y=2000[/tex]
Also, we know that the sum of the two rates was $170 per hour, so:
[tex]x+y=180[/tex]
Then, isolating "x" and replacing it into the first equation, we have:
[tex]x=180-y[/tex]
[tex]5(180-y)+15y=2000[/tex]
[tex]900-5y+15y=2000[/tex]
[tex]10y=2000-900[/tex]
[tex]10y=1100[/tex]
[tex]y=\frac{1100}{10}=110[/tex]
So, the second mechanic's rate is $110 per hour.
Now, to calculate the first mechanic's rate we need to replace "y" into the second equation:
[tex]x+y=180\\x+110=180\\x=180-110=70[/tex]
So, the first mechanic's rate is $70 per hour.
Have a nice day!
PLEASE GIVE ME A VALID ANSWER IM GIVING ALOT OF POINTS!
Wanatobe walked to the moot at 4 mph and then rode back home in bus at 24 mph. If her total traveling time was 14 hours, how far was it to the moot?
Answer:
Step-by-step explanation: It is 1/2 of 14 = 7 hours to the moot
And plug in 7 hours to the equation 4*7+14*7=126 divide that by 2 and the distance is 63
picking a blue shirt from a drawer with 8 blue shirts and 2 white shirts
Answer:
you have 10 shirts in all to choose from
Step-by-step explanation:
if ur picking a shirt then you will have 10 all together.
♫ - - - - - - - - - - - - - - - ~Hello There!~ - - - - - - - - - - - - - - - ♫
➷The answer is 8/10, 4/5, or 80%.
Since there are 8 blue shirts out of 10 shirts, you have a 8/10 chance to pick a blue shirt. Since this is probability, it is best to show it in percent and decimal form too.
8/10=80%=0.8 chance
✽
➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
DOGE
-5/2 x 5/7
help me i bad at math
Answer:
Step-by-step explanation:
assuming that the X is a multiplication symbol and not a variable, because the multiplication symbol is * not x, 5*5/2*7=25/14=1 and 11/14
The point slope form of the eqaution of the line that passes through (-5,-1) and (10, -7) is y+7= -2/5 (x - 10) what is the standard form of the equation for this line 2x-5y=-15 2x-5y= -17 2x+5y=-15 2x+5y=-17
Answer:
2x + 5y = -15Step-by-step explanation:
The standard form of an equation of a line:
[tex]Ax+By=C[/tex]
We have the equation in point-slope form:
[tex]y+7=-\dfrac{2}{5}(x-10)[/tex]
Convert it to the standard form:
[tex]y+7=-\dfrac{2}{5}(x-10)[/tex] multiply both sides by 5
[tex]5y+35=-2(x-10)[/tex] use the distributive property a(b + c) = ab + ac
[tex]5y+35=(-2)(x)+(-2)(-10)[/tex]
[tex]5y+35=-2x+20[/tex] subtract 35 from both sides
[tex]5y=-2x-15[/tex] add 2x to both sides
[tex]2x+5y=-15[/tex]
The equation for the circle below is x^2+y^2=64 what is the length of the circle’s radius
Answer:
r = 8Step-by-step explanation:
The standard form of an equation of a circle:
[tex](x-h)^2+(y-k)^2=r^2[/tex]
(h, k) - center
r - radius
We have the equation:
[tex]x^2+y^2=64\\\\(x-0)^2+(y-0)^2=8^2[/tex]
Therefore the center is (0, 0) and the radius r = 8
Answer:
The circles radius is 8
Step-by-step explanation:
It is 8 because that's what they say it is
The town swimming pool is d feet deep. The width of the pool is 5 feet greater than 5 times its depth. The length of the pool is 50 feet greater than 5 times its depth. Enter a simplified expression to represent the volume of the pool.
Answer:
[tex]V = 25d ^ 3 + 275d ^ 2 + 250d[/tex]
Step-by-step explanation:
If the pool has a rectangular shape then its volume can be written as:
V = Width * Length * Depth
Let's call:
w = width
l = length
d = depth.
So we know from the statement of the problem that:
[tex]d = d[/tex]
[tex]w = 5 + 5d[/tex] (5 feet more than 5 times the depth)
[tex]l = 50 + 5d[/tex] (50 feet more than 5 times the depth)
Then, the volume can be written according to the depth as:
[tex]V = d(5 + 5d)(50 + 5d)[/tex]
[tex]V = d[250 + 25d + 250d + 25d ^ 2][/tex]
[tex]V = 25d ^ 3 + 275d ^ 2 + 250d[/tex]
The volume of the swimming pool is represented by the expression V = (5d + 50)(5d + 5)(d), where d is the depth of the pool.
The student is asked to find a simplified expression to represent the volume of the swimming pool, with the pool's depth given as d feet. To calculate the volume, we need to find the dimensions for the width and length of the pool. The width is described as 5 feet greater than 5 times its depth, which translates to
5d + 5 feet.
The length is 50 feet greater than 5 times its depth, so it will be
5d + 50 feet. The volume (V) of a rectangular solid is given by the product of its length (L), width (W), and depth (D), so the volume of this swimming pool is
V = LWD = (5d + 50)(5d + 5)(d).
How many flowers, spaced every 3 in., are needed to surround a circular garden with a 150-ft radius? Use 3.14 for pi.
Final answer:
To surround a circular garden with a 150-ft radius every 3 inches with flowers, calculate the garden's circumference using the formula C = 2πr, convert it to inches and divide by the spacing. You'd need approximately 3,768 flowers.
Explanation:
To calculate the number of flowers needed to surround a circular garden with a 150-ft radius spaced every 3 inches, you have to find the circumference of the garden and then determine how many 3-inch spaces fit along that circumference.
First, find the circumference (C) of the garden using the formula C = 2πr, where π (pi) is approximately 3.14 and r is the radius. In this case:
C = 2 × 3.14 × 150 ftC = 2 × 3.14 × 150 ft = 942 ftConvert 942 ft into inches because the spacing is in inches:
C = 942 ft × 12 in/ft = 11,304 inNow, divide the circumference in inches by the spacing to get the number of flowers:
Number of flowers = 11,304 in / 3 in per flowerNumber of flowers = 3,768Therefore, you would need 3,768 flowers to surround the garden spaced every 3 inches.
subtract (5x^2+3)-(2x^2+4x-12)
Answer:
Final answer is [tex]3x^2-4x+15[/tex]
Step-by-step explanation:
we have been given an expression [tex](5x^2+3)-(2x^2+4x-12)[/tex].
Now we need to subtract them.
We can subtract like terms only that has same variable with same exponent.
[tex](5x^2+3)-(2x^2+4x-12)[/tex]
[tex]=5x^2+3-2x^2-4x+12[/tex]
[tex]=5x^2-2x^2-4x+3+12[/tex]
[tex]=(5-2)x^2-4x+(3+12)[/tex]
[tex]=(3)x^2-4x+(15)[/tex]
[tex]=3x^2-4x+15[/tex]
Hence final answer is [tex]3x^2-4x+15[/tex]
Answer:
(5x^2+3)-(2x^2+4x-12) = 3x²-4x+15.
Step-by-step explanation:
We have given the expression:
(5x²+3)-(2x²+4x-12)
We have to subtract.
(5x²+3)-(2x²+4x-12)
5x²+3-2x²-4x+12
5x²-2x²-4x+3+12
3x²-4x+15
3x²-4x+15 is the answer.
What is the mean of the mean of the data set below?
12, 15, 10 ,11
Answer:
12
Step-by-step explanation:
12+15+10+11=48
48/4=12
Sum of all the data which is 12+15+10+11=48 then divide by how many data point which is 4
48/4 =12
A construction company plans to invest in a building project. There is a 30% chance that the company will lose $30,000, a 40% chance of a break even, and a 30% chance of a $60,000 profit. Based ONLY on this information, what should the company do?
30% chance of losing money.
40% chance of breaking even
Added together = 70% of not making any money or losing money.
Only a 30% chance of making money.
The company should not invest, since they only have a 30% chance of making money.
An equal number of men and women were randomly selected and asked how many hours a week they spend exercising.
are you missing something there's no data and there's no question
There isn't enough information.
6/11 divided by 2/5
[tex] \frac{6}{11} \div \frac{2}{5} = \frac{6}{11} \times \frac{5}{2} = \frac{3 \times 5}{11} = \frac{15}{11} [/tex]
Step-by-step explanation:
6/11 ÷ 2/5
Formula: a/b ÷ c/d = a/b x d/c = ad/bc
1. Change it to multiplication x by switching 2/5 to 5/2
6/11 x 5/2
= 30/22
2. Simplify
= 15/11 <------- Answer
Hope this Helped!!!
~Shane
The measures of the three angles are 45°, 75°, and 60°. how many triangles can you make
Answer:
1 Triangle
Step-by-step explanation:
By adding all these 3 angle measures (45°, 75°, 60°) we are getting 180° in sum. And as we know that normal triangle has 180° , so that it equal only to one triangle.
Final answer:
The sum of the angles of a triangle is always 180 degrees. With angles of 45°, 75°, and 60°, a single unique triangle can be formed.
Explanation:
The sum of the angles in a triangle is always 180 degrees. In this case, the measures of the three angles are 45°, 75°, and 60°. To determine how many triangles can be formed, we need to consider if these angles can form a valid triangle.
Add the given angles: 45° + 75° + 60° = 180°. Since the sum is 180°, a triangle can be formed.
Considering unique triangles: If two angles are the same, only one unique triangle can be formed. If all angles are different, multiple triangles can be formed.
Conclusion: With angles of 45°, 75°, and 60°, a single unique triangle can be formed.
what is exactly 1/12 of a full rotation
in degrees the answer is 30° since a full rotation is 360°, divide by 12 and 1/12 of a full rotation is 30°
1/12 of a full rotation in mathematics refers to an angle of 30 degrees. This is calculated by dividing the full rotation (360 degrees) by 12. For example, each hour on a clock represents 1/12 of a full rotation.
Explanation:In Mathematics, a full rotation is defined as 360 degrees. Therefore, to find 1/12 of a full rotation, you would divide 360 by 12. This results in 30 degrees. Hence, 1/12 of a full rotation refers to an angle of 30 degrees in a circular motion. This concept is often applied in geometry and other mathematical applications. For instance, imagining a clock, where each hour signifies 1/12 of a full rotation. The difference in the angle from 12 to 1 on the clock is therefore 30 degrees.
Learn more about Fraction of Rotation here:https://brainly.com/question/32998307
#SPJ3
Evaluate cos^2 (n/12)
Answer:
[tex]\frac{2+\sqrt{3} }{4}[/tex]
Step-by-step explanation:
We can use the identity [tex]Cos^2(x)=\frac{1}{2}+\frac{1}{2}Cos(2x)[/tex] to write it as:
[tex]Cos^2(\frac{\pi}{12})=\frac{1}{2}+\frac{1}{2}Cos(2(\frac{\pi}{12}))\\=\frac{1}{2}+\frac{1}{2}Cos(\frac{\pi}{6})\\=\frac{1}{2}+\frac{1}{2}(\frac{\sqrt{3} }{2})\\=\frac{1}{2}+\frac{\sqrt{3} }{4}\\=\frac{2+\sqrt{3} }{4}[/tex]
Note: The value of [tex]Cos(\frac{\pi}{6})[/tex] is [tex]\frac{\sqrt{3} }{2}[/tex]
The answer is the 2nd one, [tex]\frac{2+\sqrt{3} }{4}[/tex]
What is the surface area of this cylinder to the nearest integer?
57 in2
75 in2
132 in2
250 in2
Answer:
131.95in^2
Step-by-step explanation:
The formula for surface area in a cylinder is A = 2pi*r*h + 2pi*r^2
The radius in this cylinder is half the diameter in the cylinder which is 6, so the radius is 3.
The height is 4 since it is given.
Then we just plug the values into the equation and we get a surface area around 131.95in^2
Answer:
The answer is C. 132 [tex]in^{2}[/tex]
Step-by-step explanation:
Remember: If the answer is not there, check your work or round up! :)
Evaluate:
r-9 for r = 20
If r = 20, then plug 20 into the equation.
so instead of r - 9, it's 20 - 9
20 - 9 = 11
What is x+8y=-15 7x+8y=-19
Answer:
x = − 15 − 8 y
y=-7/8x-19/8
Step-by-step explanation:
If you are trying to solve for x the answer for first problems is
x = − 15 − 8 y
second problem the slope intercept form is:
y=-7/8x-19/8
I'm not sure exactly what you are looking for but I hope that is it.
If p=-1, which of the following has the greatest value?
A) 4p^2
B) 6p^2
C) 8p^2
D) 10p^2
Answer:
D)
Step-by-step explanation:
i need the mean of 17, 19, 21, 23
Answer:
20
Step-by-step explanation:
to find the mean, it means to find the average.
steps:
first, you add up all the numbers.
then you divide that total number by the total number of numbers you have.
and that is ur answer!!
17+19+21+23=80 add up all numbers
80÷4=20 divide total by the amount of numbers
The average/mean is 20.
plz give brainliesttttt
Answer:20 is the mean
Step-by-step explanation:
if you add them all you get 80 then divide it by 4 because its 4 numbers and ya get 20
what is an equation of the line that is perpendicular to y-3 =-4(x+2)
Answer:
[tex]y - 3 = \frac{1}{4}(x+2)[/tex] or choose any line with slope 1/4
Step-by-step explanation:
The slope of this line is -4. The slope of the line perpendicular to this line will be the negative reciprocal or 1/4.
Write the equation using the slope m=1/4 and the point slope form.
[tex]y-y_1=m(x-x_1)\\y-3=\frac{1}{4}(x+2)[/tex]
This is the equation of the line that is perpendicular and passes through the same point (-2,3) as the equation listed.
Answer:
[tex]y=\frac{1}{4} x+c[/tex] where [tex]c[/tex] can be any number.
Step-by-step explanation:
First we need to clear for y:
[tex]y-3 =-4(x+2)\\y=-4(x+2)+3\\y=-4x-8+3\\y=-4x-5[/tex]
and now we have an equation of the form:
[tex]y=mx+b[/tex]
where m is the slope and b is the y-intercept.
in this case [tex]m=-4[/tex] and [tex]b=-5[/tex]
to find and equation perpendicular to this line, the following must be true:[tex]m*m_{1}=-1[/tex]
where m is the slope of the original line that i just mentioned, and [tex]m_{1}[/tex] is the slope of the new line. Substituting [tex]m=-4[/tex]
[tex]-4*m_{1}=-1[/tex]
clearing for [tex]m_{1}[/tex]
[tex]m_{1}=\frac{-1}{-4} \\m_{1}=\frac{1}{4}[/tex]
thus, the new perpendicular line must have the form:
[tex]y=m_{1}x+c\\y=\frac{1}{4}x+c[/tex]
where the y-intecept [tex]c[/tex] can be any number, some examples are:
[tex]y=\frac{1}{4}x+3\\y=\frac{1}{4}x-8[/tex]
and so on, the important thing to be a perpendicular line is that the slopes are related to the equation [tex]m*m_{1}=-1[/tex].
Plz help me with it !
Answer: [tex]\bold{-7+2\sqrt{14}+5\sqrt{7}-10\sqrt{2}}[/tex]
Step-by-step explanation:
[tex]\dfrac{\sqrt7-5}{\sqrt7+\sqrt8}\bigg(\dfrac{\sqrt7-\sqrt8}{\sqrt7-\sqrt8}\bigg)=\dfrac{7-2\sqrt{14}-5\sqrt{7}+10\sqrt2}{7-8}=\dfrac{7-2\sqrt{14}-5\sqrt{7}+10\sqrt2}{-1}\\\\\\=\boxed{-7+2\sqrt{14}+5\sqrt{7}-10\sqrt2}[/tex]
A plate lunch costs $1.35. Bought separately, the items cost: sandwich, $0.95; milk, $0.35; and fruit, $0.20. Which is the less expensive way to buy the items?
Plz explain
Add 0.95 0.35 and 0.20 and if it’s less than 1.35 it’s ur answer but if 1.35 is less, than that’s ur answer
Answer:
Step-by-step explanation:
Cost of items =$0.95+$0.35+$0.20=$1.50
Plate cost=$1.35
Plate is less expensive way to buy items