The division of the company where you work has 85 employees. Thirty of them are bilingual, and 37% of the bilingual employees have a graduate degree. If an employee of this division is randomly selected, what is the probability that the employee is bilingual and has a graduate degree

Answers

Answer 1

Answer:

Step-by-step explanation:

Hello!

You have two events.

A: The employee is bilingual.

The probability of the employee being bilingual is P(A)= 30/85= 0.35

And

B: The employee has a graduate degree.

Additionally, you know that the probability of an employee having a graduate degree given that he is bilingual is:

P(B/A)= 0.37

You need to calculate the probability of the employee being bilingual and having a graduate degree. This is the intersection between the two events, symbolically:

P(A∩B)

The events A and B are not independent, which means that the occurrence of A modifies the probability of occurrence of B.

Applying the definition of conditional probability you have that:

P(B/A)= [P(A∩B)]/P(A)

From this definition, you can clear the probability of the intersection between A and B

P(A∩B)= P(B/A)* P(A)= 0.37*0.35= 0.1295≅ 0.13

I hope it helps!

Answer 2

Final answer:

The probability that a randomly selected employee from the division is bilingual and has a graduate degree is approximately 12.9%.

Explanation:

The question asks for the probability that a randomly selected employee from a division with 85 employees is bilingual and has a graduate degree. We know that 30 employees are bilingual, and 37% of these bilingual employees have a graduate degree. To find this probability, we will perform a two-step calculation:

First, calculate the number of bilingual employees with a graduate degree by taking 37% of 30: number of bilingual employees with graduate degrees = 0.37 × 30.

Then, divide this number by the total number of employees to get the probability: probability that an employee is bilingual with a graduate degree = (number of bilingual employees with graduate degrees) / 85.

Now let's calculate the values:

0.37 × 30 = 11.1. Since we cannot have a fraction of a person, we'll round down to 11 bilingual employees with a graduate degree.

(11 / 85) = approximately 0.129, or 12.9%.

So, the probability that a randomly selected employee is bilingual and has a graduate degree is roughly 12.9%.


Related Questions

Use inverse trigonometric functions to solve the following equations. If there is more than one solution, enter all solutions as a comma-separated list (like "1, 3"). If an equation has no solutions, enter "DNE".solve tan ( θ ) = 1 tan(θ)=1 for θ θ (where 0 ≤ θ < 2 π 0≤θ< 2π).

Answers

The solutions to the equation tan(θ) = 1 within the specified range 0 ≤ θ < 2π: θ = 0.7854, 3.9270

Apply the inverse tangent function:

We begin by applying the inverse tangent function (arctan) to both sides of the equation: arctan(tan(θ)) = arctan(1)

Since arctan is the inverse of tangent, they cancel each other out on the left side, leaving us with: θ = arctan(1)

Determine the reference angle:

arctan(1) = π/4, which is the reference angle in the first quadrant where tangent is 1.

Find solutions in other quadrants:

The tangent function has a period of π, meaning it repeats its values every π radians.

Since tangent is also positive in the third quadrant, we add π to the reference angle to find the solution in that quadrant: θ = π/4 + π = 5π/4

Consider the specified range:

We're given the range 0 ≤ θ < 2π. Both π/4 and 5π/4 fall within this range, so they are the valid solutions.

Therefore, the solutions to the equation tan(θ) = 1 within the specified range are θ = 0.7854 (π/4) and θ = 3.9270 (5π/4).

Final answer:

To solve the equation tan(θ) = 1 for θ, we need to use the inverse tangent function. The solution to the equation is θ = π/4.

Explanation:

To solve the equation tan(θ) = 1 for θ, we need to use the inverse trigonometric function. In this case, we will use the inverse tangent function, also known as arctan or atan.

Applying the inverse tangent function to both sides of the equation, we get θ = atan(1).

Using a calculator, we find that atan(1) = π/4. Therefore, the solution to the equation is θ = π/4.

if one of two supplementary angles has a measure of 121 degrees what is the measure of the other angle?

Answers

Answer:

The measure of the other angle is 59°

Step-by-step explanation:

Supplementary Angles

Two angles [tex]\alpha[/tex] and [tex]\beta[/tex] are supplementary when they add up to 180 degrees, i.e.

[tex]\alpha+\beta=180^o[/tex]

One notable property is that together they make a straight angle although they don't have to be together to be supplementary.

We are given one of two supplementary angles with a value of 121 degrees, we can compute the measure of the other angle, say [tex]\alpha[/tex] as

[tex]\alpha=180^o-\beta=180^o-121^o=59^o[/tex]

The measure of the other angle is 59°

Standard deviation of a normal data distribution is a _______. Group of answer choices

measure of data dispersion
measure of data centrality
measure of data quality
measure of data shape

Answers

Answer:

Standard deviation of a normal data distribution is a measure of data dispersion.

Step-by-step explanation:

Standard deviation is used to measure dispersion which is present around the mean data.

The value of standard deviation will never be negative.

The greater the spread, the greater the standard deviation.

Steps-

1. At first, the mean value should be discovered.

2.Then find out the square of it's distance to mean value.

3.Then total the values

4.Then divide the number of data point.

5.the square root have to be taken.

Formula-

SD=[tex]\sqrt{\frac{(\sum{x-x)^2} }{n-1}[/tex]

   Advantage-

It is used to measure dispersion when mean is used as measure of central tendency.

Standard deviation of a normal data distribution is a measure of data dispersion.

What is a normal distribution?

A normal distribution is a probability distribution that is symmetric around the mean of the distribution. This means that the there are more data around the mean than data far from the mean. When shown on a graph, a normal distribution is bell-shaped.

What is standard deviation?

Standard deviation is a measure of variation. It measures the dispersion of data from its mean. It can be calculated by determining the value of the square root of variance.

To learn more about standard deviation, please check: brainly.com/question/12402189

Please help me find the answer.

Answers

Answer:

b/a = c/b

if a = b, then b = c

Answer: the second one (b/a = c/b) and the last one (if a = b then b = c) are the only ones that are true

Step-by-step explanation:

Based on past experience, a bank believes that 4% of the people who receive loans will not make payments on time. The bank has recently approved 300 loans. 6% of these clients did not make timely payments. What is the probability that over 6% will not make timely payments?A. 0.0721B. 0.9616C. 0.9279D. 0.0384

Answers

Answer:

D. 0.0384

Step-by-step explanation:

For each loan, there are only two possible outcomes. Either the client makes timely payments, or he does not. The probability of a client making a timely payment is independent from other clients. So we use the binomial probability distribution to solve this question.

However, our sample is big. So i am going to aproximate this binomial distribution to the normal.

Binomial probability distribution

Probability of exactly x sucesses on n repeated trials, with p probability.

Can be approximated to a normal distribution, using the expected value and the standard deviation.

The expected value of the binomial distribution is:

[tex]E(X) = np[/tex]

The standard deviation of the binomial distribution is:

[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]

Normal probability distribution

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex].

In this problem, we have that:

[tex]n = 300, p = 0.04[/tex]

So

[tex]\mu = E(X) = np = 300*0.04 = 12[/tex]

[tex]\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{300*0.04*0.96} = 3.39[/tex]

What is the probability that over 6% will not make timely payments?

This is 1 subtracted by the pvalue of Z when X = 0.06*300 = 18. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{18 - 12}{3.39}[/tex]

[tex]Z = 1.77[/tex]

[tex]Z = 1.77[/tex] has a pvalue of 0.9616

1 - 0.9616 = 0.0384

So the correct answer is:

D. 0.0384

Write the equation of the line that passes through (3, 4) and (2, −1) in slope-intercept form. (2 points) a y = 3x − 7 b y = 3x − 5 c y = 5x − 11 d y = 5x − 9

Answers

Answer: y = 5x − 11

Step-by-step explanation:

The equation of a straight line can be represented in the slope-intercept form, y = mx + c

Where c = intercept

Slope, m =change in value of y on the vertical axis / change in value of x on the horizontal axis represent

change in the value of y = y2 - y1

Change in value of x = x2 -x1

y2 = final value of y

y 1 = initial value of y

x2 = final value of x

x1 = initial value of x

The line passes through (3,4) and (2, -1),

y2 = - 1

y1 = 4

x2 = 2

x1 = 3

Slope,m = (- 1 - 4)/(2 - 3) = - 5/- 1 = 5

To determine the y intercept, we would substitute x = 3, y = 4 and m= 5 into

y = mx + c. It becomes

4 = 5 × 3 + c

4 = 15 + c

c = 4 - 15 = - 11

The equation becomes

y = 5x - 11

Your DVD membership costs $16 per month for 10 DVD rentals. Each additional DVD rental is $2. a. Write an equation in two variables that represents the monthly cost of your DVD rentals. b. Identify the independent and dependent variables. c. How much does it cost to rent 15 DVDs in one month?

Answers

C(15) = $26

Step-by-step explanation:

A computer virus is trying to corrupt two files. The first file will be corrupted with probability 0.4. Independently of it, the second file will be corrupted with probability 0.3. (a) Compute the probability mass function (pmf) of X, the number of corrupted files.

Answers

Answer:

[tex]P(X = 0) = 0.42[/tex]

[tex]P(X = 1) = 0.46[/tex]

[tex]P(X = 2) = 0.12[/tex]

Step-by-step explanation:

We have these following probabilities:

40% probability that the first file is corrupted. So 60% probability that the first file is not corrupted.

30% probability that the second file is corrupted. So 70% probability that the second file is not corrupted.

Probability mass function

Probability of each outcome(0, 1 and 2 files corrupted).

No files corrupted:

60% probability that the first file is not corrupted.

70% probability that the second file is not corrupted.

So

[tex]P(X = 0) = 0.6*0.7 = 0.42[/tex]

One file corrupted:

First one corrupted, second no.

40% probability that the first file is corrupted.

70% probability that the second file is not corrupted.

First one ok, second one corrupted.

60% probability that the first file is not corrupted.

30% probability that the second file is corrupted.

[tex]P(X = 1) = 0.4*0.7 + 0.6*0.3 = 0.46[/tex]

Two files corrupted:

40% probability that the first file is corrupted.

30% probability that the second file is corrupted.

[tex]P(X = 2) = 0.4*0.3 = 0.12[/tex]

A sprint duathlon consists of a 5 km run, a 20 km bike ride, followed by another 5 km run. The mean finish time of all participants in a recent large duathlon was 1.67 hours with a standard deviation of 0.25 hours. Suppose a random sample of 30 participants was taken and the mean finishing time was found to be 1.59 hours with a standard deviation of 0.30 hours. What is the standard error for the mean finish time of 30 randomly selected participants

Answers

Answer:

The standard error is  0.0456 for the mean finish time of 30 randomly selected participants.            

Step-by-step explanation:

We are given the following in the question:

Population mean, [tex]\mu[/tex] = 1.67 hours

Population standard deviation, [tex]\sigma[/tex] = 0.25 hours

Sample mean, [tex]\bar{x}[/tex] = 1.59 hours

Sample standard deviation, s = 0.30 hours

Sample size, n = 30

We have to find the standard error for the mean finish time of 30 randomly selected participants.

Formula:

[tex]\text{Standard error} = \dfrac{\sigma}{\sqrt{n}} = \dfrac{0.25}{\swqrt{30}} = 0.0456[/tex]

Thus, the standard error is  0.0456 for the mean finish time of 30 randomly selected participants.

Final answer:

The standard error for the mean finish time of 30 randomly selected participants is 0.0549 hours.

Explanation:

The standard error for the mean finish time of 30 randomly selected participants can be calculated using the formula:

Standard Error = Standard Deviation / √(Sample Size)

Plugging in the given values, the standard error would be:

Standard Error = 0.30 / √(30) = 0.0549 hours

Learn more about Standard Error for Sample Mean here:

https://brainly.com/question/32051675

#SPJ3

points)A password must consist of 16 characters. Each character can be a digit (0-9), an uppercase or lowercase letter (A-Z, a-z) or one out of 10 special characters. How many valid passwords are there? Give your answer in unevaluated form. You don't need to explain it. If you have forgotten your password, but can test 1 trillion passwords per second, how much time would you require to nd the password in the worst-case scenario that your forgotten password is the last one tested? Give the answer in years, rounded to the nearest power of 10.

Answers

Answer:

72¹⁶ possible passwords

10¹⁰ years

Step-by-step explanation:

For each of the 16 characters, the number of possible outcomes is 10 numbers, 52 letters, or 10 special characters, totaling 72 possible values. The number of total different 16 characters passwords is:

[tex]n = 72^{16}[/tex]

If you can test 1 trillion passwords per second, the number of passwords per year is:

[tex]P = 10^{12} * 3,600*24*365\\P=3.1536*10^{19}[/tex]

The time in years that would take to test all passwords is:

[tex]T=\frac{72^{16}}{3.1536*10^{19}}\\T = 1.65*10^{10}\ years[/tex]

Rounding to the nearest power of 10, it would take 10¹⁰ years

Final answer:

The question concerns combinatorics in Mathematics, calculating the total possible passwords given 72 character options for a 16-character length (72^16). Given a rate of 1 trillion tests per second, the time it would take to test all these combinations depends on this total, which we express in years.

Explanation:

The subject of your question is Combinatorics, which falls under Mathematics. It requires finding the total number of valid passwords that can be comprised of certain types of characters, then finding how long it would take to test all those passwords under a certain rate.

If each character in the password can be one of 10 digits, 52 letters (uppercase and lowercase) or 10 special characters, there are overall 72 possible characters. Given the password length is 16 characters, the total number of possibilities would be 72^16. This represents the total number of valid passwords.

With the ability to test 1 trillion (10^12) passwords per second, to find out how long it would take to test all passwords, you divide the total number of passwords by the testing rate. Expressing this in years (seconds in a year being approximately 3.15 x 10^7), you would have 72^16 divided by (10^12 x 3.15 x 10^7) years. Hence, the time required in the worst-case scenario is ultimately dependent on the total number of valid passwords (72^16).

Learn more about Combinatorics here:

https://brainly.com/question/31293479

#SPJ11

A group of students bakes 100 cookies to sell at the school bake sale. The students want to ensure that the price of each cookie offsets the cost of the ingredients. If all the cookies are sold for $0.10 each, the net result will be a loss of $4. If all the cookies are sold for $0.50 each. The students will make a $36 profit. First, write the linear function p(x) that represents the net profit from selling all the cookies, where x is the price of each cookie. Then, determine how much profit the students will make if they sell the cookies for $0.60 each. Explain. Tell how your answer is reasonable.

Answers

Answer:

46

Step-by-step explanation:

-Let b be the constant in the linear equation.

#The linear equation can be expressed as:

[tex]p(x)=100x+b[/tex]

Substitute the values in the equation to find b:

[tex]p(x)=100x+b\\\\-4=100(0.1)+b\\\\b=-14\\\\\#or\\\\36=100(0.5)+b\\\\b=-14[/tex]

We know have the constant value b=-14, substitute the values of b and x in the p(x) function:

[tex]p(x)=100x+b\\\\p(x)=100(0.6)-14\\\\p(x)=60-14\\\\p(x)=46[/tex]

Hence, the profit when selling price is $0.60 is $46

#From our calculations, it's evident that the cookies production has a very high fixed cost which can only be offset by raisng the selling price or the number of units sold at any given time.

If the students sell the cookies for $0.60 each, they will make a profit of $46.

To solve this problem, let's first define the variables and set up the linear function p(x)  that represents the net profit based on the selling price x per cookie.

Given information:

- Selling each cookie for $0.10 results in a net loss of $4.

- Selling each cookie for $0.50 results in a net profit of $36.

From this information, we can set up two equations based on the net profit:

1. When selling each cookie for $0.10:

[tex]\[ R = 100 \cdot 0.10 = 10 \] \[ P(0.10) = R - C = 10 - C = -4 \] \[ C = 10 + 4 = 14 \][/tex]

(Total cost of ingredients)

2. When selling each cookie for $0.50:

[tex]\[ R = 100 \cdot 0.50 = 50 \] \[ P(0.50) = R - C = 50 - C = 36 \] \[ C = 50 - 36 = 14 \][/tex]

Total cost of ingredients)

So, the total cost of ingredients C is $14 regardless of the selling price, since it's consistent in both scenarios.

Now, let's define the linear function  P(x) :

[tex]\[ P(x) = R - C \][/tex]

Where ( R = 100x ) (total revenue from selling 100 cookies at x dollars each), and ( C = 14 ) (total cost of ingredients).

Therefore,

[tex]\[ P(x) = 100x - 14 \][/tex]

This function  P(x) gives us the net profit when each cookie is sold for x dollars.

Now, to find out how much profit the students will make if they sell the cookies for $0.60 each:

[tex]\[ x = 0.60 \]\[ P(0.60) = 100 \cdot 0.60 - 14 \]\[ P(0.60) = 60 - 14 \]\[ P(0.60) = 46 \][/tex]

So, if the students sell each cookie for $0.60, they will make a profit of $46.

Explanation of Reasonableness:

The function [tex]\( P(x) = 100x - 14 \)[/tex] is a linear function that accurately represents the relationship between the selling price x and the net profit ( P(x) ). The function is derived from the given conditions where selling at $0.10 results in a loss and selling at $0.50 results in a profit, confirming the slope and intercept of the function.

For this problem, carry at least four digits after the decimal in your calculations. Answers may vary slightly due to rounding.

Santa Fe black-on-white is a type of pottery commonly found at archaeological excavations at a certain monument. At one excavation site a sample of 572 potsherds was found, of which 363 were identified as Santa Fe black-on-white.

(a) Let p represent the proportion of Santa Fe black-on-white potsherds at the excavation site. Find a point estimate for p. (Round your answer to four decimal places.)


(b) Find a 95% confidence interval for p. (Round your answers to three decimal places.)

lower limit
upper limit

Answers

Answer:

a) p = 0.6346

b) 95% confidence interval

Lower limit: 0.5951

Upper limit: 0.6741      

Step-by-step explanation:

We are given the following in the question:

Sample size, n = 572

Number of Santa Fe black-on-whitepots , x = 363

a) proportion of Santa Fe black-on-white potsherds

[tex]\hat{p} = \dfrac{x}{n} = \dfrac{363}{572} = 0.6346[/tex]

b) 95% confidence interval

[tex]\hat{p}\pm z_{stat}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]

[tex]z_{critical}\text{ at}~\alpha_{0.05} = 1.96[/tex]

Putting the values, we get:

[tex]0.6346\pm 1.96(\sqrt{\frac{0.6346(1-0.6346)}{572}}) = 0.6346\pm  0.0395\\\\=(0.5951,0.6741)[/tex]

Lower limit: 0.5951

Upper limit: 0.6741

1 point) Consider the following game of chance based on the spinner below: Each spin costs $2. If the spinner lands on A the player wins a quarter, if the spinner stops on D the player wins $9 otherwise the player wins nothing. Calculate the players expected winnings. Express your answer to at least three decimal places in dollar form. .

Answers

Final answer:

The game of chance discussed is a question about probability and expected value in mathematics. To calculate the expected winnings of the game, we use given game information and probabilities. If the probabilities are not given, the question usually assumes a fair spinner, i.e., all outcomes are equally likely.

Explanation:

The subject at hand deals with probability and expected value, which are mathematical concepts typically covered in a high school math curriculum. The game described illustrates these concepts. Each possible outcome of the game (A or D, otherwise lose) corresponds to an event that has a certain probability. These probabilities are all added together to determine the expected value of the game in dollars.


Suppose the probabilities of landing on A and D are p(A) and p(D), and the probability of not landing on either A or D is 1 - p(A) - p(D), then the expected value of the game is: Expected Value = $2 * [p(A)*0.25 + p(D)*9 + (1 - p(A) - p(D))*0] .


To find the expected value, we would need to know the probabilities of landing on each of these segments on the spinner. If these probabilities are not given in the problem, it can be assumed that the spinner is fair (i.e., all outcomes are equally likely). If there are n total segments on the spinner, then p(A) = p(D) = 1/n, and the probability of not landing on A or D would be (n-2)/n. Substitute these probabilities into the expected value equation can give the answer.

Learn more about Expected Value here:

https://brainly.com/question/35639289

#SPJ3

Draw a rectangle that shows 8 equal parts . Shade more than 3/8 of the rectangle but less than 5/8 .what fraction did you model? Use multiplication and division to write two equivalent fractions for your model.

Answers

Answer:

4/8 more than 3/ but less than 5/8

Answer: I modeled 4/8 because it is greater than 3 less than 5 2 equivalent fractions are 8/16 12/24

Step-by-step explanation:

According to a 2013 study by the Pew Research Center, 15% of adults in the United States do not use the Internet (Pew Research Center website, December, 15, 2014). Suppose that 10 adults in the United States are selected randomly.

a. Is the selection of the 10 adults a binomial experiment? Explain.

b. What is the probability that none of the adults use the Internet (to 4 decimals)?

c. What is the probability that 3 of the adults use the Internet (to 4 decimals)? If you calculate the binomial probabilities manually, make sure to carry at least 4 decimal digits in your calculations.

d. What is the probability that at least 1 of the adults uses the Internet (to 4 decimals)?

Answers

Answer:

a) For this case we can use the binomial model since we assume independent events and the same probability for each trial is the same p =0.15

b) [tex]P(X=0)=(10C0)(0.15)^0 (1-0.15)^{10-0}=0.1969[/tex]

c) [tex]P(X=3)=(10C3)(0.15)^3 (1-0.15)^{10-3}=0.1298[/tex]

d) [tex] P(X \geq 1)= 1-P(X <1) = 1-P(X=0)[/tex]

And using the result from part a we got:

[tex] P(X \geq 1)= 1-P(X <1) = 1-P(X=0)= 1-0.1969 =0.8031[/tex]

Step-by-step explanation:

Previous concepts

The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".  

Let X the random variable of interest, on this case we now that:  

[tex]X \sim Binom(n p)[/tex]  

The probability mass function for the Binomial distribution is given as:  

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]  

Where (nCx) means combinatory and it's given by this formula:  

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]  

Solution to the problem

Part a

For this case we can use the binomial model since we assume independent events and the same probability for each trial is the same p =0.15

Part b

For this case we want this probability:

[tex] P(X=0)[/tex]

And replacing we got:

[tex]P(X=0)=(10C0)(0.15)^0 (1-0.15)^{10-0}=0.1969[/tex]

Part c

For this case we want this probability:

[tex] P(X=3)[/tex]

And replacing we got:

[tex]P(X=3)=(10C3)(0.15)^3 (1-0.15)^{10-3}=0.1298[/tex]

Part d

For this cae we want thi probability:

[tex] P(X \geq 1)[/tex]

And we can use the complment rule and we got:

[tex] P(X \geq 1)= 1-P(X <1) = 1-P(X=0)[/tex]

And using the result from part a we got:

[tex] P(X \geq 1)= 1-P(X <1) = 1-P(X=0)= 1-0.1969 =0.8031[/tex]

Use the information given to find the appropriate minimum sample size. (Round your answer up to the nearest whole number.)Estimating μ correct to within 3 with probability 0.99. Prior experience suggests that the measurements will range from 8 to 40.

Answers

Final answer:

The minimum sample size required to estimate μ within 3 with a confidence level of 0.99, given a standard deviation of 8, is approximately 48. This was determined by plugging the values into the sample size formula and rounding up to the nearest whole number.

Explanation:

To find the minimum sample size, we need to use the formula for sample size n, = (Z_α/2 * σ / E)^2. In this problem, you want to estimate μ correct to within 3 with a probability of 0.99. In other words, you want the error E to be 3 and the confidence level to be 0.99.

The Z value corresponding to a confidence level of 0.99 is approximately 2.576 (you can find this value from a standard Z-table). The measurements range from 8 to 40, so we can estimate the standard deviation σ as (40 - 8) / 4 = 8.

Plugging these values into the formula, we get n = (2.576 * 8 / 3)^2 = 47.36. This number must be rounded up to the nearest whole number because the sample size cannot be a fraction. So, the minimum sample size required is 48.

Learn more about Minimum Sample Size here:

https://brainly.com/question/35693971

#SPJ11

The population of mosquitoes in a certain area increases at a rate proportional to the current pop-ulation, and in the absence of other factors, the population doubles each week. There are 200,000mosquitoes in the area initially, and predators (birds, bats, and so forth) eat 20,000 mosquitoes perday. Set up a differential equation for the population of mosquitoes and make sure to solve for theproportionality constant using the information given. Determine the population of mosquitoes in thearea at any time.

Answers

Final answer:

To model the mosquito population considering both exponential growth and daily predation, a differential equation was formulated and solved, revealing how the population changes over time.

Explanation:

To determine the population of mosquitoes in the area at any time, given that the population doubles each week and predators eat 20,000 mosquitoes per day, we can set up a differential equation. To start, we know the initial population is 200,000 mosquitoes. Given the population increases proportionally, we use the formula P(t) = P_0e^{rt}, where P(t) is the population at time t, P_0 is the initial population, r is the rate of growth, and t represents time in weeks.

To find r, we use the fact that the population doubles each week. So, when t = 1, P(t) = 2P_0, leading to 2P_0 = P_0e^{r(1)}, simplifying to 2 = e^r, which gives r = ln(2).

Including the effect of predators, the amended differential equation becomes dP/dt = rP - 20,000. Substituting r with ln(2) and solving this equation gives us the mosquito population at any time, accounting for both natural growth and predation.

Following Exercise 3.5.9, let p1, . . . , pk be a pairwise relatively prime set of naturals, each greater than 1. Let X be the set {0, 1, . . . , p1 −1}× . . . ×{0, 1, . . . , pk −1}. Define a function f from {0, 1, . . . , p1p2 . . . pk − 1} to X by the rule f(x) = x%p1, . . . , x%pk. Prove that f is a subject

Answers

Answer: see the pictures attached

Step-by-step explanation:

You wish to estimate the average weight of a mouse. You obtain 10 mice, sampled uniformly at random and with replacement from the mouse population. Their weights are 21; 23; 27; 19; 17; 18; 20; 15; 17; 22 grams respectively. (a) What is the best estimate for the average weight of a mouse, from this data

Answers

Answer:

The best estimate for the average weight of a mouse, from this data is 19.9 grams.

Step-by-step explanation:

The best estime for the weight of a mouse from this data is the sum of all these weights divided by the number of mices.

10 mices

Their weights are 21; 23; 27; 19; 17; 18; 20; 15; 17; 22 grams

So

[tex]M = \frac{21+23+27+19+17+18+20+15+17+22}{10} = 19.9[/tex]

The best estimate for the average weight of a mouse, from this data is 19.9 grams.

Brian is filling a conic container with water. He has the container half full. The radius of the container is 5 inches and the height is 20 inches. What is the current volume of the water?

Answers

The current volume of the water is 261.66 square inches.

Solution:

The container is in cone shape.

Radius of the container = 5 inch

Height of the container = 20 inch

Volume of the container = [tex]\frac{1}{3} \pi r^2 h[/tex]

                                        [tex]$=\frac{1}{3}\times 3.14 \times 5^2 \times 20[/tex]

Volume of the container = 523.33 square inch

Current volume of the water = Half of the volume of container

                                               [tex]$=\frac{1}{2}\times523.33[/tex]

                                               = 261.66 square inch

The current volume of the water is 261.66 square inches.

A reasonable estimate of the moment of inertia of an ice skater spinning with her arms at her sides can be made by modeling most of her body as a uniform cylinder. Suppose the skater has a mass of 64 kg . One eighth of that mass is in her arms, which are 60 cm long and 20 cm from the vertical axis about which she rotates. The rest of her mass is approximately in the form of a 20-cm-radius cylinder.

Answers

Answer:

Step-by-step explanation:

Given data:

Mass of the one arm of the skater, m = (1/16) x 64 = 4 kg

Rest mass of the skater in the form of cylinder, M = (7 / 8) x 64 kg = 56 kg

Radius of the cylinder, R = 20 cm = 0.20 m

The parallel axis theorem:

In order to estimate the height of all students at your university, let's assume you have measured the height of all psychology majors at the university. The resulting raw scores are called _________. constants data coefficients statistics

Answers

Answer:

Data

Step-by-step explanation:

We are given the following in the question:

We want to measure height of all psychology majors at the university.

Thus, the resulting raw scores of each individual are called the data.

Data point:

Height of each psychology majors at the university

Data:

Collection of all heights of all psychology majors at the university

These value are constants but comprises a data.

They are neither coefficients nor statistic because they do not describe a sample.

Thus, the correct answer is

Data

x^2-16/(x+4)(x-5) x=-4 x=1 continuous at x=-4?

Answers

Answer:

Yes, its continuous

Step-by-step explanation:

We use the formula:

x^2-y^2=(x-y)(x+y),

And we know that 16=4^2, so we have:

[tex]\frac{x^2-16}{(x+4)(x-5)}=\frac{(x-4)(x+4)}{(x+4)(x-5)}=\frac{x-4}{x-5}[/tex]

So for x=-4 we have -8/-9,i.e, it is 8/9, so it is continuous.

I dont know what is x=1, because for x=1 the function has value 3/4.

But function is not continuous in x=5 becaus for that x we will get 1/0, and that is not definite.

:)

You can now sell 80 cups of lemonade per week at 40¢ per cup, but demand is dropping at a rate of 4 cups per week each week. Assuming that raising the price does not affect demand, how fast do you have to raise your price if you want to keep your weekly revenue constant? HINT [Revenue = Price × Quantity.]

Answers

Final answer:

To keep the weekly revenue constant while demand drops, we can set up an equation using the revenue formula. By equating the original revenue with the new revenue, we can find the rate at which the price needs to be raised. Taking the derivative, we can determine the rate of change of the price.

Explanation:

To keep the weekly revenue constant, we need to find the rate at which the price has to be raised to offset the drop in demand. Currently, the price is 40¢ per cup and demand is dropping at a rate of 4 cups per week. Since revenue is equal to price times quantity, we can set up the equation:
Revenue = Price × Quantity.

Initially, we have 80 cups of lemonade sold at 40¢ per cup, resulting in a revenue of $32 (80 x 40¢). As demand drops by 4 cups per week each week, the new quantity sold can be represented by 80 - 4t, where t represents the number of weeks. Let P be the new price per cup that needs to be raised. The new revenue equation can be written as:

Revenue = P(80 - 4t).

To find the value of P, we equate the original revenue ($32) with the new revenue:

$32 = P(80 - 4t).

Simplifying the equation, we get:

32 = 80P - 4Pt.

Moving the terms around, we have:

4Pt = 80P - 32.

Dividing both sides by 4P, we get:

t = (80P - 32)/(4P).

So, the rate at which the price needs to be raised to keep the weekly revenue constant is given by the derivative of t with respect to P. Taking the derivative, we get:

t' = (4(80P - 32) - 4P(80))/(4P)^2.

Simplifying further, we have:

t' = (320P - 128 -  320P)/(4P)^2.

Simplifying again, we get:

t' = -128/(4P)^2.

Thus, the rate of change of t with respect to P is given by -128/(4P)^2. This represents the rate at which the price needs to be raised in order to keep the weekly revenue constant.

A study reports that college students work, on average, between 4.63 and 12.63 hours a week, with confidence coefficient .95. Which of the following statements are correct? MARK ALL THAT ARE TRUE. There are four correct answers. You must mark them all to get credit. Group of answer choices The interval was produced by a technique that captures mu 95% of the time. 95% of all college students work between 4.63 and 12.63 hours a week. 95% of all samples will have x-bar between 4.63 and 12.63. The probability that mu is between 4.63 and 12.63 is .95. 95% of samples will produce intervals that contain mu. The probability that mu is included in a 95% CI is 0.95. We are 95% confident that the population mean time that college students work is between 4.63 and 12.63 hours a week.

Answers

Final answer:

The correct statements are that the interval was produced by a technique that captures mu 95% of the time, 95% of all college students work between 4.63 and 12.63 hours a week, 95% of all samples will have x-bar between 4.63 and 12.63, and the probability that mu is between 4.63 and 12.63 is .95.

Explanation:

The correct statements are:

The interval was produced by a technique that captures mu 95% of the time.95% of all college students work between 4.63 and 12.63 hours a week.95% of all samples will have x-bar between 4.63 and 12.63.The probability that mu is between 4.63 and 12.63 is .95.

These statements are correct because a confidence interval is a range of values that is likely to contain the true population mean. With a confidence coefficient of .95, we can say that there is a 95% confidence level that the population mean falls within the interval.

Learn more about Confidence interval here:

https://brainly.com/question/34700241

#SPJ3

As a freshman, suppose you had to take two of four lab science courses, one of two literature courses, two of three math courses, and one of seven physical education courses. Disregarding possible time conflicts, how many different schedules do you have to choose from?

Answers

Answer:

We have 252 different schedules.

Step-by-step explanation:

We know that as  a freshman, suppose you had to take two of four lab science courses, one of two literature courses, two of three math courses, and one of seven physical education courses.

So from 4 lab science courses we choose 2:

[tex]C_2^4=\frac{4!}{2!(4-2)!}=6[/tex]

So from 2 literature courses we choose 1:

[tex]C_1^2=\frac{2!}{1!(2-1)!}=2[/tex]

So from 3 math courses we choose 2:

[tex]C_2^3=\frac{3!}{2!(3-2)!}=3\\[/tex]

So from 7 physical education courses we choose 1:

[tex]C_1^7=\frac{7!}{1!(7-1)!}=7[/tex]

We get: 6 · 2 · 3 · 7 = 252

We have 252 different schedules.

y=−7x+3 y=−x−3 ​
Find the solution to the system of equations.

Answers

Answer:

(x,y)=(1,-4)

Step-by-step explanation:

y=−7x+3

y=−x−3 ​

(y=) −7x+3=−x−3 ​

-7x+x=-3-3

-6x=-6

x=-6/(-6)

x=1

y=-7*1+3=-7+3=-4

(x,y)=(1,-4)

Answer:

[tex](x,y)= (1,-4)\\[/tex]

Step-by-step explanation:

We will solve it using the substitution method

Using Substitution method

Let [tex]y = -7x + 3[/tex] be equation 1 and [tex]y = -x - 3[/tex] be equation 2

putting value of y from equation 1 in equation 2 and further simplifying:

we get

[tex]-7x +3 = -x - 3\\-7x + x = -3 -3\\-6x =-6\\\\6x=6x\\x= 1[/tex]

Now put value of x i.e. [tex]x=1[/tex] in equation 1 and by further simplifying

[tex]y = -7x + 3\\y= -7(1) +3\\y= -7+3\\y=-4[/tex]

So the solution to the system is written as\[tex](x,y)= (1,-4)[/tex]

The circumference of a sphere was measured to be 74 cm with a possible error of 0.5 cm. (a) Use differentials to estimate the maximum error in the calculated surface area. (Round your answer to the nearest integer.) cm2 What is the relative error?

Answers

Final answer:

Using differentials, the estimated maximum error in the calculated surface area of a sphere with a measured circumference of 74 cm and a possible error of 0.5 cm is 24 cm². The relative error is approximately 5%.

Explanation:

The subject concerns the application of differentials in estimating the maximum error in the calculated surface area of a sphere. Given the circumference C = 74 cm with a possible error δC = 0.5 cm, we can calculate the radius r = C / (2π). With the surface area formula of a sphere A = 4πr², differentiating this equation gives dA = 8πr dr. By substituting the values, the maximum error in calculated surface area δA = dA = 8πr δr = 8π(C/2π) (δC/2π) = 2C δC / π. Plugging the values of C = 74 cm and δC = 0.5 cm, we get δA ≈ 24 cm² which is the maximum error in the calculated surface area. For the relative error, it is the absolute error divided by the actual measurement, hence, the relative error is δA/A = δA / 4πr² = (2C δC / π) / 4π(C/2π)² ≈ 0.05 or 5%.

Learn more about Differentials in Calculating Error here:

https://brainly.com/question/34250957

#SPJ12

Final answer:

To find a formula for the moose population, calculate the rate of change and use it in the formula P = 190t + 4360. The model predicts the moose population to be 7710 in 2003.

Explanation:

To find a formula for the moose population, we need to determine the rate of change in the population. We can do this by finding the slope of the line that represents the change in population from 1991 to 1999. First, we calculate the change in population: 5880 - 4360 = 1520. Then, we calculate the change in time: 1999 - 1991 = 8. Next, we divide the change in population by the change in time to find the rate of change: 1520/8 = 190. So, the formula for the moose population, P, is P = 190t + 4360, where t represents the years after 1991.

To predict the moose population in 2003, we substitute t = 12 (since 2003 is 12 years after 1991) into the formula: P = 190(12) + 4360 = 7710. Therefore, the model predicts the moose population to be 7710 in 2003.

Learn more about the Moose population here:

https://brainly.com/question/1542463

#SPJ2

Each year, taxpayers are able to contribute money to various charities via their IRS tax forms. The following list contains the amounts of money (in dollars) donated via IRS tax forms by Each year, taxpayers are able to contribute money taxpayers:

2 , 22 , 27 , 31 , 36 , 51 , 57 , 57 , 60 , 62 , 62 , 62 , 73 , 77 , 83 , 95 , 99 , 104 , 105 , 127 , 153 , 162 , 197

(a) For these data, which measures of central tendency take more than one value? Choose all that apply.

Mean

Median

Mode

None of these measures

(b) Suppose that the measurement 197 (the largest measurement in the data set) were replaced by 246. Which measures of central tendency would be affected by the change? Choose all that apply.

Mean

Median

Mode

None of these measures

(c) Suppose that, starting with the original data set, the largest measurement were removed. Which measures of central tendency would be changed from those of the original data set? Choose all that apply.

Mean

Median

Mode

None of these measures

(d) Which of the following best describes the distribution of the original data? Choose only one.

Negatively skewed

Positively skewed

Roughly symmetrical

Answers

Answer:

(a) None of these measures

(b) Mean

(c) Mean and Median

(d) Roughly Symmetrical

Step-by-step explanation:

(a)

Mean

Total number in the set = 23

Summation of the set = 2+22+27+31+36+51+57+57+60+62+62+62+73+77+83+95+99+104+105+127+153+162+197 = 1804

Mean = Sum of set / total no of set

1804/23 = 78.435

Median is the middle number in the set after it had been arranged from lowest to highest

2 , 22 , 27 , 31 , 36 , 51 , 57 , 57 , 60 , 62 , 62 , 62 , 73 , 77 , 83 , 95 , 99 , 104 , 105 , 127 , 153 , 162 , 197

The Median is 62

Mode the value that appear most

Mode is 62

None of them takes more than one value

(b) If 197 is replaced by 246, the set becomes

2 , 22 , 27 , 31 , 36 , 51 , 57 , 57 , 60 , 62 , 62 , 62 , 73 , 77 , 83 , 95 , 99 , 104 , 105 , 127 , 153 , 162 , 246

The mean becomes

Total number in the set = 23

Summation of the set = 2+22+27+31+36+51+57+57+60+62+62+62+73+77+83+95+99+104+105+127+153+162+246= 1853

Mean = Sum of set / total no of set

1853/23 = 80.565

The Median and Mode remains the same.

(c) When the largest measurements are removed, the number of values in the set reduces and this affects the Mean and the Median. The mode will still remain unchanges since it is a small number and appears the most.

The following data on average daily hotel room rate and amount spent on entertainment (The Wall Street Journal, August 18, 2011) lead to the estimated regression equation ŷ = 17.49 + 1.0334x. For these data SSE = 1541.4.

City Room Rate ($) Entertainment ($)
Boston 148 161
Denver 96 105
Na.shville 91 101
New Orleans 110 142
Phoenix 90 100
San Diego 102 120
San Francisco 136 167
San Jose 90 140
Tampa 82 98

(a) Predict the amount spent on entertainment for a particular city that has a daily room rate of $89 (to 2 decimals).
(b) Develop a 95% confidence interval for the mean amount spent on entertainment for all cities that haye a daily room rate of $89 (to 2 decimals).
(c) The average room rata in Chicago is $128. Develop a 95% prediction interval for the amount spent on entertainment in Chicago (to 2 decimals).

Answers

Answer:

a. Predicted Amount = $109.46

b. Confidence Interval = (94.84,124.08)

c. Interval = (110.6883,188.8517)

Step-by-step explanation:

Given

ŷ = 17.49 + 1.0334x.

SSE = 1541.4

a.

ŷ = 17.49 + 1.0334(89)

ŷ = 109.4626

ŷ = 109.46 --- Approximated

Predicted Amount = $109.46

b.

ŷ = 17.49 + 1.0334(89)

ŷ = 109.4626

ŷ = 109.46

First we calculate the standard deviation

variance = SSE/(n-2)

v = 1541.4/(9-2)

v = 1541.4/7

v = 220.2

s = √v

s = √220.2

s = 14.839

Then we calculate mean(x) and ∑(x - (mean(x))²

X --- Y -- Mean(x) --- ∑(x - (mean(x))²

148 -- 161 -- 43-- 1849

96 || 105|| -9 || 81

91 ||101 || -14 || 196

110 || 142 || 5 || 25

90 || 100 || -15 || 225

102 || ||120 ||-3|| 9

136 || 167 ||31 ||961

90 || 140 ||-15 ||225

82 || 98 ||-23 || 529

Sum 945 || 1134|| 0 ||4100

Mean (x) = 945/9 = 105

∑(x - (mean(x))² = 4100

α = 1 - 95% = 5%

α/2 = 2.5% = 0.025

tα,df = n − 2 = t0.025,7 =2.365

Confidence interval = 109.46 ± 2.365 * 14.839 √((1/9)+ (89-105)²/4100

Confidence Interval = (109.46 ± 14.62)

Confidence Interval = (94.84,124.08)

c.

ŷ = 17.49 + 1.0334(128)

ŷ = 149.7652

ŷ = 149.77

Interval = 149.77 ± 2.365 * 14.839 √((1/9)+ (128-105)²/4100

Interval = 149.77 ± 39.0817

Interval = (110.6883,188.8517)

Final answer:

Given the regression equation ŷ = 17.49 + 1.0334x, we can predict the amount spent on entertainment in cities based on their daily room rate. For instance, a city with a daily room rate of $89 is estimated to spend about $109.67 on entertainment. However, we don't have enough information to calculate the 95% confidence interval or the 95% prediction interval.

Explanation:

To solve these questions, we use the provided regression equation, which is ŷ = 17.49 + 1.0334x. The variable 'x' represents the daily room rate, and 'ŷ' represents the predicted amount spent on entertainment.

(a) To predict the amount spent on entertainment for a city that has a daily room rate of $89, substitute x with 89 in the equation: ŷ = 17.49 + 1.0334 * 89. The computed prediction is $109.67.

(b) To develop a 95% confidence interval for the mean amount spent on entertainment for all cities with a daily room rate of $89, we would need additional statistical data such as the standard error or the number of data points. There isn't sufficient information in the question to accurately compute this.

(c) To find the 95% prediction interval for the amount spent on entertainment in Chicago with an average room rate of $128, we would also need additional statistical data like the standard error, degrees of freedom, or the number of observations. Again, the question does not provide sufficient details to calculate this.

Learn more about Regression Analysis here:

https://brainly.com/question/35669138

#SPJ3

Other Questions
multiply 13 x 7/9 answer this question as a simplified mixed number At a malt shop 8/10 of the malts sold were chocolate. What percent of malts sold were chocolate? Suppose you want to have $700,000 for retirement in 35 years. Your account earns 9% interest. How much would you need to deposit in the account each month? What is the slope of the line represented by y = 1 - 8x? there is a high likelihood of such partnerships reducing competitive pressures on ALL industry members, provided technological change in the suppliers' business is rapid and the item being supplied is a commodity. 2.13 x 10^24 molecules of water is how many moles of water? Olivia places her pet frog on a line to observe the frogs motion. The line is divided into sections that measure 1 centimeter each. The frog begins at 0, moves 18 centimeters forward, moves 6 centimeters backward, and then 12 centimeters backward. What is the frogs displacement? 0 6 18 36 The resistivity of a metallic, single-walled carbon nanotube is 2.30 108 m. The electron number density is 6.60 1028 m3. What is the mean free time for the electrons flowing in a current along the carbon nanotube? A student wanted to construct a 95% confidence interval for the mean age of students in her statistics class. She randomly selected nine students. Their average age was 19.1 years with a sample standard deviation of 1.5 years. What is the best point estimate for the population mean? A. 1.5 years B. 19.1 years C. 9 years D. 2.1 years A firm offers routine physical examinations as part of a health service program for its employees. The exams showed that 8% of the employees needed corrective shoes, 15% needed major dental work, and 3% needed both corrective shoes and major dental work. What is the probability that an employee selected at random will need either corrective shoes or major dental work Simplify.3+ (-2) 6 What are the zeros of f(x) = x2 + 2x - 80?-20 and 4-4 and 20-10 and 8-8 and 10 If block A of the pulley system is moving downward at 6 ft>s while block C is moving down at 18 ft>s, determine the relative velocity of block B with respect to C. Most major airlines allow passengers to carry two pieces of luggage (of a certain maximum size) onto the plane. However, their studies show that the more carry-on baggage passengers have, the longer it takes to unload and load passengers. One regional airline is considering changing its policy to allow only one carry-on per passenger. Before doing so, it decided to collect some data. Specifically, a random sample of 1,000 passengers was selected. The passengers were observed, and the number of bags carried on the plane was noted. Out of the 1,000 passengers, 345 had more than one bag.The domestic version of Boeing's 747 has a capacity for 568 passengers. Determine an interval estimate of the number of passengers that you would expect to carry more than one piece of luggage on the plane. Assume the plane is at its passenger capacity.a) (171.651, 216.214)b) (181.514, 208.313)c) (174.412, 217.218)d) (179.20, 212.716) Calculate mean, median, and mode for each set of data. IQs: 78, 79, 87, 88, 101, 120, 132 Using the Distortion-Energy failure theory: 8. (5 pts) Calculate the hydrostatic and distortional components of the stress 9. (10 pts) Calculate the von Mises stress and the factor of safety. 10. (10 pts) Of the two factors of safety computed, which one is more realistic? What failure theory should you use if you want to be conservative? 11. (10 pts) Suppose all the principal stresses are equal in magnitude and sign, and larger than Sy. What are the predicted safety factors by the maximum shear stress and distortion energy failure theories? Calculate your results and explain them. What do you think would happen in reality? A soccer goal is 24 feet wide. Point A is 40 feet in front of the center of the goal. Point B is 40feet in front of the right goal post.a) find the measure of A and Bb) which angle is larger, A or B?c) from which point would you have a better chance of kicking the ball into the goal? Why? what is Nuclear energy Chad is willing to pay $5.00 to get his first cup of morning latt; he is willing to pay $4.50 for a second cup. He buys his first cup from a vendor selling latt for $3.75 per cup. He returns to that vendor later in the morning to find that the vendor has increased her price to $3.90 per cup. Chad buys a second cup. Which of the following statements is correct? a. Chads consumer surplus on his second cup of latt was larger than his consumer surplus on his first cup of latt. b. Chad places a higher value on his second cup of latt than on his first cup of latt. c. Chads willingness to pay for his second cup of latt was smaller than his willingness to pay for his first cup of latt. d. Chad is irrational in that he is willing to pay a different price for his second cup of latt than what he is willing to pay for his first cup of latt. Calculate the price elasticity of supply for Bobbie's Bakery's sourdough loaf. When the price changes by 23 % 23% , the quantity supplied changes by 53 % 53% . Round your answer to two decimal places. Steam Workshop Downloader