Suppose a negative point charge is placed at x = 0 and an electron is placed at some point P on the positive x-axis. What is the direction of the electric field at point P due to the point charge, and what is the direction of the force experienced by the electron due to that field?

O E along -X; F along –X
O E along +x; F along +x
O E along –x; F along +x
O E along +x; F along - x

Answers

Answer 1

Answer:

E along –x; F along +x

Explanation:

When a negative point charge is placed at x=0 and an electron is place at any point P on the positive x-axis the as we know that the like charges repel each other, but there will be no change in the natural tendency of the individual electric field lines. So the direction of the electric field lines at point P due to the point charge will be towards the negative x-axis.The direction of force on the electron due to the electric field of point charge at x=0 will be towards positive x-axis in accordance of the repulsion effect.
Answer 2
Final answer:

The electric field at point P due to the negative point charge is directed along the -x axis, and the force experienced by the electron at point P due to this field is also along the -x axis.

Explanation:

The electric field at point P due to the negative point charge at x = 0 is directed along the -x axis. This is because electric field lines always point away from positive charges and toward negative charges. Since the negative charge is located at x = 0, the electric field at point P, which is on the positive x-axis, points in the opposite direction, i.e., along the -x axis.

The force experienced by the electron at point P due to this electric field will be in the same direction as the electric field, i.e., along the -x axis. Like charges repel each other, so the negative point charge will exert a repulsive force on the electron.


Related Questions

Compared with ultraviolet radiation, infrared radiation has greater (a) wavelength; (b) amplitude; (c) frequency; (d) energy.

Answers

Answer:

(a) WaveLength

Explanation:

Compared with ultraviolet radiation, infrared radiation has greater wavelength. Option A.

UV vs IR

Compared with ultraviolet radiation, infrared radiation has greater wavelength.

Wavelength refers to the distance between two consecutive peaks or troughs of a wave. In the electromagnetic spectrum, infrared radiation has longer wavelengths than ultraviolet radiation.

Ultraviolet radiation has shorter wavelengths and higher energy, while infrared radiation has longer wavelengths and lower energy.

More on UV and IR can be found here: https://brainly.com/question/29790289

#SPJ6

A 200-foot tall monument is located in the distance. From a window in a building, a person determines that the angle of elevation to the top of the monument is 13°, and that the angle of depression to the bottom of the tower is 4°. How far is the person from the monument? (Round your answer to three decimal places.)

Answers

Answer:

665 ft

Explanation:

Let d be the distance from the person to the monument. Note that d is perpendicular to the monument and would make 2 triangles with the monuments, 1 up and 1 down.

The side length of the up right-triangle knowing the other side is d and the angle of elevation is 13 degrees is

[tex]dtan13^0 = 0.231d[/tex]

Similarly, the side length of the down right-triangle knowing the other side is d and the angle of depression is 4 degrees

[tex]dtan4^0 = 0.07d [/tex]

Since the 2 sides length above make up the 200 foot monument, their total length is

0.231d + 0.07d = 200

0.301 d = 200

d = 200 / 0.301 = 665 ft

Final answer:

To find the distance to the 200-foot tall monument from a specified point, we use tangent trigonometric functions with the given angles of elevation and depression. The total horizontal distance is calculated by separately finding the distances to the top and the bottom of the monument and combining them.

Explanation:

The question involves solving a problem using trigonometry to find the distance to a monument given the angles of elevation and depression from a certain point. Since the height of the monument is given as 200 feet, and we have the angles of elevation (13°) to the top of the monument and the angle of depression (4°) to the bottom, we can use trigonometric functions to calculate the distances to the top and the bottom of the monument separately and then sum them to find the total distance from the observer to the monument.

To find the horizontal distances (D) from the observer to the top and bottom of the monument, we can use the tangent function (tan) from trigonometry. The tangent of the angle of elevation (13°) is equal to the height of the monument divided by the distance to the top (Dtop), and the tangent of the angle of depression (4°) is equal to the height from the window to the base of the monument divided by the distance to the bottom (Dbottom).

Assuming the window is at the same height as the base of the monument (which is not given explicitly, but implied by the angle of depression), we get two equations:

tan(13°) = 200 / Dtoptan(4°) = 0 / Dbottom

We can then solve for Dtop and Dbottom using these equations and add the two distances to find the total horizontal distance to the monument.

Learn more about trigonometric functions here:

https://brainly.com/question/28483432

#SPJ3

A snorkeler with a lung capacity of 4.3 L inhales a lungful of air at the surface, where the pressure is 1.0 atm. The snorkeler then descends to a depth of 49 m , where the pressure increases to 5.9 atm. What is the volume of the snorkeler's lungs at this depth? (Assume constant temperature.)

Answers

To find the volume of the snorkeler's lungs at a depth of 49m, use Boyle's Law by calculating the volume at the new pressure using the initial volume and pressure.

The volume of the snorkeler's lungs at a depth of 49 m can be calculated using Boyle's Law. Boyle's Law states that pressure and volume are inversely proportional when temperature is constant. To find the volume at depth, you can use P1V1 = P2V2, where P1V1 is the initial condition and P2V2 is the final condition.

Using the given data:

P1 = 1.0 atm, V1 = 4.3 L (lung capacity at the surface)P2 = 5.9 atm (pressure at 49 m depth), V2 = unknown (volume at 49 m depth)

By rearranging the formula:

V2 = (P1 * V1) / P2 = (1.0 atm * 4.3 L) / 5.9 atm = 0.72 L

Therefore, at a depth of 49 m, the volume of the snorkeler's lungs would be approximately 0.72 liters.

A thin, square, conducting plate 40.0 cm on a side lies in the xy plane. A total charge of 4.70 10-8 C is placed on the plate. You may assume the charge density is uniform. (a) Find the charge density on each face of the plate. 1.47e-07 What is the definition of surface charge density? C/m2 (b) Find the electric field just above the plate. magnitude N/C direction (c) Find the electric field just below the plate. magnitude N/C direction

Answers

Answer:

(a) Surface charge density is the charge per unit area.

[tex]\sigma = 1.46 \times 10^{-7}~{\rm Q/m^2}[/tex]

(b) [tex]\vec{E} = (+\^z)~8.34\times 10^3~{\rm N/C}[/tex]

(c) [tex]\vec{E} = (-\^z)~8.34\times 10^3~{\rm N/C}[/tex]

Explanation:

(a) Surface charge density is the charge per unit area. The area of the square plate can be calculated by its side length.

[tex]A = l^2 = (0.4)^2 = 0.16 ~{\rm m^2}[/tex]

Half of the total charge is distributed on one side and the other is distributed on the other side.

Therefore, surface charge density on each face of the plate is

[tex]\sigma = Q/A = \frac{2.35 \times 10^{-8}}{0.16} = 1.46 \times 10^{-7}~{\rm Q/m^2}[/tex]

(b) To find the electric field just above the plate, Gauss' Law can be used. Normally, Gauss' Law can only be used in infinite sheet (considering the flat surfaces), but just above the surface can be considered that the distance from the surface is much much smaller than the length of the plate (x << l).

In order to apply Gauss' Law, we have to draw an imaginary cylinder with radius r. The cylinder has to stay perpendicular to the plane.

[tex]\int\vec{E}d\vec{a} = \frac{Q_{enc}}{\epsilon_0}\\E2\pi r^2 = \frac{\pi r^2 \sigma}{\epsilon_0}\\E = \frac{\sigma}{2\epsilon_0}\\E = \frac{1.46 \times 10^{-7}}{2\times 8.8\times 10^{-12}} = 8.34\times 10^3~{\rm N/C}[/tex]

The direction of the electric field is in the upwards direction.

(c) The magnitude of the electric field is the same as that of upper side. Only the direction is reversed, downward direction.

Does the speedometer of a car measure speed or velocity? Explain.

Answers

Car speedometer only measures speed and doesn't give any information about direction. So yes to speed, no to velocity. ... Therefore the object CANNOT have a varying speed if its velocity is constant.
Final answer:

The speedometer of a car measures speed, which is a scalar quantity indicating how fast the car is moving without regard to direction. Velocity, on the other hand, includes both speed and direction, which the speedometer does not display. The odometer measures total distance traveled, not displacement, and dividing distance by time gives average speed, not velocity.

Explanation:

The speedometer of a car measures speed, not velocity. Speed is a scalar quantity, which means it only describes how fast an object is moving regardless of its direction. On the other hand, velocity is a vector quantity that describes both the speed and the direction of an object's movement. For example, if a car is moving at 60 miles per hour (mph), the speedometer shows this speed, but it does not indicate whether the car is traveling north, south, east, or west – that would be necessary information to determine the car's velocity.

A car's odometer, in contrast, measures the total distance traveled by the car. This distance is a scalar quantity as well, which means it does not account for the direction of travel, only the cumulative distance covered. When you divide the total distance traveled, as shown on the odometer, by the total time taken for the trip, you are calculating the average speed of the car, not the magnitude of average velocity. These two quantities – average speed and the magnitude of average velocity – are the same when the car moves in a straight line without changing its direction.

Calculate the acceleration of a 1400-kg car that stops from 39 km/h "on a dime" (on a distance of 1.7 cm).

Answers

Answer:

[tex]a=-3449.67\frac{m}{s^2}[/tex]

Explanation:

The car is under an uniforly accelerated motion. So, we use the kinematic equations. We calculate the acceleration from the following equation:

[tex]v_f^2=v_0^2+2ax[/tex]

We convert the initial speed to [tex]\frac{m}{s}[/tex]

[tex]39\frac{km}{h}*\frac{1000m}{1km}*\frac{1h}{3600s}=10.83\frac{m}{s}[/tex]

The car stops, so its final speed is zero. Solving for a:

[tex]a=\frac{v_0^2}{2x}\\a=-\frac{(10.83\frac{m}{s})^2}{2(1.7*10^{-2}m)}\\a=-3449.67\frac{m}{s^2}[/tex]

To calculate the acceleration of the car, use the formula a = (vf - vi) / t. Convert the initial velocity and distance to the appropriate units before substituting them into the formula.

To calculate the acceleration of the car, we can use the formula:

a = (vf - vi) / t

Where a is the acceleration, vf is the final velocity, vi is the initial velocity, and t is the time taken. In this case, the initial velocity is 39 km/h, which is converted to m/s by vi = 39 km/h * (1000 m/1 km) * (1 h/3600 s). The final velocity is 0 m/s since the car stops. The time taken can be found by t = d / vi, where d is the distance and vi is the initial velocity. The distance is given as 1.7 cm, which is converted to m by d = 1.7 cm * (1 m/100 cm). Substituting these values into the formula, we get the acceleration of the car.

So the acceleration of the car is approximately -8.45 m/s^2.

Learn more about Acceleration here:

https://brainly.com/question/2303856

#SPJ3

A solid conducting sphere has net positive charge and radiusR = 0.600 m . At a point 1.20 m from the center of the sphere, the electric potential due to the charge on the sphere is 18.0 V . Assume that V = 0 at an infinite distance from the sphere.

What is the electric potential at the center of the sphere?

Answers

Answer:

The electric potential at the center of the sphere is 36 V.

Explanation:

Given that,

Radius R= 0.600 m

Distance D = 1.20 m

Electric potential = 18.0 V

We need to calculate the electric potential

Using formula of electric potential

[tex]V=\dfrac{kq}{r}[/tex]

Put the value into the formula

[tex]18.0=\dfrac{9\times10^{9}\times q}{1.20}[/tex]

[tex]q=\dfrac{18.0\times1.20}{9\times10^{9}}[/tex]

[tex]q=2.4\times10^{-9}\ C[/tex]

We need to calculate the electric potential at the center of the sphere

Using formula of potential

[tex]V=\dfrac{kq}{r}[/tex]

Put the value into the formula

[tex]V=\dfrac{9\times10^{9}\times2.4\times10^{-9}}{0.600}[/tex]

[tex]V=36\ V[/tex]

Hence, The electric potential at the center of the sphere is 36 V.

The electric potential at the center of the sphere is 36 V.

The given parameters;

radius of the, R = 0.6 mdistance of the charge, r = 1.2  m potential difference, V = 18 V

The magnitude of the charge is calculated as follows;

[tex]V = \frac{kq}{r} \\\\q = \frac{Vr}{k} \\\\q = \frac{18 \times 1.2}{9\times 10^9} \\\\q = 2.4 \times 10^{-9} \ C[/tex]

The electric potential at the center of the sphere;

[tex]V = \frac{kq}{r} \\\\V = \frac{9\times 10^9 \times 2.4 \times 10^{-9}}{0.6} \\\\V = 36 \ V[/tex]

Thus, the electric potential at the center of the sphere is 36 V.

Learn more here:https://brainly.com/question/14995159

Two electrons are separated by a distance of 1.00 nm and held fixed in place. A third electron, initially very far away, moves toward the other two electrons and stops at the point exactly midway between them. Calculate the speed of the third electron when it was very far away from the other electrons.

Answers

Answer:

The speed of the third electron when it was far away from other electrons is 7 X 10¹⁵m/s

Explanation:

qV = 0.5Mv²

where;

V is the potential difference, measured in Volts

q is the charge of the electron in Coulomb's = 1.6 × 10⁻¹⁹ C

Mass is the mass of the electron in kg =  9 × 10⁻³¹ kg

v is the velocity of the electron in m/s

Applying coulomb's law, we determine the Potential difference V

V = kq/r

V = (8.99X10⁹ * 1.6 × 10⁻¹⁹)/(1X10⁻⁹)

V = 14.384 X 10¹⁹ V

The speed of the electron can be determined as follows;

v² = (2qV)/M

v = √(2qV)/M)

v = √(2*1.6 × 10⁻¹⁹* 14.384 X 10¹⁹)/(9 × 10⁻³¹)

v = √(5.1143 X 10³¹) = 7 X 10¹⁵m/s

Therefore, the speed of the third electron when it was far away from other electrons is 7 X 10¹⁵m/s

Charge q is accelerated starting from rest up to speed v through the potential difference V. What speed will charge q have after accelerating through potential difference 4V?

Answers

Final answer:

When a charge is accelerated through a potential difference, its speed can be calculated using the equation v = √(2qV/m). In the given example, an electron is accelerated through a potential difference of 4V, resulting in a speed of approximately 290 mV.

Explanation:

When a charge is accelerated through a potential difference, it gains kinetic energy. The relationship between the potential difference and the speed of the charge can be calculated using the equation:

v = √(2qV/m)

Where v is the final speed of the charge, q is the charge of the particle, V is the potential difference, and m is the mass of the particle.

In the given example, an electron with a charge of -1.60 × 10-19 C and a mass of 9.11 × 10-31 kg is accelerated to a speed of 10 × 104 m/s through a potential difference. To calculate the potential difference, we can rearrange the equation to:

V = m(v²)/(2q)

Substituting the values:

V = (9.11 × 10-31 kg)(10 × 104 m/s)²/ (2)(-1.60 × 10-19 C)

V = 2.91 × 10-2 V

So, the potential difference is approximately 29 mV.

If a guitar string has a fundamental frequency of 500 Hz, what is the frequency of its second overtone?

Answers

The second frequency would be 250

At the time t = 0, the boy throws a coconut upward (assume the coconut is directly below the monkey) at a speed v0. At the same instant, the monkey releases his grip, falling downward to catch the coconut. Assume the initial speed of the monkey is 0, and the cliff is high enough so that the monkey is able to catch the coconut before hitting the ground. The time taken for the monkey to reach the coconut is

Answers

Answer:

The time taken for the monkey to reach the coconut, t is = H/v₀

Explanation:

Let the coordinate of the boy's hand be y = 0. The height of the tree above the boy's hand be H.

Coordinate of where the monkey meets coconut = y

Using the equations of motion,

For the monkey, initial velocity = 0m/s, time to reach coconut = t secs and the height at which coconut is reached = H-y

For the coconut, g = -10 m/s², initial velocity = v₀, time to reach monkey = t secs and height at which coconut meets monkey = y

For monkey, H - y = ut + 0.5gt², but u = 0,

H - y = 0.5gt²..... eqn 1

For coconut, y = v₀t - 0.5gt² ....... eqn 2

Substituting for y in eqn 1

H - y = H - (v₀t - 0.5gt²) = 0.5gt²

At the point where the monkey meets coconut, t=t

H - v₀t + 0.5gt² = 0.5gt²

v₀t = H

t = H/v₀

Solved!

Charge of uniform surface density (0.20 nC/m2 ) is distributed over the entire xy plane. Determine the magnitude of the electric field at any point having z = 2.0 m

Answers

Answer:

E= 11.3 N/C.

Explanation:

The electric filed at any point on the z-axis is given by the formula

[tex]E= \frac{\sigma}{2\epsilon_0}[/tex]

here, sigma is the charge density and ε_o is the permitivity of free space.

therefore,

[tex]E= \frac{0.2\times10^{-9}}{2\times8.85\times10^{-12}}[/tex]

solving it we get

E= 11.3 N/C.

Hence, the required Electric field is E= 11.3 N/C.

A wave on a string has a wavelength of 0.90 m at a frequency of 600 Hz. If a new wave at a frequency of 300 Hz is established in this same string under the same tension, what is the new wavelength? Group of answer choices

Answers

Answer:

 λ₂ = 1.8 m

Explanation:

given,

wavelength of the string 1 = 0.90 m

frequency of the string 1 = 600 Hz

wavelength of string 2 = ?

frequency of the string 2 = 300 Hz

we now,

[tex]f\ \alpha\ \dfrac{1}{\lambda}[/tex]

now,

[tex]\dfrac{f_1}{f_2}=\dfrac{\lambda_2}{\lambda_1}[/tex]

[tex]\dfrac{600}{300}=\dfrac{\lambda_2}{0.9}[/tex]

λ₂ = 2 x 0.9

 λ₂ = 1.8 m

Hence, the wavelength of the second string is equal to  λ₂ = 1.8 m

Spring A has a spring constant of 100 N/m and spring B has a spring constant of 200 N/m, and both have the same displacement of 0.20 m. The spring potential energy of spring A is _____ that of spring B.

Answers

Answer:

Explanation:

Given

Spring constant of spring A is [tex]k_A=100\ N/m[/tex]

Spring constant of spring B is [tex]k_B=200\ N/m[/tex]

If displacement in both the springs is [tex]x=0.2\ m[/tex]

Potential Energy stored in the spring is given by

[tex]U=\frac{1}{2}kx^2[/tex]

where k=spring constant

x=compression or extension

[tex]U_A=\frac{1}{2}\times 100\times (0.2)^2----1[/tex]

[tex]U_B=\frac{1}{2}\times 200\times (0.2)^2----2[/tex]

Divide 1 and 2

[tex]\frac{U_B}{U_A}=\frac{200}{100}=2[/tex]

[tex]U_A=\frac{U_B}{2}[/tex]

So Potential Energy Stored in Spring A is half of Spring B

The spring potential energy of spring A is half that of spring B, if the spring constant of spring A is 100 N/m and that of B is 200 N/m.

Spring constant of spring A, k₁ = 100 N/m

Spring constant of spring B, k₂= 200 N/m

Displacement of both the spring, x = 0.20 m

The potential energy stored in a spring is given by the equation U = 0.5kx²

For spring A, the potential energy is U₁ = 0.5 × 100×(0.20)² = 2 J.

For spring B, the potential energy is U₂ = 0.5 × 200×(0.20)² = 4 J

Therefore, the potential energy stored in spring A is half that of spring B.

To know more about spring potential energy, here

https://brainly.com/question/29795050

#SPJ4

A proton and an electron are fixed in space with a separation of 859 nm. Calculate the electric potential at the midpoint between the two particles.

Answers

Final answer:

The electric potential at the midpoint between a proton and an electron is zero.

Explanation:

The electric potential at the midpoint between a proton and an electron can be calculated using the formula:

V = k * (q1 / r1 + q2 / r2)

where V is the electric potential, k is the Coulomb's constant, q1 and q2 are the charges of the particles, and r1 and r2 are the distances between the particles and the midpoint. In this case, the charges of the proton and the electron are equal in magnitude but opposite in sign, so q1 = -q2. The distances from the particles to the midpoint are equal because they are fixed in space, so r1 = r2. Plugging in the values, we get:

V = k * (-q / r1 + q / r1) = 0

Therefore, the electric potential at the midpoint between the two particles is zero.

An oscillator with angular frequency of 1.00 s-1has initial displacement of 1.00 m and initial velocity of 1.72 m/s. What is the amplitude of oscillation?

Answers

Final answer:

The amplitude of the oscillator is 1.989 m.

Explanation:

The amplitude of an oscillator can be determined using the initial displacement and initial velocity of the system. In this case, the initial displacement is given as 1.00 m and the initial velocity as 1.72 m/s. The amplitude, also known as the maximum displacement, is equal to the square root of the sum of the squares of the initial displacement and initial velocity.

Using the formula:

X = √(x₀² + v₀²)

Where X is the amplitude, x₀ is the initial displacement, and v₀ is the initial velocity.

Substituting the given values into the formula:

X = √(1.00² + 1.72²)

= √(1 + 2.9584)

= √3.9584

= 1.989 m

The amplitude of the oscillator is 1.989 m.

The pressure drop needed to force water through a horizontal 1-in.-diameter pipe is 0.55 psi for every 8-ft length of pipe. (a) Determine the shear stress on the pipe wall. Determine the shear stress at distances (b) 0.3 and (c) 0.5 in. away from the pipe wall.

Answers

Answer:

(a). The shear stress on the pipe wall is 0.2062 lb/ft²

(b). The shear stress at the distance 0.3 is 0.12375 lb/ft²

(c).  The shear stress at the distance 0.5 in away from the pipe wall is zero.

Explanation:

Given that,

Diameter = 1 in

Pressure = 0.55 psi

Length = 8 ft

We need to calculate the radius of the pipe

Using formula of radius

[tex]r=\dfrac{D}{2}[/tex]

Put the value into the formula

[tex]r=\dfrac{1}{2}[/tex]

[tex]r=0.5\ in[/tex]

(a). We need to calculate the shear stress on the pipe wall

Using formula of shear stress

[tex]\dfrac{\Delta p}{L}=\dfrac{2\tau}{r}[/tex]

[tex]\tau=\dfrac{\Delta p\times r}{2L}[/tex]

Put the value into the formula

[tex]\tau=\dfrac{0.55\times144\times0.5}{2\times8\times12}[/tex]

[tex]\tau=0.2062\ lb/ft^2[/tex]

(b). We need to calculate the shear stress at the distance 0.3 in

Using formula of shear stress

[tex]\tau=\dfrac{\Delta p\times r}{2L}[/tex]

Put the value into the formula

[tex]\tau=\dfrac{0.55\times144\times0.3}{2\times8\times12}[/tex]

[tex]\tau=0.12375\ lb/ft^2[/tex]

(c). We need to calculate the shear stress at the distance 0.5 in away from the pipe wall

r = 0.5-0.5 = 0

Using formula of shear stress

[tex]\tau=\dfrac{\Delta p\times r}{2L}[/tex]

Put the value into the formula

[tex]\tau=\dfrac{0.55\times144\times0}{2\times8\times12}[/tex]

[tex]\tau=0[/tex]

Hence, (a). The shear stress on the pipe wall is 0.2062 lb/ft²

(b). The shear stress at the distance 0.3 is 0.12375 lb/ft²

(c).  The shear stress at the distance 0.5 in away from the pipe wall is zero.

An empty glass soda bottle is to be use as a musical instrument. In order to be tuned properly, the fundamental frequency of the bottle be 440.0 Hz.
(a) If the bottle is 25.0 cm tall, how high should it be filled with water to produce the desired frequency?
(b) What is the frequency of the nest higher harmonic of this bottle?

Answers

Explanation:

For a pipe with one end open ,we have the formula for fundamental frequency as

[tex]f_1= \frac{v}{4L}[/tex]

v= velocity of sound in air =340 m/s

L= length of pipe

hence, [tex]L= \frac{v}{4f_1}[/tex]

given f_1 = 440 Hz

Substituting , L = 340/(4×440) = 0.193 m

a)  Let the bottle be filled to height , h.

Given that height of bottle ,H = 25 cm = 0.25 m

Also we found out that length of pipe L = 0.193 m

So, we have   h = H - L

= 0.25 - 0.193 = 0.057 m = 5.7 cm.

Answer:

(a). The bottle filled at the height is 5.5 cm

(b). The frequency of the nest higher harmonic of this bottle is 880 Hz.

Explanation:

Given that,

Frequency = 440.0 Hz

Height of bottle = 25.0 cm

Suppose,

Let the bottle be filled to height h.

For a pipe with one end open,

We need to calculate the length of the pipe

Using formula of fundamental frequency

[tex]F=\dfrac{v}{4L}[/tex]

[tex]L=\dfrac{v}{4f}[/tex]

Where, L = length

v = speed of sound

Put the value into the formula

[tex]L=\dfrac{343}{4\times440}[/tex]

[tex]L=0.195\ m[/tex]

(a). We need to calculate the height

Using formula of height

[tex]h=H-l[/tex]

Where, H = height of bottle

l = length of pipe

Put the value into the formula

[tex]h=25.0\times10^{-2}-0.195[/tex]

[tex]h=0.055\ m[/tex]

[tex]h=5.5\ cm[/tex]

(b). We need to calculate the frequency of the nest higher harmonic of this bottle

Using formula of frequency

[tex]f_{next}=nf_{1}[/tex]

Where, [tex]f_{1}[/tex]=fundamental frequency

Put the value into the formula

[tex]f_{2}=2\times440[/tex]

[tex]f_{2}=880\ Hz[/tex]

Hence, (a). The bottle filled at the height is 5.5 cm

(b). The frequency of the nest higher harmonic of this bottle is 880 Hz.

A 900-kg car cruising at a constant speed of 60 km/h is to accelerate to 100 km/h in 4 s. The additional power needed to achieve this acceleration is (a) 56 kW (b) 222 kW (c) 2.5 kW (d) 62 kW (e) 90 kW

Answers

To solve this problem we will apply the concepts related to power as a function of the change of energy with respect to time. But we will consider the energy in the body equivalent to kinetic energy. The change in said energy will be the difference between the two velocity data given by half of the mass. We will first convert the given units into an international system like this

Initial Velocity,

[tex]V_i = 60km/h (\frac{1000m}{1km})(\frac{1h}{3600s})[/tex]

[tex]V_i = 16.6667m/s[/tex]

Final Velocity,

[tex]V_f = 100km/h (\frac{1000m}{1km})(\frac{1h}{3600s})[/tex]

[tex]V_f = 27.7778m/s[/tex]

Now Power is defined as the change of Energy over the time,

[tex]P = \frac{E}{t}[/tex]

But Energy is equal to Kinetic Energy,

[tex]P = \frac{\frac{1}{2} m\Delta v^2}{t}[/tex]

[tex]P = \frac{\frac{1}{2} m(v_f^2-v_i^2)}{t}[/tex]

Replacing,

[tex]P = \frac{\frac{1}{2} (900)(27.7778^2-16.6667^2)}{4}[/tex]

[tex]P = 56kW[/tex]

Therefore the correct answer is A.

Final answer:

The additional power needed to achieve the acceleration is 62 kW.So,option (d) 62 kW is correct.

Explanation:

To calculate the additional power needed to achieve acceleration, we can use the formula for power: Power = Force x Velocity. We know the mass of the car (900 kg), the initial velocity (60 km/h), and the final velocity (100 km/h). We can convert the velocities to m/s and calculate the force required to accelerate the car. Then, we can multiply the force by the change in velocity to find the additional power needed.

In this case, the additional power needed is approximately 62 kW. Therefore, option (d) 62 kW is the correct answer.

A businesswoman is rushing out of a hotel through a revolving door with a force of 80 N applied at the edge of the 3 m wide door. Where is the pivot point and what is the maximum torque?

Answers

Answer:

Explanation:

Given

Force applied [tex]F=80\ N[/tex]

Door is [tex]d=3\ m[/tex] wide

for gate to revolve Properly Pivot Point must be at center i.e. 1.5 from either end

Torque applied is [tex]T=force\times distance[/tex]

Maximum torque

[tex]T_{max}=F\times \frac{d}{2}[/tex]

[tex]T_{max}=80\times \frac{3}{2}[/tex]

[tex]T_{max}=120\ N-m[/tex]

Final answer:

The pivot point of a revolving door is at its central axis, and the maximum torque exerted by the businesswoman on the revolving door is 120 Nm, calculated by multiplying the force (80 N) by the perpendicular distance from the pivot point to the point of application (1.5 m).

Explanation:

The question is asking about the concept of torque, which is a measure of the turning force on an object. In the scenario described, a businesswoman is applying a force of 80 N to a revolving door. The maximum torque can be calculated by multiplying the force applied by the perpendicular distance from the pivot point to the point of application. The pivot point of a revolving door is its central axis, which is the center of the door.

To calculate the maximum torque, we use the formula:

Torque = Force * Distance.

Here, Torque = 80 N * 1.5 m (since the force is applied at the edge of the 3 m wide door, the distance from the pivot point is half the width).

Thus, Torque = 120 Nm

This is the maximum torque exerted by the woman on the door relative to its central.

Which of the following statements are true?

a. Electric field lines and equipotential surfaces are always mutually perpendicular.
b. When all charges are at rest, the surface of a conductor is always an equipotential surface.
c. An equipotential surface is a three-dimensional surface on which the electric potential is the same at every point.
d. The potential energy of a test charge increases as it moves along an equipotential surface.
e. The potential energy of a test charge decreases as it moves along an equipotential surface.

Answers

Answer:

a,b and c are true.

Explanation:

Following are true statements

a. Electric field lines and Equipotential surfaces are always mutually perpendicular is  a true statement.

b. When all charges are at rest, the surface of a conductor is always an equipotential surface.

c. An equipotential surface is a three-dimensional surface on which the electric potential is the same at every point.

Following are False statements

d. The potential energy of a test charge increases as it moves along an equipotential surface.

e. The potential energy of a test charge decreases as it moves along an equipotential surface.

Reason: A t any point in an equipotential surface, the potential is same throughout. There is no increase or decrease in potential energy as the test charge moves in an equipotential environment.

Final answer:

Statements a, b, and c are correct: Electric field lines and equipotential surfaces are always mutually perpendicular; when all charges are at rest, the surface of a conductor is always an equipotential surface; and an equipotential surface is a three-dimensional surface on which the electric potential is the same at every point. Statements d and e are not correct because the potential energy of a test charge does not change as it moves along an equipotential surface.

Explanation:

The following statements are true about electrical fields and potential:

a. Electric field lines and equipotential surfaces are always mutually perpendicular. This statement is correct. An electric field line shows the direction of the force a positive test charge would experience. An equipotential line or surface is one where the potential is the same at any point on the line or surface. As such, they will always be perpendicular to each other.b. When all charges are at rest, the surface of a conductor is always an equipotential surface. This statement is correct. In static conditions, the surface of a conductor is at a uniform potential because charges flow until they reach an equilibrium.c. An equipotential surface is a three-dimensional surface on which the electric potential is the same at every point. This statement is right. That's why we named it equipotential (equal potential).d. The potential energy of a test charge increases as it moves along an equipotential surface. This statement is not correct. Since it's an equipotential surface, the potential energy stays the same.e. The potential energy of a test charge decreases as it moves along an equipotential surface. This statement is also not correct for the same reason stated above.

Learn more about Electric Field and Potential here:

https://brainly.com/question/31256352

#SPJ3

A bicycle racer sprints near the end of a race to clinch a victory. The racer has an initial velocity of 12.1 m/s and accelerates at the rate of 0.350 m/s2 for 6.07 s. What is his final velocity?

Answers

Answer:

v= 14.22 m/s

Explanation:

Given that

u = 12.1 m/s

a=0.35   m/s².

t= 6.07 s

We know v = u +at

v=final velocity

u=initial velocity

t=time

a=acceleration

Now by putting the values in the above equation

v= 12.1 + 0.35 x 6.07 m/s

v= 14.22 m/s

Therefore the final velocity will be 14.22 m/s.

Final answer:

The final velocity of a bicycle racer with an initial velocity of 12.1 m/s and an acceleration of 0.350 m/s² over 6.07 s is approximately 14.22 m/s.

Explanation:

To compute the final velocity of a bicycle racer sprinting towards the end of a race, we can employ the kinematic equation for velocity under constant acceleration:

v = u + at

Where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time.

Given that the racer has an initial velocity u of 12.1 m/s, accelerates at a rate a of 0.350 m/s² for a duration t of 6.07 s, we substitute these values into the equation:

v = 12.1 m/s + (0.350 m/s² × 6.07 s)

Calculation:


v = 12.1 m/s + (0.350 m/s² × 6.07 s)
v = 12.1 m/s + 2.1245 m/s
v = 14.2245 m/s

The final velocity of the racer is approximately 14.22 m/s.

The total mass of all the planets is much less than the mass of the Sun. (T/F)

Answers

Answer:

True

Explanation:

The total mass of all the planets is much less than the mass of the Sun is a True statement.

Sun contributes to most of the mass of the solar system. Sun contributes to 99.8% mass of the solar system. Only 0.2% of the mass of the solar system is given by the planets. Hence, the above statement is absolutely correct.

A ball is thrown horizontally off a cliff. If the initial speed of the ball is (15.0 + A) m/s and the cliff is (25.0 + B) m high, how far from the base of the cliff will the ball land in the water below? Calculate the answer in meters (m) and round to three significant figures.A=4B=54

Answers

Answer:

76.3 m

Explanation:

We are given that

Initial speed of the ball,u=(15+A)m/s

Height of cliff,h=(25.9+B) m

We have to find the distance from the base of the cliff the ball will land in the water below.

A=4 and B=54

Distance=[tex]u\sqrt{\frac{2h}{g}}[/tex]

Using the formula and substitute the values

[tex]D=(15+4)\sqrt{\frac{2(25+54)}{9.8}}[/tex]

Because [tex]g=9.8m/s^2[/tex]

[tex]D=19\sqrt{\frac{158}{9.8}}[/tex]

D=76.3

Hence, the distance from the base of the cliff the ball will land in the water below=76.3 m

What is the relationship between the applied force of a hanging mass on a spring and the spring force of the spring?

Answers

Answer:

elastic force and weight are related to the acceleration of the System.

Explanation:

The relationship between these two forces can be found with Newton's second law.

        [tex]F_{e}[/tex] - W = m a

        K x - m g = m a

We see that elastic force and weight are related to the acceleration of the System.

If a harmonic movement is desired, an extra force that increases the elastic force is applied, but to begin the movement this force is eliminated, in general , if the relationship between this external and elastic force is desired, the only requirement is that it be small for harmonic movement to occur

Final answer:

The relationship between the applied force of a hanging mass and the spring force of the spring is governed by Hooke's law, where the force is proportional to displacement. At equilibrium, the spring force balances the gravitational force, and any displacement results in harmonic oscillation.

Explanation:

The relationship between the applied force of a hanging mass on a spring and the spring force is described by Hooke's law. When a mass is attached to a vertical spring, it stretches until the spring force equals the force of gravity on the mass. This point is called the equilibrium position. The spring force at this point is k times the displacement from the spring's unstretched length, where k is the spring constant. If the mass is displaced from this equilibrium position, a restoring force acts to return the mass to equilibrium, leading to harmonic oscillation.

In the context of springs, two scenarios arise. When the spring is relaxed, there is no force on the block, indicating an equilibrium situation. Upon stretching or compressing the spring, Hooke's law predicts the force on the block as being proportional to the displacement from its equilibrium position, x, with force F being -Kx. Here, -K represents the negative spring constant, signifying a restoring force opposite to the direction of displacement.

For a massive continuous spring with negligible gravitational effect compared to the spring force (KL » mg), when the top of the spring is driven up and down, the position of the bottom can be described as a function of time. This shows that both vertical and horizontal spring-mass systems follow similar dynamics and obey the laws governing harmonic motion.

A person is placed in a large, hollow, metallic sphere that is insulated from ground. (a) If a large charge is placed on the sphere, will the person be harmed upon touching the inside of the sphere? Yes No Correct: Your answer is correct. (b) Explain what will happen if the person also has an initial charge whose sign is opposite that of the charge on the sphere.

Answers

Answer:

Explanation:

It is given that the sphere is insulated from ground and a large charge is placed on the sphere. The charge on the hollow sphere will always remain on the outer surface of the sphere and there will be no charge on the inner surface of the sphere.

If a person touches the inner surface of the sphere then he will not be harmed as there is no charge on the inner surface of the sphere.

If a person carries the charge of the opposite sign of the same magnitude then the sphere and person get neutralized upon touching the sphere.

If a person does not touches the sphere then the charge on the outer surface will be zero and there will be a positive charge on the inner surface of the sphere                        

A person inside a charged, hollow, metallic sphere, known as a Faraday cage, would not be harmed upon touching the interior, regardless of their own charge, due to the neutralization of the electric field inside the conductor.

A person placed inside a large, hollow, metallic sphere that is insulated from the ground and charged will not be harmed upon touching the inside of the sphere. The phenomenon that explains this is known as the Faraday cage effect. According to this principle, an external static electric field will cause the charges within a conductor to rearrange themselves in such a way that the electric field inside the conductor cancels out.

Now, if the person inside the sphere also has a charge of the opposite sign to that of the sphere, an interesting interaction occurs. However, due to the conductor's nature, the electric field inside the metallic sphere remains null. The charges within the conductor would still redistribute to neutralize the electric field within the conductor. Therefore, if a person inside touched the inner surface of the sphere, they would not be directly harmed by the electric field, as it is neutralized within the conductor. The charges from the person would likely redistribute on the sphere's inner surface to maintain electrostatic equilibrium without causing harm.

Two charges q1 and q2 are separated by a distance d and exert a force F on each other. What is the new force F ′ , if charge 1 is increased to q′1 = 5q1, charge 2 is decreased to q′2 = q2/2 , and the distance is decreased to d′ = d 2 ?

Answers

Answer:

The new force is 10 times the force F

Explanation:

Electric force between charged particles q1 and q2 at distance d is:

[tex]F=k\frac{\mid q_{1}q_{2}\mid}{d^{2}} [/tex] (1)

A new force between two different particles at a different distance is:

[tex]F'=k\frac{\mid q_{1}'q_{2}'\mid}{d'^{2}}=k\frac{\mid 5q_{1}\frac{q_{2}}{2}\mid}{(\frac{d}{2})^{2}}=\frac{5}{\frac{2}{4}}k\frac{\mid q_{1}q_{2}\mid}{d^{2}} [/tex]

[tex]F'=10k\frac{\mid q_{1}q_{2}\mid}{d^{2}} [/tex]

Note that on the right side of the equation the term [tex]k\frac{\mid q_{1}q_{2}\mid}{d^{2}}=F [/tex] on (1), so:

[tex]F'=10F [/tex]

You are designing an elevator for a hospital. The force exerted on a passenger by the floor of the elevator is not to exceed 1.46 times the passenger's weight. The elevator accelerates upward with constant acceleration for a distance of 2.2 m and then starts to slow down.What is the maximum speed of the elevator?

Answers

Answer:

Final velocity of the elevator will be 4.453 m/sec

Explanation:

Let mass is m

Acceleration due to gravity is g m/sec^2

Distance s = 2.2 m

As the elevator is moving upward so net force on elevator

[tex]F=mg+ma[/tex]

So according to question

[tex]1.46mg=mg+ma[/tex]

0.46 mg = ma

a = 0.46 g

a = 0.46×9.8 = 4.508 [tex]m/sec^2[/tex]

Initial velocity of elevator is 0 m/sec

From third equation of motion

[tex]v_f^2=v_i^2+2as[/tex]

[tex]v_f^2=0^2+2\times 4.508\times 2.2[/tex]

[tex]v_f=4.453m/sec[/tex]

So final velocity of the elevator will be 4.453 m/sec

You throw a glob of putty straight up toward the ceiling, which is 3.60 m above the point where the putty leaves your hand. The initial speed of the putty as it leaves your hand is 9.50 m/s. (a) What is the speed of the putty just before it strikes the ceiling? (b) How much time from when it leaves your hand does it take the putty to reach the ceiling?

Answers

Final answer:

The speed of the putty just before it strikes the ceiling is approximately 0.342 m/s, and it takes approximately 0.97 seconds to reach the ceiling.

Explanation:

To calculate the speed of the putty just before it strikes the ceiling, we can use the equation for vertical motion:

v = u + gt

Where:

v is the final velocity

u is the initial velocity

g is the acceleration due to gravity (-9.8 m/s^2)

t is the time

In this case, the object is thrown upwards, so the final velocity when it reaches the ceiling will be zero. The initial velocity is 9.50 m/s and the acceleration due to gravity is -9.8 m/s^2. Substitute these values into the equation and solve for t:

0 = 9.50 - 9.8t

t = 0.97 seconds

Therefore, the speed of the putty just before it strikes the ceiling is 9.50 - 9.8(0.97) = -0.342 m/s. Since speed cannot be negative, the actual speed is 0.342 m/s.

To calculate the time it takes for the putty to reach the ceiling, we can use the same equation and solve for t:

0 = 9.50 - 9.8t

t = 0.97 seconds

So, it takes the putty approximately 0.97 seconds to reach the ceiling.

Final answer:

The speed of the putty just before it strikes the ceiling is 9.50 m/s, the same as its initial speed due to conservation of energy. The time it takes for the putty to reach the ceiling can be calculated using kinematic equations.

Explanation:

The problem presented concerns the motion of a glob of putty thrown upward and involves calculations based on the principles of kinematics in physics.

Answer to Part (a): What is the speed of the putty just before it strikes the ceiling?

The speed of the putty just before it strikes the ceiling can be found by using the kinematic equation for velocity under constant acceleration (gravity). Since the putty is thrown upwards, it will slow down under the influence of gravity until it reaches its maximum height. At this point, it will start to fall back down, accelerating under gravity until it hits the ceiling. Assuming no energy loss, the speed of the putty just before it strikes the ceiling will be the same as its initial speed when it leaves the hand, which is 9.50 m/s.

Answer to Part (b): How much time from when it leaves your hand does it take the putty to reach the ceiling?

The time it takes for the putty to reach the ceiling can be calculated using the kinematic equation s = ut + (1/2)at², where s is the displacement, u is the initial velocity, a is the acceleration due to gravity (approximately -9.81 m/s² when upwards is considered positive), and t is the time. Solving for t gives us the time taken for the putty to reach the height of 3.60 m.

An air traffic controller notices two signals from two planes on the radar monitor. One plane is at altitude 1162 m and a 10.1-km horizontal distance to the tower in a direction 34.2° south of west. The second plane is at altitude of 4162 m and its horizontal distance is 9.5 km directed 21.5° south of west. What is the distance between these planes in kilometers?

Answers

Answer:

[tex]|R|=4.373km[/tex]

Explanation:

Given data

For first plate let it be p₁

[tex]p_{z1}=1162 m\\ p_{x1}=10.1km\\\alpha _{1}=34.2^{o}[/tex]

For second plate let it be p₂

[tex]p_{z2}=4162 m\\p_{x2}=9.5km\\\alpha _{2}=21.5^{o}[/tex]

To find

Distance R between them

Solution

To find distance between two plates first we need to find p₁ and p₂

Finding p₁

According to vector algebra

[tex]p_{1}=p_{x1}i+p_{y1}j+p_{z1}k\\ as\\tan\alpha =tan(34.2^{o} )=(p_{y1}/p_{x1})\\p_{y1}=10.1tan(34.2^{o} )\\p_{y1}=6.864km[/tex]

So we get

[tex]p_{1}=-10.1i-6.864j+1.162k[/tex]

Now to find p₂

[tex]p_{2}=p_{x2}i+p_{y2}j+p_{z2}k\\ as\\tan\alpha =tan(21.5^{o} )=(p_{y2}/p_{x2})\\p_{y2}=9.5tan(21.5^{o} )\\p_{y2}=3.74km[/tex]

So we get

[tex]p_{2}=-9.5i-3.74j+4.162k[/tex]

Now for distance R

According to vector algebra the position vector R between p₁ and p₂

[tex]R=p_{1}-p_{2}\\ R=(p_{x1}-p_{x2})i+(p_{y1}-p_{y2})j+(p_{z1}-p_{z2})k\\R=(-10.1-(-9.5))i+(-6.864-(-3.74))j+(1.162-4.162)k\\R=-0.6i-3.124j-3k\\|R|=\sqrt{(0.6)^{2}+(3.124)^{2}+(3)^{2} }\\ |R|=4.373km[/tex]

Final answer:

To find the distance between two planes, calculate the horizontal distances using the given angles and distances. Use the Pythagorean theorem to find the distance by applying the formula. The distance between the two planes is approximately 14.1 km.

Explanation:

To find the distance between the two planes, we can use the Pythagorean theorem. First, we calculate the horizontal distances using the given angles and distances. For the first plane, the horizontal distance is 10.1 km * cos(34.2°), and for the second plane, it is 9.5 km * cos(21.5°). Next, we use the Pythagorean theorem to find the distance between the two planes: d = √((9.5 km * cos(21.5°))^2 + (10.1 km * cos(34.2°))^2).

Calculating the values, we get d ≈ 14.1 km.

Learn more about Distance between two planes here:

https://brainly.com/question/32013111

#SPJ3

Other Questions
Show that the Fibonacci numbers satisfy the recurrence relation fn = 5fn4 + 3fn5 for n = 5, 6, 7, . . . , together with the initial conditions f0 = 0, f1 = 1, f2 = 1, f3 = 2, and f4 = 3. Use this recurrence relation to show that f5n is divisible by 5, for n = 1, 2, 3, . . . . The _____ of a research source refers to the accuracy of the information contained in it. In the diagram above which two red lines are parallel.!? (1 point)10. A sample of 20 silver dollar coins is weighed. The mean of the sample is 8.0710 g and the standard deviation of the sample is 0.0411 g. Construct a 95% confidence interval estimate of the mean weight of all the coins.a) 7.6675g b) 8.0518g c) 8.0447g d) 8.0329g The quotient of a number and -5, decreased by 9, is 2 How many solutions does the system of equations have 4x+2y=-8 2x+y=4 explain your answer How does the image help convey the message of this poster?The image of a large clock next to a lazy worker stresses the importance of being on time, particularly for work in the factories.The image of a large clock next to an unproductive worker emphasizes the importance of utilizing every minute of production time.The image of a large clock next to a tired worker supports the idea of maintaining fair working hours, even during the war.The image of a large clock next to a slow worker suggests that faster production is the central key to winning the war. Martin wants to provide money in his will for an annual bequest to whichever of his living relatives is oldest. That bequest will provide $4000 in the first year, and will grow by 7% per year, forever. If the interest rate is 9%, how much must Martin provide to fund this bequest Writers Karin Slaughter and Lee Child share which ideas about creating suspense? Select 2 options.Strong writing often includes an element of suspenseClassic literature provides examples of suspense,Leaving information unknown creates suspense.Delaying answers to questions creates suspense,Developing characters slowly creates suspense. Please answer need to turn in ASAP Can someone help me plzzzz! Referring to the figure, evaluate the expression shown. a. (-3) b. 7 c. -3 d. 3 The real risk-free rate is 3.25%, and inflation is expected to be 2.25% for the next 2 years. A 2-year Treasury security yields 9.00%. What is the maturity risk premium for the 2-year security? Round your answer to two decimal places. Sandra wants to study how students in their senior year of high school prepare for college. She starts by visiting an elite boarding school nearby. Sandra knows that to make general claims about seniors preparing for college, she will need to:visit more schools so that her sample is representative of the group she wants to generalize to T/F What is an example of a situation that you might not be able to use an equation with a single unknown to understand? If there are 46 scores in a set of data, in which position will the lower quartile lie Write the inequality shown in the graph below: Longitude Company borrowed on a two-year, 10%, $150,000 note on May 1, with interest and principal to be paid at maturity. How much interest will Longitude report on its income statement for the year ending December 31?a .$10,000b. $15,000c. $5,000d. $30,000 Your bedroom has a rectangular shape, and you want to measure its area. You use a tape that is precise to 0.001 and find that the shortest wall in the room is 3.547 long. The tape, however, is too short to measure the length of the second wall, so you use a second tape, which is longer but only precise to 0.01 . You measure the second wall to be 4.79 long. Which of the following numbers is the most precise estimate that you can obtain from your measurements for the area of your bedroom?If your bedroom has a circular shape, and its diameter measured 6.32 , which of the following numbers would be the most precise value for its area?a)30 m^2b) 31.4 m^2c)31.37 m^2d)31.371 m^2 The density of water at 3.98C is 1.00000 g/mL. What is the mass in pounds of 16.743 L of water? Steam Workshop Downloader