The action of property being taken directly from a person or in that person's presence must be an element in which type of crime?


A) theft


B) Larceny

Answers

Answer 1

B, larceny because that's theft of personal property.


Related Questions

An object is placed 50 cm from a concave mirror of radius 70 cm. (a)What is the distance of the image from the mirror? (b) What is the lateral magnification of the image? Show your work and provide units of measure for each answer.

Answers

See the attached picture:

Which characteristic is common to microwave radar, waves ,and television waves? A they are different types of waves with frequencies higher than radio waves B they are all radio waves with frequencies lower than visible light C they are all radio waves with wavelength shorter than visible light

Answers

Answer:

B they are all radio waves with frequencies lower than visible light

Explanation:

The electromagnetic spectrum classifies all the electromagnetic waves according to their frequency. In order from highest to lowest frequency, we have:

Gamma rays

X-rays

Ultraviolet

Visible light

Infrared

Microwaves

Radio waves

In particular, radio waves are the electromagnetic waves with lowest frequency (and longest wavelength), usually less than 300 GHz ([tex]300\cdot 10^9 Hz[/tex]).

Microwaves radar, radio waves and television waves are all examples of radio waves, which have frequencies lower than visible light. Radio waves are generally used for long-range communications, because given their long wavelength they are able to "bypass" huge obstacles like mountains or building, without being absorbed.

Answer:

B they are all radio waves with frequencies lower than visible light

Explanation:

What do we mean by the event horizon of a black hole?
A) It is the place where X rays are emitted from black holes.B) It is the very center of the black hole.C) It is the point beyond which neither light nor anything else can escape.D) It is the distance from the black hole at which stable orbits are possible.

Answers

The correct answer is: C. It is the point beyond which neither light nor anything else can escape.

Final answer:

The event horizon of a black hole is the boundary where the escape velocity is equal to the speed of light, making it impossible for anything, including light, to escape. It's defined by the Schwarzschild radius and increases in size with additional mass. The center is thought to contain a singularity, which is infinitely dense and small.

Explanation:

The event horizon of a black hole is the boundary beyond which nothing, including light, can escape its gravitational pull. It corresponds to the distance at which the escape velocity equals the speed of light. This boundary is known as the Schwarzschild radius, which is directly proportional to the mass of the black hole. The event horizon is not visible because it does not emit any light; however, it can be inferred by observing the effects of its powerful gravity on nearby matter and radiation.

The size of the Schwarzschild radius (and therefore the event horizon) depends only on the mass of the black hole. If our Sun were to collapse into a black hole, which is purely a theoretical scenario since it lacks sufficient mass, its Schwarzschild radius would be approximately 3 kilometers. Any additional mass added to the black hole would increase the size of its event horizon proportionally.

Inside the event horizon, the center of the black hole is thought to contain a singularity, a point of infinite density and zero volume, which is not directly observable. As matter crosses the event horizon, it seems to freeze in position to an outside observer due to the extreme gravitational effects on lt's travel, but would, in reality, continue to fall inward toward the singularity.

Learn more about Event Horizon of a Black Hole here:

https://brainly.com/question/33505403

#SPJ2

Two identical metal bars are heated up until they are both glowing. One of them is "red hot" and the other is "blue hot." Which one is hotter, the one that glows red or the one that glows blue?A) the red oneB) the blue oneC) We cannot tell without knowing more about the two bars.

Answers

Answer:

B) the blue one

Explanation:

We can assimilate each metal bar to a black body. The peak wavelength of the radiation emitted by a blackbody is given by Wien's displacement law:

[tex]\lambda = \frac{b}{T}[/tex] (1)

where

b is the Wien's displacement constant

T is the absolute temperature of the object

In this case, we have one object hotter and the other one colder. We see from (1) that the peak wavelength is inversely proportional to the temperature: therefore, the hotter object will have shorter peak wavelength, while the colder object will have longer peak wavelength.

Since red light has longer wavelength than blue light, we can conclude that the object that glows blue is hotter than the one that glows red.

Calculate the drops per minute “gtts/min” for the following questions. Be sure to write your answer in gtts /min. 1. 250 ml/hour using macro tubing 20 gtts/ml _____________________ 2. 167 ml/hour using macro tubing 10 gtts/ml _____________________ 3. 125 ml/hour using macro tubing 15 gtts/ml _____________________ 4. 75 ml/hour using micro tubing 60 gtts/ml _____________________ 5. 250 ml/hour using macro tubing 20 gtts/ml _____________________ 6. 167 ml/hour using macro tubing 15 gtts/ml _____________________ 7. 125 ml/hour using macro tubing 10 gtts/ml _____________________ 8. 75 ml/hour using macro tubing 10 gtts/ml ______________________ 9. 1000 ml/hour using macro tubing 10 gtts/ml _____________________ 10. 500 ml/hour using macro tubing 10 gtts/ml _____________________

Answers

Answer:

Explanation:

There are 12 gtts in 1 mL, and 60 minutes in 1 hr.

250 mL/hr * (12 gtts / mL) * (1 hr / 60 min) = 50 gtts/min

167 mL/hr * (12 gtts / mL) * (1 hr / 60 min) = 33.4 gtts/min

125 mL/hr * (12 gtts / mL) * (1 hr / 60 min) = 25 gtts/min

75 mL/hr * (12 gtts / mL) * (1 hr / 60 min) = 15 gtts/min

1000 mL/hr * (12 gtts / mL) * (1 hr / 60 min) = 200 gtts/min

500 mL/hr * (12 gtts / mL) * (1 hr / 60 min) = 100 gtts/min

The electrical force between two objects 36N. If the distance between the two objects is doubled the force between them will be

Answers

Answer:

The electrical force is 9N

Explanation:

For point loads,  charged bodies very small compared to the distance r that separates them,  Coulomb discovered that the electric force is proportional to [tex]\frac{1}{r^{2}}[/tex]. So, if the distance is doubled, the force will decrease a [tex]\frac{1}{4}[/tex] of its initial value.

[tex]F=\frac{36N}{4}=9N[/tex]

Final answer:

When the distance between two charged objects is doubled, the electrostatic force between them becomes one-fourth of the original force. Thus, if the original force is 36 N, the new force would be 9 N.

Explanation:

The force between two charges is governed by Coulomb's Law, which states that the electrostatic force (F) between two point charges is directly proportional to the product of their charges and inversely proportional to the square of the distance (r) between them. The law is mathematically expressed as F = k * (|q1*q2|) / r², where k is Coulomb's constant. If the distance between two charges is doubled, since the force is inversely proportional to the square of the distance, the new force will be one-fourth of the original force.

Thus, if the initial force is 36 N and the distance is doubled, the new force is calculated as:

Initial force: 36 N


New distance: 2r


New force (F') = F / (22) = 36 N / 4 = 9 N

Therefore, the new electrostatic force between the two objects when the distance is doubled would be 9 N.

During a solar eclipse, the Moon, Earth, and Sun all lie on the same line, with the Moon between the Earth and the Sun. Answer all questions to 3 significant figures. (a) What force is exerted by the Sun on the Moon? WebAssign will check your answer for the correct number of significant figures. Incorrect: Your answer is incorrect. Enter a number. (b) What force is exerted by the Earth on the Moon? WebAssign will check your answer for the correct number of significant figures. (c) What force is exerted by the Sun on the Earth? WebAssign will check your answer for the correct number of significant figures.

Answers

(a) [tex]4.40\cdot 10^{20}N[/tex]

The distance between the Sun and the Earth is

[tex]d_{SE}=1.496 \cdot 10^11 m[/tex]

The distance between the Earth and the Moon is

[tex]d_{EM} = 3.84\cdot 10^8 m[/tex]

So, the distance between the Sun and the Moon, when the Moon is between the Earth and the Sun, is

[tex]d_SM = 1.496\cdot 10^{11}m -3.84\cdot 10^8 m=1.492\cdot 10^{11} m[/tex]

So the gravitational force between the Sun and the Moon is

[tex]F_{SM} = G \frac{M_S M_M}{d_{SM}^2}[/tex]

where

G is the gravitational constant

[tex]M_S = 1.988 \cdot 10^{30}kg[/tex] is the mass of the Sun

[tex]M_M = 7.384\cdot 10^{22}kg[/tex] is the mass of the Moon

[tex]d_{SM}=1.492\cdot 10^{11} m[/tex] is their distance

Substituting,

[tex]F_{SM} = (6.67\cdot 10^{-11}) \frac{(1.988\cdot 10^{30} kg)(7.384\cdot 10^{22}kg)}{(1.492\cdot 10^{11} m)^2}=4.40\cdot 10^{20}N[/tex]

(b) [tex]2.00\cdot 10^{20}N[/tex]

The gravitational force between the Earth and the Moon is

[tex]F_{EM} = G \frac{M_E M_M}{d_{EM}^2}[/tex]

where

G is the gravitational constant

[tex]M_E = 5.972 \cdot 10^{24}kg[/tex] is the mass of the Earth

[tex]M_M = 7.384\cdot 10^{22}kg[/tex] is the mass of the Moon

[tex]d_{EM}=3.84\cdot 10^{8} m[/tex] is their distance

Substituting,

[tex]F_{EM} = (6.67\cdot 10^{-11}) \frac{(5.972\cdot 10^{24} kg)(7.384\cdot 10^{22}kg)}{(3.84 \cdot 10^{8} m)^2}=2.00\cdot 10^{20}N[/tex]

(c) [tex]3.54\cdot 10^{22}N[/tex]

The gravitational force between the Earth and the Sun is

[tex]F_{ES} = G \frac{M_E M_S}{d_{ES}^2}[/tex]

where

G is the gravitational constant

[tex]M_E = 5.972 \cdot 10^{24}kg[/tex] is the mass of the Earth

[tex]M_S = 1.988 \cdot 10^{30}kg[/tex] is the mass of the Sun

[tex]d_{SE}=1.496 \cdot 10^{11} m[/tex] is their distance

Substituting,

[tex]F_{ES} = (6.67\cdot 10^{-11}) \frac{(5.972\cdot 10^{24} kg)(1.988\cdot 10^{30}kg)}{(1.496 \cdot 10^{11} m)^2}=3.54\cdot 10^{22}N[/tex]

Final answer:

To derive the force exerted by the Sun on the Moon the Earth on the Moon and the Sun on the Earth during a solar eclipse, you apply Newton's law of universal gravitation taking into account the respective masses of the Sun, Earth, and Moon as well as their distances from each other.

Explanation:

Determining the force exerted between celestial bodies during a solar eclipse involves understanding the gravitational relationship between them; primarily the gravitational forces between the Earth, Moon, and the Sun, and the principles of celestial mechanics.

Firstly, we know that the force of gravity follows Newton's law of universal gravitation: F = G (m1m2/r^2),where F is the force of gravity, m1 and m2 are the masses of the two bodies involved, r is the distance between the centers of the two bodies, and G is the gravitational constant.

For any of the specific forces asked in the question (i.e., the force exerted by the Sun on the Moon force exerted by the Earth on the Moon, and the force exerted by the Sun on the Earth), we would need specific values for the masses of the Sun, Earth, and Moon as well as their respective distances. Once those values are known, you can substitute into the above equation to obtain the force.

Learn more about Gravitational Forces here:

https://brainly.com/question/32609171

#SPJ3

The table represent the thickness, top density, and bottom density of the different layers of the Earth. In most of the layers, the deeper the layer, the thicker and denser the layer becomes. Thickness (km) Density (g/cm3) Types of Rock Found Top Bottom Crust 30 2.2 2.9 Silicic rocks Upper mantle 720 3.4 4.4 Peridotite Lower mantle 2,171 4.4 5.6 Magnesium and silicon oxides Outer core 2,259 9.9 12.2 Iron+oxygen Inner core 1,221 12.8 13.1 Iron+oxygen At which location in Earth’s interior exhibits a change in the trend? inner core outer core lower mantle upper mantle

Answers

Answer:inner core?

Explanation:

Answer: your answer would be inner core hope it helps

Explanation:

tell me i am wrong?

Vector A has a magnitude of 50 units and points in the positive x direction. A second vector, B , has a magnitude of 120 units and points at an angle of 70 degrees below the x axis.

Part A

Which vector has the greater x component.

Part B

Which vector has the greater y component?

Answers

Final answer:

Vector A has the greater x-component, while vector B has the greater y-component.

Explanation:

The x-component of a vector can be calculated by multiplying its magnitude by the cosine of the angle it makes with the x-axis. For vector A, the x-component is 50 units (since it lies entirely on the x-axis). For vector B, the x-component equals 120 units * cos(70 degrees) = 40.96 units. So, vector A has the greater x-component.

The y-component of a vector can be calculated by multiplying its magnitude by the sine of the angle it makes with the x-axis. For vector A, the y-component is 0 (since it lies completely on the x-axis). For vector B, the y-component equals 120 units * sin(70 degrees) = 112.90 units. So, vector B has the greater y-component.

Learn more about Vector components here:

https://brainly.com/question/37919829

#SPJ3

The Kinetic Molecular Theory of Gases Learning Goal To understand some aspects of molecular motion in the gas phase The kinetic molecular theory of gases explains how gas molecules behave in terms of motion, speed, and energy One important aspect of this theory deals with the relationship between temperature and the average speed of the gas molecules. Increasing the temperature of a gas sample increases the average kinetic energy of the molecules. The kinetic energy of a molecule determines its speed It is important to realize that not all molecules in a sample will have the same kinetic energy, which is why we refer to the average kinetic energy and the average speed. The speed of a particle with average kinetic energy is called the root mean square (rms) speed, vrms The rms speed may be expressed by the following equation: vrms=√3RT/MWhere R is the ideal gas constant, T is the absolute temperature, and M is the molar mass of the substance in kilograms per mole The constant motion of gas molecules causes diffusion and effusion. Diffusion is the gradual mixing of two substances resulting from the movement of their particles. Effusion is the gradual escape of gas molecules through microscopic holes in their container. Part A Which of the following state ments are true? Check all that apply The average kinetic energy of gas molecules increases with increasing temperature There are gas molecules that move faster than the average The temperature of a gas sample is independent of the average kinetic energy The average speed of gas molecules decreases with decreasing temperature All the gas molecules in a sample cannot have the same kinetic energy

Answers

Answer:

The average kinetic energy of gas molecules increases with increasing temperature

There are gas molecules that move faster than the average

The average speed of gas molecules decreases with decreasing temperature

All the gas molecules in a sample cannot have the same kinetic energy

Explanation:

The average kinetic energy of the particles in an ideal monoatomic gas is given by:

[tex]E_k = \frac{3}{2}kT[/tex] (1)

where

k is the Boltzmann constant

T is the absolute temperature of the gas

While the rms speed of the particles in a gas is given by

[tex]v_{rms}= \sqrt{\frac{3RT}{M}}[/tex] (2)

where

R is the gas constant

T is the absolute temperature

M is the molar mass

Let's now analyze each statement:

- The average kinetic energy of gas molecules increases with increasing temperature  --> TRUE. If we look at eq.(1), we see that the average kinetic energy is directly proportional to the temperature.

- There are gas molecules that move faster than the average --> TRUE. The distribution of the speed of the particles in a gas is spread around the rms speed, but of course not all the particles are moving at that speed: some particles are moving faster, while some are moving slower.

- The temperature of a gas sample is independent of the average kinetic energy --> FALSE. As we see from eq.(1), the two quantities are related to each other.

- The average speed of gas molecules decreases with decreasing temperature --> TRUE. As we see from eq.(2), the average speed is proportional to the square root of the temperature: so, when the temperature decreases, the average speed decreases as well.

- All the gas molecules in a sample cannot have the same kinetic energy --> TRUE. In fact, each particle will have a different kinetic energy, depending on its speed (different speed means also different kinetic energy).

Final answer:

The Kinetic Molecular Theory denotes that with an increase in temperature, the average kinetic energy and speed of gas molecules also increase. Gas molecules can move faster or slower than the average speed, hence all molecules will not have the same kinetic energy. The temperature of a gas is not independent of the average kinetic energy.

Explanation:

The Kinetic Molecular Theory of gases explains some key aspects of molecular motion within gases. The theory denotes that molecules are constantly in motion and the average speed of these molecules is determined by their absolute temperatures. As the temperature increases, so too does the average kinetic energy of the molecules, which in turn increases their speed.

Not all molecules in a gas sample will have the same kinetic energy; some will move faster than the average speed and others slower, lending to what we refer to as the average kinetic energy and average speed. The typical or root mean square (rms) speed of a particle with average kinetic energy can be expressed using the equation: vrms=√3RT/M, where R is the ideal gas constant, T is the absolute temperature, and M is the molar mass.

Moving on towards the state comparisons, the following statements are true: The average kinetic energy of gas molecules increases with increasing temperature; gas molecules can indeed move faster than the average speed; with a decrease in temperature, the average speed of the gas molecules decreases; all the gas molecules in a sample do not possess the same kinetic energy. The statement that classifies temperature of a gas sample as independent of the average kinetic energy is false.

Learn more about Kinetic Molecular Theory here:

https://brainly.com/question/15013597

#SPJ3

In an isobaric compression of an ideal gas

a. no heat flows into gas.
b. the internal energy of the gas remains constant
c. no work is done on the gas
d. work is done on the gas
e. work is done by the gas

Answers

Answer:

d. Work is done on the gas

Explanation:

We are considering an isobaric compression, which means:

- Isobaric: the pressure of the gas is constant

- Compression: the volume of the gas is decreasing

For an isobaric compression, the volume done BY the gas is

[tex]W=p \Delta V= p (V_f -V_i)[/tex]

where

p is the gas pressure

[tex]V_f[/tex] is the final volume of the gas

[tex]V_i[/tex] is the initial volume of the gas

If the sign of W is positive, it means that the gas is doing work on the surrounding; if the sign of W is negative, it means that the surrounding is doing worn ON the gas.

In this case, since it is a compression, we have that the final volume is smaller than the initial volume:

[tex]V_f < V_i[/tex]

Therefore, the sign of W is negative, and therefore work is done ON the gas by the surroundings.

Final answer:

In an isobaric compression, work is done on the gas by the force exerted on the movable piston.

Explanation:

In an isobaric compression of an ideal gas,(option d) work is done on the gas. This means that energy is transferred to the gas through mechanical work. To understand this, let's consider a piston-cylinder system.

During an isobaric compression, the gas is compressed while the pressure remains constant. The gas particles push against the piston, causing it to move, and thus work is done on the gas.

This work is done by the force exerted on the movable piston, which causes a displacement. As a result, the volume and temperature of the gas decrease, indicating that the gas's internal energy has been decreased by doing work.

What can engineers do to prevent structures from collapsing

Answers

Explanation:

that don't look bright

This is a map that shows hot spots around the world.



Which phrases describe the formation of the Hawaiian Islands? Check all that apply.

formed due to subduction
formed in the middle of a plate
formed at a divergent boundary
formed at a convergent boundary.
formed where mantle erupts through crust

Answers

Answer:

formed in the middle of a plate

formed where mantle erupts through crust

Explanation:

The Hawaiian Islands are Volcanoes that formed right in the middle of the Pacific plate which is moving North-westward.

Lithospheric plates lies on the weak and plastic asthenosphere. Such is the Pacific plate too. The weak asthenosphere can erupt on the surface if it gets access through faulting or other geologic conduits. When these mantle magma reaches the surface, they form hotpots on the crust.

The Hawaiian island is a series of these hotspot as it forms when mantle materials upwells to the surface. The hotspot from which the magma is sourced is relatively fixed. The moving plate is what leads to the eruption of the magma at several other parts in the crust.

Two disks with the same rotational inertia i are spinning about the same frictionless shaft, with the same angular speed ω, but with opposite angular velocities ~ω and −~ω. what is the total rotational kinetic energy kr of this system of two disks? 1. 1 2 i ω 2 2. zero 3. none of these

Answers

The total rotational kinetic energy of this system is : ( C ) none of these

Ker =  Iw²

Determine the Total rotational kinetic energy

Given that the two disks have the same rotational inertia and the same angular speed but opposite angular velocities

w and -w

Total rotational kinetic energy ( Kr )

K.Er = K₁ + K₂

     = [tex]\frac{1}{2} * Iw^2 + \frac{1}{2} * I (-w)^2[/tex]

     = [tex]Iw^2[/tex]

Hence the total rotational kinetic energy of the system is : Iw²

Learn more about rotational kinetic energy : https://brainly.com/question/15076457

The total rotational kinetic energy of the system of two disks spinning with the same angular speed but in opposite directions is Kr = Iω², since the kinetic energy for both disks will be the same positive value when squared.

Given that both disks have the same rotational inertia (I) and angular speed (ω), we can calculate the total kinetic energy using the formula for rotational kinetic energy K = ½Iω² for each disk individually and then combine the results.

For the first disk with angular velocity ω:
K1 = ½Iω²

For the second disk with angular velocity -ω:
K2 = ½I(-ω)²
Since squaring a negative number yields a positive result, the kinetic energy for both disks will be positive and the same value.

Therefore, the total rotational kinetic energy is:
Kr = K1 + K2 = ½Iω² + ½Iω² = Iω²

When humans look at the sky, it appears blue, but the Sun appears yellow. What causes this phenomenon?

Answers

Light behaves like a wave, and the different colors we perceive are the result of light hitting our eyes at different wavelengths. The air molecules in our atmosphere scatter this visible light, with a "preference" towards light of shorter wavelengths -- blue and violet light. Light of longer wavelengths (green, yellow, orange, red), doesn't pass through to us as visibly until later in the day, when the sun's light has more atmosphere to pass through before it reaches our eyes. The blue light becomes so scattered by the air molecules in its way at this point that we're finally able to see those yellows and reds coming through on our end.

A metal sphere is neutral because it has an equal number of protons and electrons. Draw how the charges in the sphere are redistributed when a negatively charged rod is brought near it.

Answers

Answer:

The protons will shift towards the negatively charged rod and the electrons will shift away

Explanation:

When negatively charged rod is brought near it , in sphere protons ( positively charge ) get attracted on the surface and electron get away (negatively charge) due to induction

What is meant by charging by induction  ?

Charging by induction is a process by which a neutral body can be charged electrostatically in the presence of a negatively or positively charged body.

Whenever a charged body is placed over a neutral conducting material that conducting material will induce an opposite charge to the charged body because of induction . Example : if charged body have positive charge than conducting material  will induce a negative charge on it

hence , when negatively charged rod is brought near it , in sphere protons ( positively charge ) get attracted on the surface and electron get away (negatively charge) due to induction

learn more about Charging by induction

https://brainly.com/question/13605541?referrer=searchResults

#SPJ2

Electrons in a photoelectric-effect experiment emerge from a copper surface with a maximum kinetic energy of 1.10 eV. What is the wavelength of the light?

Answers

Answer: 213 nm

The photoelectric effect consists of the emission of electrons (electric current) that occurs when light falls on a metal surface under certain conditions.

If the light is a stream of photons and each of them has energy, this energy is able to pull an electron out of the crystalline lattice of the metal and communicate, in addition, a kinetic energy.

This is what Einstein proposed:  

Light behaves like a stream of particles called photons with an energy

[tex]E=h.f[/tex]  (1)

So, the energy [tex]E[/tex] of the incident photon must be equal to the sum of the Work function [tex]\Phi[/tex] of the metal and the kinetic energy [tex]K[/tex] of the photoelectron:

[tex]E=\Phi+K[/tex]  (2)

Where [tex]\Phi[/tex] is the minimum amount of energy required to induce the photoemission of electrons from the surface of a metal, and its value depends on the metal.

In the case of Copper [tex]\Phi=4.7eV[/tex]

Now, applying equation (2) in this problem:

[tex]E=4.7eV+1.10eV[/tex]  (3)

[tex]E=5.8eV[/tex]  (4)

Now, substituting (1) in (4):

[tex]h.f=5.8eV[/tex]  (5)

Where:

[tex]h=4.136(10)^{-15}eV.s[/tex] is the Planck constant  

[tex]f[/tex] is the frequency  

Now, the frequency has an inverse relation with the wavelength [tex]\lambda[/tex]:  

[tex]f=\frac{c}{\lambda}[/tex] (6)  

Where [tex]c=3(10)^{8}m/s[/tex] is the speed of light in vacuum  

Substituting (6) in (5):

[tex]\frac{hc}{\lambda}=5.8eV[/tex]   (7)

Then finding [tex]\lambda[/tex]:  

[tex]\lambda=\frac{hc}{5.8eV } [/tex]   (8)

[tex]\lambda=\frac{(4.136(10)^{-15} eV.s)(3(10)^{8}m/s)}{5.8eV }[/tex]    

We finally obtain the wavelength:

[tex]\lambda=213^{-9}m=213nm[/tex]    

(please help me)

If a wave has a wavelength of 13 meters and a period of 0.005, what's the velocity of the wave?
A. 260 m/s
B. 1,300 m/s
C. 2,600 m/s
D. 1,560 m/s
(please dont type any wrong answer on porpuse)

Answers

Answer:2,600 m/s

Explanation:13/ 0.005=2,600.

ANSWER:

The velocity of the wavelength is [tex]2600 \mathrm{m} / \mathrm{s}[/tex]

Explanation:

Given:

The wavelength of the wave= 13 meters

Time period of the wave=0.005seconds

To find:

velocity of the wave=?

Solution:

The velocity of the wave is defined as the product of frequency and wavelength.

Mathematically,

[tex]v=f \lambda[/tex]

Where f is the frequency and λis the wavelength of the wave.

Finding the frequency using time period,

[tex]f=\frac{1}{T}[/tex]

Substituting the  value of time period we have,

[tex]f=\frac{1}{0.005}[/tex]

[tex]f=200 \mathrm{Hz}[/tex]

Now,

[tex]v=f \lambda[/tex]

[tex]v=200 \times 13[/tex]

[tex]v=2600 \mathrm{m} / \mathrm{s}[/tex]

Result:

The velocity of the wave with wavelength 13 meters and time period 0.005seconds is [tex]2600 \mathrm{m} / \mathrm{s}[/tex].

A 15.75-g piece of iron absorbs 1086.75 joules of heat energy, and its temperature changes from 25°C to 175°C. Calculate the specific heat capacity of iron.

Answers

Answer:

0.46 J/gC

Explanation:

The specific heat capacity of a material is given by:

[tex]C_s = \frac{Q}{m \Delta T}[/tex]

where

Q is the amount of heat absorbed

m is the mass

[tex]\Delta T[/tex] is the variation of temperature

For the piece of iron in the problem:

[tex]m = 15.75 g[/tex]

[tex]Q=1086.75 J[/tex]

[tex]\Delta T=175 C-25 C=150^{\circ}[/tex]

Substituting into the equation,

[tex]C_s = \frac{1086.75 J}{(15.75 g)(150^{\circ}C)}=0.46 J/gC[/tex]

Answer:

0.46 J/gC

Explanation:

The specific heat capacity of a material is given by:

where

Q is the amount of heat absorbed

m is the mass

is the variation of temperature

For the piece of iron in the problem:

Substituting into the equation,

Explanation:

What type of galaxy is M82 based on its appearance in the visible-light view?

A) elliptical
B) spiral
C) irregular Part

Answers

Answer: irregular

According to Hubble  galaxies are classified into elliptical, spiral and irregular.

 

It should be noted this classification is based only on the visual appearance of the galaxy, and does not take into account other aspects, such as the rate of star formation or the activity of the galactic nucleus.  

The classification is as follows:  

1. Elliptical galaxies: Their main characteristic is that the concentration of stars decreases from the nucleus, which is small and very bright, towards its edges. In addition, they contain a large population of old stars, usually little gas and dust, and some newly formed stars.  

2. Spiral galaxies: They have the shape of flattened disks containing some old stars and also a large population of young stars, enough gas and dust, and molecular clouds that are the birthplace of the stars.  

3. Irregular Galaxies:  Galaxies that do not have well-defined structure and symmetry.  

In this context, galaxy M82 does not match with the first two types of galaxies, because it has not a defined shape.

Therefore, M82 is an  irregular galaxy.

Which of the following is the best paraphrasing of the Heisenberg uncertainty principle?
(a) Only if you know the exact position of a particle can you know the exact momentum of the particle.
(b) The larger the momentum of a particle, the smaller the position of the particle.
(c) The more precisely you know the position of a particle, the less well you can know the momentum of the particle.
(d) The better you know the position of a particle, the better you can know the momentum of the particle.
(e) How well you can determine the position and momentum of a particle depends on the particle’s quantum numbers.

Answers

Answer: The more precisely you know the position of a particle, the less well you can know the momentum of the particle

The Heisenberg uncertainty principle was enunciated in 1927. It postulates that the fact that each particle has a wave associated with it, imposes restrictions on the ability to determine its position and speed at the same time.  

In other words:  

It is impossible to measure simultaneously (according to quantum physics), and with absolute precision, the value of the position and the momentum (linear momentum) of a particle.  

So, the greater certainty is seeked in determining the position of a particle, the less is known its linear momentum and, therefore, its mass and velocity.  

In fact, even with the most precise devices, the uncertainty in the measurement continues to exist. Thus, in general, the greater the precision in the measurement of one of these magnitudes, the greater the uncertainty in the measure of the other complementary variable.  

Therefore the correct option is C.

Determine which type of property each statement describes by typing "physical" or "chemical" in the blank. Hydrogen is a colorless, tasteless, and odorless gas. Hydrogen is very combustible in the presence of oxygen. Hydrogen is very reactive with most elements. Hydrogen is the least dense of all elements.

Answers

physical:1.Hydrogen is a colorless,tasteless and odourless gas.2.Hydrogen is the least dense of all elements.

chemical:1.hydrogen is very combustible in the presence of oxygen.2.hydrogen is very reactive with most elements.

Answer: Hydrogen is a colorless, tasteless, and odorless gas : Physical property

Hydrogen is very combustible in the presence of oxygen: Chemical property

Hydrogen is very reactive with most elements :  Chemical property

Hydrogen is the least dense of all elements:  Physical property

Explanation:

Chemical property is defined as the property of a substance which is observed during a reaction where the chemical composition identity of the substance gets changed.

Physical property is defined as the property which can be measured and whose value describes the state of physical system. For Example: State, density etc.

Hydrogen is a colorless, tasteless, and odorless gas  is a physical property.

Hydrogen is very combustible in the presence of oxygen is a chemical property.

Hydrogen is very reactive with most elements is a chemical property.

Hydrogen is the least dense of all elements is a physical property.

Technician a says in a parallel circuit, the more branches that are added, the more current flow increases. technician b says a series-parallel circuit is made of parallel branches only. who is correct?

Answers

Technician-A is correct.  His statement: "In a parallel circuit, the more branches that are added, the more current flow increases." is technically true.

Technician-B is incorrect.  His statement: "A series-parallel circuit is made of parallel branches only." is technically false.

The more branches a parallel circuit has the more current flow in the circuit therefore ; Technician A is correct while Technician B is wrong

In a parallel circuit the increase in branches will lead a corresponding increase in the amount of current flow through the circuit because the Total amount of current flowing through a parallel circuit is a summation of the individual currents flowing through the branches

i.e.  [tex]I_{T} = I_{1} + I_{2} + I_{3}[/tex]

But A series-parallel circuit is made up of both parallel and series branches as the name implies therefore Technician B is wrong

Hence we can conclude that the more branches a parallel circuit has the more current flow in the circuit hence Technician A is correct.

Learn more : https://brainly.com/question/18022395

Positively-charged particles consisting of two protons and two neutrons emitted by radioactive materials are
A) beta particles.
Eliminate
B) gamma particles.
C) alpha particles.
D) positron particles

Answers

Answer:

The answer to your question is Alpha particles.

Explanation: An electron released by a radioactive nucleus that causes a neutron to change into a proton is called a beta particle.

Final answer:

The question refers to alpha particles, which consist of two protons and two neutrons and are symbolized by He or the Greek letter α. Alpha particles carry a positive charge and result in the atomic number decreasing by two and the mass number by four following emission.

Explanation:

The positively-charged particles emitted by radioactive materials that consist of two protons and two neutrons are known as alpha particles. These particles are the equivalent of a helium nucleus and carry a positive charge due to the protons. The atomic symbol for an alpha particle is either He or the Greek letter α, and this type of radioactive emission results in the reduction of the atomic number by two and the mass number by four. For example, when uranium-238 undergoes alpha decay, it emits an alpha particle and transforms into thorium-234.

In contrast, beta particles are electrons with a 1- charge and are represented as e or β. The emission of a beta particle results in the conversion of a neutron to a proton within the nucleus, increasing the atomic number by one without changing the mass number. Gamma rays, on the other hand, are high-energy electromagnetic radiation with no mass and hence are not particles. Lastly, positron particles are positively charged electrons (anti-electrons) and have negligible mass.

The circular but relatively flat portion of the galaxy is the

Answers

The circular but relatively flat portion of the galaxy is the Disk

A galaxy that resembles a circle is known as a ring galaxy. Art Hoag's 1950 discovery of Hoag's Object is an illustration of a ring galaxy. Many big, relatively young blue stars that are quite brilliant can be found in the ring.

What  circular but relatively flat portion of the galaxy?

Galactic disks are thin, essentially circular collections of stars, gas, and dust; this matter revolves around a common core in almost circular orbits. As a result of this rotation, many disks have lovely spiral patterns, and some have distinct bars crossing their centres.

Nearly all of our galaxy's gas, dust, hot young stars, and star-forming regions are present there. When viewed from above, the disk reveals spiral arms that contain the majority of the ISM's cool, dense regions.

Therefore, Our galaxy's disk is incredibly narrow, only around 100 times wider than its own height.

Learn more about galaxy here:

https://brainly.com/question/24836631

#SPJ12

Planets in our solar system do not revolve around the sun in perfect circles. Their orbits are more like ovals. Which term do scientist use to describe these orbits

Answers

Answer:

It is most likely the word elliptical.

Explanation:

Usually the term elliptical refers to the oval-like shape of a substance or path of an object.  The question states, "Planets in our solar system do not revolve around the sun in perfect circles. Their orbits are more like ovals."  Because the planets orbit around the sun in an oval-like path, those orbits can be described as elliptical.  Scientists also normally use this word to describe the same thing; Therefore, your answer is elliptical.

Planets in our solar system do not revolve around the sun in perfect circles. They revolve in the elliptical orbits.

What is the solar system?

The solar system consists of the planet's satellites, as well as numerous comets, asteroids, and meteoroids, as well as the interplanetary medium.

Planets in our solar system do not revolve around the sun in perfect circles. They revolve in the elliptical orbits.

Hence, option D is correct.

To learn more about the solar system, refer to the link;

https://brainly.com/question/1207587

#SPJ2

Use the following half-life graph to answer the following question:

A graph titled half-life graph of a radioactive isotope is shown with mass remaining on the y axis from 0 to 60 grams and time on the x axis from o to 6 minutes. A curve connects the points 0, 50 and 1, 25 and 2, 12.5 and 3, 6.25 and 4, 3.125 and 5, 1.5625.

The graph is attached.

What is the half-life of the isotope? (5 points)


A. 1.0 min

B. 3.0 min

C. 5.0 min

D. 6.0 min

Answers

Answer:

A 1.0 min

Explanation:

The half-life of a radioisotope is defined as the time it takes for the mass of the isotope to halve compared to the initial value.

From the graph in the problem, we see that the initial mass of the isotope at time t=0 is

[tex]m_0 = 50.0 g[/tex]

The half-life of the isotope is the time it takes for half the mass of the sample to decay, so it is the time t at which the mass will be halved:

[tex]m'=\frac{50.0 g}{2}=25.0 g[/tex]

We see that this occurs at t = 1.0 min, so the half-life of the isotope is exactly 1.0 min.

Answer:a

Explanation:test

Calculate the energy of a photon having a wavelength in thefollowing ranges.
(a) microwave, with λ = 50.00 cm
eV
(b) visible, with λ = 500 nm
eV
(c) x-ray, with λ = 0.50 nm
eV

Answers

Answers:

The energy [tex]E[/tex] of a photon is given by the following formula:

[tex]E=h.f[/tex] (1)

Where:

[tex]h=4.136(10)^{-15}eV.s[/tex] is the Planck constant

[tex]f[/tex] is the frequency

Now, the frequency has an inverse relation with the wavelength [tex]\lambda[/tex]:

[tex]f=\frac{c}{\lambda}[/tex] (2)

Where [tex]c=3(10)^{8}m/s[/tex] is the speed of light in vacuum

Substituting (2) in (1):

[tex]E=\frac{hc}{\lambda}[/tex] (3)

Knowing this, let's begin with the answers:

(a) Microwave: 50.00 cm

For [tex]\lambda=50cm=0.5m[/tex]

[tex]E=\frac{(4.136(10)^{-15} eV.s)(3(10)^{8}m/s)}{0.5m}[/tex]  

[tex]E=\frac{1.24(10)^{-6}eV.m }{0.5m}[/tex]  

[tex]E=2.48(10)^{-6}eV[/tex]  

(b) Visible: 500 nm

For [tex]\lambda=500nm=500(10)^{-9}m[/tex]

[tex]E=\frac{(4.136(10)^{-15} eV.s)(3(10)^{8}m/s)}{500(10)^{-9}m}[/tex]  

[tex]E=\frac{1.24(10)^{-6}eV.m }{500(10)^{-9}m}[/tex]  

[tex]E=2.48 eV[/tex]  

(c) X-ray: 0.5 nm

For [tex]\lambda=0.5nm=0.5(10)^{-9}m[/tex]

[tex]E=\frac{(4.136(10)^{-15} eV.s)(3(10)^{8}m/s)}{0.5(10)^{-9}m}[/tex]  

[tex]E=\frac{1.24(10)^{-6}eV.m }{0.5(10)^{-9}m}[/tex]  

[tex]E=2480 eV[/tex]  

As we can see, as the wavelength decreases, the energy increases.

What nuclear reaction is the energy source of a white dwarf?

Answers

Answer:

Multiple choice answer would be "None"

Explanation:

White dwarfs are radiating stored heat from earlier reactions.  

Technically, it would be the last fusion stage the star went through  

BEFORE it became a white dwarf, but that's nit-picking.

The energy source of a white dwarf is not a nuclear reaction in the traditional sense, but rather it is supported by a process called electron degeneracy pressure.

What is a white dwarf

A white dwarf is the remnant of a low to medium-mass star (up to about 1.4 times the mass of the Sun) after it has exhausted its nuclear fuel. The core of the star collapses under gravity, and the electrons in the core become packed extremely closely together due to the Pauli exclusion principle, which states that no two electrons can occupy the same quantum state simultaneously.

This electron degeneracy pressure provides the counterforce to gravity, preventing further collapse. No nuclear reactions are occurring in a white dwarf as it no longer has the high temperatures and pressures required for nuclear fusion. Instead, it is a stellar remnant that is gradually cooling over time.

Learn more about white dwarfs

https://brainly.com/question/34171969

#SPJ3

Which type of tissue allows for cordination and control movement ?

Answers

The Nerve Tissue allows for coordination and control movement

Nervous tissue is used for coordination and control movement.

Explanation:

The group of organized cells that is in the nervous system, which is responsible in controlling the movements of the human body, sending and carrying signals to and from different body parts is called Nervous tissue.  It is also responsible in controlling functions in the body like digestion.

This tissue is classified into categories such as neurons and neroglia. The electric impulses are transmitted by neurons and supporting and protecting neurons is done by neuroglia. The whole nervous system is comprised of neurons.

Other Questions
A bag contains eight black marbles, 16 white marbles, 14 red marbles, and 10 Green marbles. A marble is drawn at random from the bag. What is the probability that the marble drawn will not be white?A) 1/3B) 2/3C) 3/4D) 15/16 A sinusoidal function whose period is 1/2 , maximum value is 10, and minimum value is 4 has a y-intercept of 3.What is the equation of the function described? f(x)=7sin(4x)+3f(x)=7cos(4x)+3f(x)=7sin(4x)+3f(x)=7cos(4x)+3 Definition: This is a warning of the planet due to carbon dioxide and heat retention. Example: caused by ozone depletion crivez la bonne forme du verbe avoir et le bon participe pass de finir pour complter la phrase.Luc et David (blank) leurs devoirs avant de partir en vacances. Fill in blank A hypothesis is tested by ___.A.) conducting an experiment B.) making further observations C.) proposing a theory D.) talking with other scientists Who ruled Pompeii in 79 CE - the year of the volcanic eruption? Larry thinks he is the center of the universe. he hates waiting in lines, insisting that his time is way too important for such trivial matters. while he easily exploits other people for his own personal gain, he also wants everyone to think he is as great as he thinks he is. recently, when his wife's aged mother died, he was secretly a little annoyed at the timing, as it interfered with his vacation. which of the personality disorders mentioned in your text does larry best fit? Please help!!! Snake Story Becky moved off of the porch slowly, backing through the door and into the house. She slammed the sliding glass door shut and stood for a moment, relieved to have something solid between her and the snake on the porch. The glass was cool under her hands despite her pounding heart. She tried to slow her breathing. She was safe, at last, inside. Or was she? How had that snake gotten into the screened-in and walled-up back porch. If it could get in there, it's possible it could get inside where she was as well. Becky wasn't someone who was normally skittish about wild things. She'd handled snakes before, picked up lizards many times, caught frogs in the garage and let them go. But snakes seemed to always catch her off guard. They would turn up when least expected. She would see them out of the corner of her eye and just the surprise of it would make her jump; her adrenalin would pump, her heart would thump, and her panic would take over. What was she going to do? She couldn't just stand there waiting for the snake to decide to leave. What if it were venomous? It didn't look like a viper, but it could be. She would need to get out there soon to water the plants. "What this requires is some advanced planning," she said out loud to her cat, Louie. "And, I will probably have to go 'once more into the fray' kitty," she said, looking in the cat's direction for emphasis. "First things first, though," she said. The cat meowed back. It often did that, having become used to being talked to. "Let's look that fellow up," Becky said walking to her bookshelf. "Let's see, snakes," she said, thumbing through her reptile and amphibian identification book. "It's brown and gray, with some black. With a pattern that looks ... there it is," she said thumping the page so hard that Louie jumped. "Not venomous," she said, triumphantly. "It's an oak snake, Louie," she returned the book and strode over to her closet. "Not venomous, but I am still not taking chances," she said. She reached into the closet and pulled out her heaviest jacket. It was lined and stuffed thick with lots of padding. Then she found her mittens and a pair of rubber boots. She knew even non-venomous snakes would sometimes threaten to strike when scared. "And that threat would work on me," Becky said aloud again, though Louie had no idea what she was talking about. "It's 90 degrees outside, Louie," she said, "so get the iced lemonade ready for when I return." It wasn't much of a plan, but it was the best she could come up with. With her armor on, she was already sweating when she slowly pushed open the sliding glass door and stepped back on to the porch. She was pretty sure the snake would slither away from her presence. She propped open the outside door, and hoped she could shoo the snake in that direction. Sweat dampened her arms and collected on her face. She spread her arms out, and took a few steps toward the snake. There was so much for it to hide beneath. Becky regretted the rocking chairs and all the plant stands between where the snake was in the corner and the door to the outside. At first it seemed like the snake was just going to remain where it was, flicking its tongue every now and then. Becky waved her arms, lunged in its direction, and stomped her feet. It sat there, coiled in the corner, as if perfectly happy to remain there. In a fit of desperation, she picked up one side of the rocking chair the snake was under and let it drop. The snake jumped, raised its head like it was going to strike, and then stayed right where it was. "Snake," Becky said, "This is not how it works. You have got to go." The snake moved its head back and forth, swaying a bit, and that gave Becky an idea. She had read somewhere that snakes can "hear" thanks to the ability to process vibrations through the bone in their jaw. This awareness of vibrations in the ground was one reason it was very hard to sneak up on snakes. She quickly realized that getting the snake out was going to be a lot easier than she had thought. Becky turned on the radio she kept on the porch and lowered it to the ground, pointing in the snake's direction. She adjusted the controls so that the bass was as high as it could go. Then, she cranked up the volume. She envisioned the snake swaying to the sounds of "Dancing Queen," by Abba, and then leaving the porch and going far, far away. Coming back into the house, she began peeling off the now damp armaments she had put on earlier. "Louie, there is more than one way to skin a snake," she said laughing. She watched as the snake uncoiled and moved cautiously in the direction of the door. Bending down to pick up Louie, Becky sighed and stroked his head. "'Cause no one ever wants to skin a cat, sweetie." Review the narrative "Snake Story" and answer the question below: How does Louie the cat help develop the character of Becky? Use evidence from the text to support your answer An oxide of niobium has a cubic unit cell in which there are oxide ions at the middle of each edge and niobum atoms at the center of each face. what is the empirical formula of this oxide? This image shows several multicolored blankets in two rows.Which principle(s) of design does this image show?The image shows both unity and variety.The image shows unity only.The image shows variety only.The image shows neither unity nor variety. What is NOT an example of the body systems trying to maintain homeostasis?A) laughterB) hyperventilationC) shivering and goose bumpsD) increased heart rate Based on how she was structured her speech why does Justice Sotomayor probably consider the theme of giving back to the community to be the most important? Apex why do you brush your teeth the same way every time What are some potential benefits of growing up in a Western/ Democratic society? What are some potential downsides? Determine which type of property each statement describes by typing "physical" or "chemical" in the blank. Hydrogen is a colorless, tasteless, and odorless gas. Hydrogen is very combustible in the presence of oxygen. Hydrogen is very reactive with most elements. Hydrogen is the least dense of all elements. Which of the following was an effect of segregation in cities in the late 1800s? what is the equation of the graphed line written in standard form? please help........ Which of the following was a law imposed in hospitals under the Jim Crow Laws?Nurses could not treat patients of different skin colorsWaiting rooms did not allow the races to mixHospitals had separate wardsAll of the above Please help!In circle Y, what is m?82100106118 Steam Workshop Downloader