the product of two consecutive integers is 272. which quadratic can be used to find x, the smaller smaller number?

Answers

Answer 1
The equation is:
x(x+1)=272
x²+x=272
x²+x-272=0

Answer 2

The quadratic equation that can be used to find x the smaller number is x^2 + x - 272 = 0.

What is a quadratic equation?

A quadratic equation is a polynomial which has the highest degree equal to two. It is a second-degree equation of the form ax² + bx + c = 0, where a, b, are the coefficients, c is the constant term, and x is the variable.

For the given situation,

Let the integer be x and the consecutive next integer be  x+1.

The product of two consecutive integers is 272,

⇒ [tex]x(x+1)=272[/tex]

⇒ [tex]x^{2} +x=272[/tex]

⇒ [tex]x^{2} +x-272=0[/tex]

Hence we can conclude that the quadratic equation that can be used to find x the smaller number is x^2 + x - 272 = 0.

Learn more about quadratic equation here

https://brainly.com/question/12014272

#SPJ2


Related Questions

During her first year of subscribing to a newspaper, Christie paid $48. During each subsequent year, the annual cost was 1.5 times the price paid the previous year. Which of the following equations may be used to calculate the total cost, C, of subscribing to the newspaper after n years?

Answers

Assuming that n = 0 when we focus on the first year, C = $48*1.5^n would represent the cost for the 2nd, 3rd, 4th, .... , years.

Check:  $48(1.5)^0 = $48(1) = $48 (correct)
             $48(1.5)^1 = $48(1.5) = $72 (correct)
              $48(1.5)^2 = $48(2.25) = $108

These results are as expected.

If I have a floor that is 100 3/4 feet by 75 1/2 what is the area

Answers

the area, assuming is a rectangular floor, is their product.

so simply convert the mixed to improper and get their product.

[tex]\bf \stackrel{mixed}{100\frac{3}{4}}\implies \cfrac{100\cdot 4+3}{4}\implies \stackrel{improper}{\cfrac{403}{4}} \\\\\\ \stackrel{mixed}{75\frac{1}{2}}\implies \cfrac{75\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{151}{2}}\\\\ -------------------------------\\\\ \cfrac{403}{4}\cdot \cfrac{151}{2}\implies \cfrac{403\cdot 151}{4\cdot 2}\implies \cfrac{60853}{8}\implies 7606\frac{5}{8}~ft^2[/tex]

The function y = –3(x – 2)2 + 6 shows the daily profit (in hundreds of dollars) of a hot dog stand, where x is the price of a hot dog (in dollars). Find and interpret the zeros of this tion

A. Zeros at x = 2 and x = 6
B. Zeros at
C. The zeros are the hot dog prices that give $0.00 profit (no profit).
D. The zeros are the hot dog prices at which they sell 0 hot dogs.

Answers

the zeroes

the serose of the x value is where y=0,
that is where profit=0

the zeroes of the y value is where x=0
that's when the price is 0 dollars


ok
x zeroes
solve for when y=0
[tex]0=-3(x-2)^2+6[/tex]
[tex]-6=-3(x-2)^2[/tex]
[tex]2=(x-2)^2[/tex]
[tex]+/-\sqrt{2}=x-2[/tex]
[tex]2+/-\sqrt{2}=x[/tex]
x zeroes at [tex]x=2+\sqrt{2}[/tex] and [tex]x=2-\sqrt{2}[/tex]


y zeroes
x=0
[tex]y=-3(0-2)^2+6[/tex]
[tex]y=-3(-2)^2+6[/tex]
[tex]y=-3(4)+6[/tex]
[tex]y=-12+6[/tex]
[tex]y=-6[/tex]




the y zeroes are where they sell 0 hot dogs for 0 dollars, it is $-6 profit
the x zereoes are where you make 0 profit, that occurs when you sell [tex]2+\sqrt{2}[/tex] and [tex]2-\sqrt{2}[/tex] hot dogs
not sure which answer you want because it doesn't specify which zeroes we want

A is wrong tho
Final answer:

The zeros of the function y = -3(x - 2)² + 6 are x = 2 + √2 and x = 2 - √2, which represent the hot dog prices at which the hot dog stand makes $0.00 profit.

Explanation:

The zeros of a function are the values of x that make the y-coordinate equal to zero. In this case, the function y = -3(x - 2)² + 6 represents the daily profit, and we need to find the x-values that result in a profit of $0.00. Setting the profit, y, to zero and solving for x, we get:

0 = -3(x - 2)² + 6

Adding 3(x - 2)² to both sides and simplifying the equation gives:

3(x - 2)² = 6

Dividing both sides by 3, we have:

(x - 2)² = 2

Take the square root of both sides, remembering to consider both the positive and negative square roots:

x - 2 = ±√2

Adding 2 to both sides gives us the final solutions:

x = 2 ± √2

So, the zeros of this function are x = 2 + √2 and x = 2 - √2. These are the hot dog prices at which the hot dog stand makes $0.00 profit.

Learn more about Zeros of a function here:

https://brainly.com/question/31654173

#SPJ3

The perpendicular bisector of side AB of ∆ABC intersects side BC at point D. Find AB if the perimeter of ∆ABC is with 12 cm larger than the perimeter of ∆ACD.

Answers

Answer:

Hence, AB=12.

Step-by-step explanation:

We are given that the perpendicular bisector of side AB of ∆ABC intersects side BC at point D.

this means that side AE=BE.

Also we could clear;ly observe that

ΔBED≅ΔAED

( since AE=BE, side ED common, ∠BED=∠AED

so by SAS congruency the two triangles are congruent)

Now we are given that:

the perimeter of ∆ABC is 12 cm larger than the perimeter of ∆ACD.

i.e. AB+AC+BC=AC+AD+CD+12

AB+BC=AD+CD+12

as AD=BD

this means that AD+CD=BD+CD=BC

AB+BC=BC+12

AB=12

Hence AB=12



Answer:

The required length of [tex]AB[/tex] is [tex]12\rm\;{cm}[/tex].

Step-by-step explanation:

Given: The perpendicular bisector of side [tex]AB[/tex] of [tex]\bigtriangleup{ABC}[/tex] intersects side [tex]BC[/tex] at point [tex]D[/tex] and the perimeter of  [tex]\bigtriangleup{ACD}[/tex].

From the figure,

[tex]AE=BE[/tex]         .......(1)              (as [tex]DE[/tex] is perpendicular bisector of side [tex]AB[/tex])

Now, In [tex]\bigtriangleup{BED}[/tex] and [tex]\bigtriangleup{AED}[/tex]

     [tex]AE=BE[/tex]                                     ( from equation 1 )

[tex]\angle {BED} =\angle {AED}[/tex]                               ( Both [tex]90^\circ[/tex] )

    [tex]ED=ED[/tex]                                     ( Common side)

[tex]\bigtriangleup{BED}\cong\bigtriangleup{AED}[/tex]                              ( by SAS congruence rule)

      [tex]BD=AD[/tex]    .........(2)                   (by CPCT)

As per question,

The perimeter of ∆ABC is with 12 cm larger than the perimeter of ∆ACD.

[tex]AB+BC+AC=AC+CD+AD+12[/tex]

         [tex]AB+BC=AD+CD+12\\AD+CD=BD+CD\\AB+BC=BC+12\\[/tex]

                   [tex]AB=12\rm\;{cm}[/tex]

Hence, the length of [tex]AB[/tex] is [tex]12\rm\;{cm}[/tex].

For more information:

https://brainly.com/question/14682480?referrer=searchResults

4 is to 5 as 10 is to a


A.8
B.12
C.12.5
D.20

Answers

Use a proportion.

4 is to 5 as 10 is to a

4/5 = 10/a

4a = 5 * 10

4a = 50

a = 12.5

Answer: C. 12.5

Newton uses a credit card with a 18.6% APR, compounded monthly, to pay for a cruise totaling $1,920.96. He can pay $720 per month on the card. What will the total cost of this purchase be?

Answers

To find out how much Newton would pay you take the cruise cost of $1920.96 and divide by $720 to find out it would take 3 months for Newton to pay off the balance at $720 per month. The cost of the cruise would be $1920.96 + ($1920.96-$720)*0.186+ ($1920-$1440)*0.186)

Scores on a certain test are normally distributed with a variance of 88. a researcher wishes to estimate the mean score achieved by all adults on the test. find the sample size needed to assure with 95 percent confidence that the sample mean will not differ from the population mean by more than 3 units.

Answers

To solve for the problem, the formula is:

n = [z*s/E]^2

where:

z is the z value for the confidence interval

s is the standard deviation

E is the number of units

 

So plugging that in our equation, will give us:

= [1.96*9.38/3]^2

= (18.3848/3)^2

= 6.1284^2

= 37.5 or 38

Which fraction is less than 1/2 a.3/8 b.5/8 c.5/7 d.9/16

Answers

3/8 because half of 8 would be 4/8
You would find it much easier to compare these fractions if you'd work with a common denominator.  In this problem the common denominator is 16 (actually, the LCD is 16*7, or 112, but let's continue anyway):

Then we'll be working with 8/16:   a.6/16 b.10/16 c.5/7 d.9/16, instead of with 1/2 a.3/8 b.5/8 c.5/7 d.9/16.

Which fraction is less than 1/2?  Ask yourself:  which fraction is less than 8/16?  Only (a) satisfies this:  6/16, or 3/8, is smaller than 1/2.

A submarine dives 300 feet every 2 minutes,and 6750 feet every 45 minutes.Find the constant rate at which he submarine dives.Give your answer in feet per minute and in feet per hour.

Answers

The answer is 150 feet/minutes and 9000 feet/hour

In order to find the constant rate per minute, we just need to divide the diving distance with the time needed to do so.

300/ 2 minutes = 150 feet/ minutes
6750/45 minutes = 150 feet/minutes   . . . .proof there is no acceleration


So, the constant rate per hour will be
150x60 = 9000 feet/hour

Distribution with a mean of 100 and standard deviation of 15...

What is the percentile score of
112?
82?

Answers

Use the z-score:
                                      112 - 100
For 112, the z-score is --------------- = 12/15, or 0.8.  
                                             15

Next, find the AREA under the standard normal curve TO THE LEFT OF 0.8.

Use either a z-score table or a calculator for this purpose.

Using my calculator, I found that this area is 0.532.  That places 112 in the 53rd percentile.

82 would be in a lower percentile:  the 12th percentile.

Let me know if you have questions about how to use a calculator to do these calculations.

The percentile scores for a distribution with a mean of 100 and a standard deviation of 15, the z-scores for 112 and 82 are 0.8 and -1.2, respectively.

Calculating Percentile Scores

To determine percentile scores for the values given in the original student question, we need to calculate the z-scores for 112 and 82 from a distribution with a mean of 100 and a standard deviation of 15.

To find the z-score, use the formula:

Z = (X - mu) / sigma

Where X is the raw score, \\mu is the mean, and \\sigma is the standard deviation.
For 112:

Z = (112 - 100) / 15

Z = 12 / 15

Z = 0.8
For 82:

Z = (82 - 100) / 15

Z = -18 / 15

Z = -1.2

Once the z-scores are calculated, we can look up the corresponding percentiles in a standard normal distribution table.

A z-score of 0.8 corresponds to approximately the 78.81st percentile, meaning about 78.81% of the scores are below 112.

A z-score of -1.2 corresponds to approximately the 11.54th percentile, meaning about 11.54% of the scores are below 82.

A, B, and C are mutually exclusive. P(A) = .2, P(B) = .3, P(C) = .3. Find P(A ∪ B ∪ C). P(A ∪ B ∪ C) =

Answers

Events are said to be mutually exclusive if they can not occur at the same time, that is, the probability of those events occurring at the same time is zero.
In the question given above, 
P (A) = .2
P (B) = .3
P (C) = .3
P (A U B U C) = .2 + .3 + .3 = .8
Therefore, P (A U B U C) = 0.8.

The five-number summary for scores on a statistics test is 11, 35, 61, 70, 79. in all, 380 students took the test. about how many scored between 35 and 61

Answers

Answer: There are 95 students who scored between 35 and 61.

Step-by-step explanation:

Since we have given that

The following data : 11,35,61,70,79.

So, the median of this data would be = 61

First two data belongs to "First Quartile " i.e. Q₁

and the second quartile is the median i.e. 61.

The last two quartile belongs to "Third Quartile" i.e. Q₃

And we know that each quartile is the 25th percentile.

And we need "Number of students who scored between 35 and 61."

So, between 35 and 61 is 25% of total number of students.

So, Number of students who scored between 35 and 61 is given by

[tex]\dfrac{25}{100}\times 380\\\\=\dfrac{1}{4}\times 380\\\\=95[/tex]

Hence, There are 95 students who scored between 35 and 61.

The number of students who scored between 35 and 61 is 95

The 5 number summary is the value of the ;

Minimum Lower quartile Median Upper quartile and Maximum values of a distribution.

The total Number of students = 380

The lower quartile (Lower 25%) = 35

The median (50%) = 61

The Number of students who scored between 35 and 61 : 50% - 25% = 25%

This means that 25% of the total students scored between 35 and 61.

25% of 380 = 0.25 × 380 = 95

Hence, 95 students scored between 35 and 61.

Learn more : https://brainly.com/question/24582786

Mrs. Milleman looked at another hotel. She waited a week before she decided to book nights at that hotel, and now the prices have increased. The original price was $1195. The price for the same room and same number of nights is now $2075. What is the percent increase? Round to the nearest whole percent.

Answers

First we need to calculate the difference between the original price and the new price:
[tex]2075-1195=880[/tex]
Now we can set up a proportion and solve for x:
[tex] \frac{1195}{100} = \frac{880}{x} [/tex]
[tex]x= \frac{(880)(100)}{1195} [/tex]
[tex]x= 73.64 [/tex] which rounded to the nearest integer is 74%
We now can conclude that the price increased in 74%

Consider the following equation:
f′(a)=limh→0 (f(a+h)−f(a))/h

Let f(x)=3√x If a≠0, use the above formula to find f′(a)=
Show that f′(0) does not exist and that f has a vertical tangent line at (0,0)

Answers

so you would plug in 0 for a from the beginning since this is numerical slope definition of a derivative

Final answer:

To find the derivative of f(x) = 3√x at a nonzero point, use the definition of the derivative with limits. The derivative at x=0 does not exist because the function has an infinite slope at this point, demonstrated by the absence of a limit, signifying a vertical tangent line at (0,0).

Explanation:

To find f'(a) for f(x) = 3√x when a ≠ 0, we can use the given definition of the derivative:
f'(a) = limh→0 (f(a+h) – f(a)) / h.
To show that f'(0) does not exist and that f has a vertical tangent line at (0,0), we need to evaluate the limit as h tends to zero for the derivative definition applied at a = 0. Since the square root function is not differentiable at 0 (due to the function having an infinite slope at this point), the limit will not exist, indicating that the derivative at 0 does not exist, and the graph of f exhibits a vertical tangent at that point.

Find the AGI and taxable income
gross income $23670
Adjustments $0
1 exception $8200
Deduction 0

Answers

Don't know if you already took the test or not but the answer should be 
23670 and $15,470.

A G I = Adjustable Gross income,

1 exception = $ 8200,

A G I= Total Income (Gross Income + Amount earned through other means) - (Adjustments +Deduction)

= ($ 23670+$8200)-($ 0 + $0)

 = $ 31,870

1 exception = $ 8200, there may be many reasons for exception.

So, Taxable Income = Gross Income - 1 Exception

                                  = $ 23670 - $ 8200

                                  =  $ 15,470


The table shows the number of each type of toy in the store. the toys will be placed on shelves so that each shelf has the same number of each type of toy how many shelves are needed for each type of toy so that it has the greatest number of toys?

Table says toy amount
dolls 45
footballs 105
small cars 75

Answers

First, we compute the highest common factor between the numbers of toys. The highest common factor for 45, 105 and 75 is 15. Therefore, we will need 15 shelves. On each shelf, there will be 45/15 = 3 dolls, 105/15 = 7 footballs and 75/15 = 5 small cars

Jonathan pays $1.90 per pound for potatoes. He buys 8.3 pounds of potatoes. He determines that he will pay $15.77, before tax, for the potatoes. Which best describes the reasonableness of Jonathan’s solution?

Answers

The equation for this problem would be 15.77=1.90 times 8.3, as Jonathan buys 8.3 pounds of potatoes and one pound is $1.90. To get the entire cost without the tax, you have to include how much the entire quantity of the product costs, not just part of it.

The correct answer is C.

Jonathan’s answer is reasonable because 2 times 8 is 16, and 16 is close to 15.77.

Hope this helps.

You are enrolled in a wellness course at your college. You achieved grades of 70, 86, 81, and 83 on the first four exams. The fina exam counts the same as an exam given during the semester. A.) If x represents the grade on the final exam, write an expression that represents your course average (arithmetic mean). B.) If your average is greater than or equal to 80 and less than 90, you will earn a B in the course. Using the expression from part A for your course average, write a compound inequality that must be satisfied to earn a B.

Answers

Note that there are 5 exams altogether:  4 hour exams and 1 final exam.  Let the grade on the final be x.

The arith. mean of these 5 grades would be
                                                                        70+ 86+ 81 + 83 + x
                   course grade = arith. mean = -------------------------------------
                                                                                        5

The answer provides an expression for the course average and a compound inequality to earn a B in a wellness course.

Expression representing the course average: 1/5(70 + 86 + 81 + 83 + x)

Compound inequality for earning a B: 80 ≤ 1/5(70 + 86 + 81 + 83 + x) < 90

What is the value of mc009-1.jpg?
–34
–2
10
34

the pic is the .jpg

Answers

Final answer:

The value of the expression -4²+(5-2)(-6) is -34 when following the standard rules of arithmetic.

Explanation:

The value of the expression −4²+(5−2)(−6) can be determined by first calculating the power and then performing the operations inside the parentheses, followed by the multiplication and addition/subtraction.

The power of −4² is 16 because the negative sign is not inside the parentheses, so it is not squared, and 16 will be considered as a negative number here (-16).

Next, we calculate the value within the parentheses (5−2), which gives us 3.

Then we multiply 3 by −6, which equates to −18. Finally, we add the two results: −16 + (−18) = −16 −18 = −(16 + 18) = −(34), resulting in the value −34.

A sweater is on sale for
20% off the regular price.
The sale price is $60.

What is the regular price of the sweater?

Answers

$75: is the correct answer.
Set up an equation

X(.20)=60
x=75

Answer:

$48

Step-by-step explanation:

List price = $60.00

Discount = 20% .

Hence the new price is (100-20)% = 80% of original price .

=> price = $ 60* 80/100

=> price = $ 48

Today, you deposit $10,750 in a bank account that pays 3 percent simple interest. how much interest will you earn over the next 7 years?
a. $1,935.00
b. $2,086.06
c. $2,257.50
d. $2,471.14
e. $2,580.00

Answers

using SI = PRT/100
=( 10750×3×7)/100
= 2257.5 $ (C)

if my answer is correct pls make it the brainliest

Bart bought a digital camera with a list price of $219 from an online store offering a 6 percent discount. He needs to pay $7.50 for shipping. What was Bart's total cost?
$205.86
$211.50
$213.36

Answers

$213.36 is the total
One way to calculate the price of the digital camera after discount is to subtract 6% from 100% (obtaining 94%) and then taking the appropriate percentage of the full list price:  (1.00-0.06)($219) = $205.86.

Now add the $7.50 shipping cost to    $205.86:  $205.86 + $7.50 = $213.36
(answer)

a homeowner has 200 feet of fence to enclose an area for a pet.

(a) if the area is given by A(x)=X(100-x), what dimension maximize the area inside the fence?

(b) what is the maximum area?

(c) determine the domain and range of A in this application.

Answers

Answer:(a) x = 50 maximizes the area. We assume that means 50 ft × 50 ft(b) 2500 ft²(c) domain: 0 ≤ x ≤ 100; range: 0 ≤ A ≤ 2500Step-by-step explanation:

(a) The function describes a parabola that opens downward. The value of A(x) is zero when x=0 and when x=100. The vertex (maximum) is halfway between those zeros, at x=50. The dimensions are 50 and 100-50 = 50. The maximum area pen will be 50 ft square.

(b) A(50) = (50 ft)² = 2500 ft² . . . the maximum area

(c) A(x) will be negative if x < 0 or x > 100, so the domain is 0 ≤ x ≤ 100.

The value of A(x) ranges from 0 to its maximum, 2500. Hence the range is 0 ≤ A(x) ≤ 2500.

Final answer:

For a rectangular fenced area, the dimensions that maximize the area are 50 feet by 50 feet, given a total of 200 feet of fence. The maximum possible area is 2500 square feet. The domain for this function is [0, 100] and the range is [0, 2500].

Explanation:

This problem deals with maximizing an area given a certain length of fencing. It is a part of optimization problems often encountered in calculus. Firstly, we understand that a rectangle will give maximum area for a fixed perimeter. Considering a rectangle, the dimensions would be x and 100-x, where x is one of the sides of the rectangle.

(a) To find the dimension that maximizes the area, we first need to find the derivative A'(x) of A(x), which equals to -2x + 100. Setting A'(x) to zero gives us x = 50. That means the dimensions that will give us maximum area are 50 feet by 50 feet.

(b) Substituting x = 50 back into the original function, we find that the maximum area is A(50)=50(100-50)=50*50=2500 square feet.

(c) For the domain of A in this application, it would be all possible values of x. So, x could be any number from 0 to 100 (both inclusive). The range of A would be from 0 to the maximum value, 2500 square feet.

Learn more about Optimization here:

https://brainly.com/question/37742146

#SPJ3

30 POINTS: The art club had an election to select a president. 25% of the 76 members of the club voted in the election. How many members voted?

Answers

Answer:

19 members voted.

Step-by-step explanation:

Percentage problems can be solved by a rule of three.

25% of the 76 members of the club voted in the election. How many members voted?

So 76 is 100% = 1. How much is 0.25?

76 - 1

x - 0.25

[tex]x = 76*0.25[/tex]

[tex]x = 19[/tex]

19 members voted.

15 children voted for their favorite color. The votes for red and blue together we're double the votes for green and yellow together. How did the children vote?

Answers

10 for red and blue together and 5 for green and yellow together
10 children voted for red and blue
and 5 voted gor green and yellow

Use the chain rule to find dw/dt. w = xey/z, x = t7, y = 4 − t, z = 2 + 9t

Answers

Given

[tex]w = xe^{y/z},\ x = t^7,\ y = 4 - t, \ z = 2 + 9t \\ \\ \frac{dw}{dt} = \frac{dw}{dx} \cdot \frac{dx}{dt} + \frac{dw}{dy} \cdot \frac{dy}{dt} + \frac{dw}{dz} \cdot \frac{dz}{dt} \\ \\ \frac{dw}{dx}=e^{y/z} \\ \\ \frac{dw}{dy}= \frac{x}{z} e^{y/z} \\ \\ \frac{dw}{dz}=- \frac{xy}{z^2} e^{y/z} \\ \\ \frac{dx}{dt}=7t^6 \\ \\ \frac{dy}{dt}=-1 \\ \\ \frac{dz}{dt}=9[/tex]

Thus,

[tex] \frac{dw}{dt}=e^{y/z}\cdot7t^6+\frac{x}{z} e^{y/z}\cdot(-1)+- \frac{xy}{z^2} e^{y/z}\cdot(9) \\ \\ =7t^6e^{y/z}-\frac{x}{z} e^{y/z}-9\frac{xy}{z^2} e^{y/z} \\ \\ =\left(7t^6-\frac{x}{z}-9\frac{xy}{z^2}\right)e^{y/z}[/tex]

The derivative[tex]\( \frac{dw}{dt} \) is \( \frac{7t^6 e^{4-t}}{2+9t} - \frac{t^7 e^{4-t}}{2+9t} - \frac{9t^7 e^{4-t}}{(2+9t)^2} \).[/tex]

To find [tex]\( \frac{dw}{dt} \)[/tex] using the chain rule for the given function[tex]\( w = \frac{x e^y}{z} \), where \( x = t^7 \), \( y = 4 - t \), and \( z = 2 + 9t \)[/tex], follow these steps:

1. **Express ( w ) in terms of ( t ):**

  Substitute ( x ), ( y ), and ( z ) into ( w ):

[tex]\[ w = \frac{x e^y}{z} = \frac{(t^7) e^{(4 - t)}}{2 + 9t} \][/tex]

2. **Apply the chain rule:**

  The chain rule states that for a function ( w(t) ) defined implicitly by ( w = f(x(t), y(t), z(t)) ), the derivative [tex]\( \frac{dw}{dt} \)[/tex] is given by:

[tex]\[ \frac{dw}{dt} = \frac{\partial w}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial w}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial w}{\partial z} \cdot \frac{dz}{dt} \][/tex]

3. **Compute partial derivatives of ( w ) with respect to ( x ), ( y ), and ( z ):**

[tex]\( \frac{\partial w}{\partial x} = \frac{e^y}{z} \)[/tex]  

  [tex]\( \frac{\partial w}{\partial y} = \frac{x e^y}{z} \)[/tex]  

[tex]\( \frac{\partial w}{\partial z} = -\frac{x e^y}{z^2} \)[/tex]

4. **Compute [tex]\( \frac{dx}{dt} \), \( \frac{dy}{dt} \), and \( \frac{dz}{dt} \):**[/tex]

[tex]\( \frac{dx}{dt} = 7t^6 \)[/tex]  

[tex]\( \frac{dy}{dt} = -1 \)[/tex]

[tex]\( \frac{dz}{dt} = 9 \)[/tex]

5. **Substitute these into the chain rule formula:**

[tex]\[ \frac{dw}{dt} = \frac{e^y}{z} \cdot 7t^6 + \frac{x e^y}{z} \cdot (-1) + \left(-\frac{x e^y}{z^2}\right) \cdot 9 \][/tex]

6. **Substitute[tex]\( x = t^7 \), \( y = 4 - t \), \( z = 2 + 9t \)[/tex] into the expression:**

[tex]\( e^y = e^{4 - t} \)[/tex]

  Substitute these values into the formula for [tex]\( \frac{dw}{dt} \):[/tex]

[tex]\[ \frac{dw}{dt} = \frac{e^{4 - t}}{2 + 9t} \cdot 7t^6 - \frac{t^7 \cdot e^{4 - t}}{2 + 9t} - \frac{9t^7 \cdot e^{4 - t}}{(2 + 9t)^2} \][/tex]

Therefore, [tex]\( \frac{dw}{dt} \)[/tex] is:

[tex]{\frac{dw}{dt} = \frac{7t^6 e^{4 - t}}{2 + 9t} - \frac{t^7 e^{4 - t}}{2 + 9t} - \frac{9t^7 e^{4 - t}}{(2 + 9t)^2} } \][/tex]

Determine whether the function f : z × z → z is onto if
a.f(m,n)=m+n. b)f(m,n)=m2+n2.
c.f(m,n)=m.
d.f(m,n) = |n|.
e.f(m,n)=m−n.

Answers

a. Yes; [tex]\mathbb Z[/tex] is closed under addition
b. No; [tex]m^2+n^2\ge0[/tex] for any integers [tex]m,n[/tex]
c. Yes; self-evident
d. No; similar to (b), because [tex]|n|\ge0[/tex] for any [tex]n\in\mathbb Z[/tex]
e. Yes; [tex]\mathbb Z[/tex] is closed under subtraction

Given sina=6/7 and cosb=-1/6, where a is in quadrant ii and b is in quadrant iii , find sin(a+b) , cos(a-b) and tan(a+b)

Answers

[tex]\bf sin(a)=\cfrac{\stackrel{opposite}{6}}{\stackrel{hypotenuse}{7}} \\\\\\ \textit{using the pythagorean theorem}\\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-b^2}=a\qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{7^2-6^2}=a\implies \pm\sqrt{13}=a \\\\\\ \textit{now, angle "a" is in the II quadrant, where the adjacent is negative} \\\\\\ -\sqrt{13}=a\qquad \qquad \boxed{cos(a)=\cfrac{-\sqrt{13}}{7}}[/tex]

now, keep in mind that, the hypotenuse is just a radius unit, and thus is never negative, so if a fraction with it is negative, is the other unit.  A good example of that is the second fraction here, -1/6, where the hypotenuse is 6, therefore the adjacent side is -1.  Anyhow, let's find the opposite side to get the sin(b).

[tex]\bf cos(b)=\cfrac{\stackrel{adjacent}{-1}}{\stackrel{hypotenuse}{6}} \\\\\\ \textit{using the pythagorean theorem}\\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-a^2}=b\qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{6^2-(-1)^2}=a\implies \pm\sqrt{35}=a \\\\\\ \textit{now, angle "b" is in the III quadrant, where the opposite is negative} \\\\\\ -\sqrt{35}=b\qquad \qquad \boxed{sin(b)=\cfrac{-\sqrt{35}}{6}}[/tex]

now

[tex]\bf \textit{Sum and Difference Identities} \\ \quad \\ sin({{ \alpha}} + {{ \beta}})=sin({{ \alpha}})cos({{ \beta}}) + cos({{ \alpha}})sin({{ \beta}}) \\ \quad \\ sin({{ \alpha}} - {{ \beta}})=sin({{ \alpha}})cos({{ \beta}})- cos({{ \alpha}})sin({{ \beta}}) \\ \quad \\ cos({{ \alpha}} + {{ \beta}})= cos({{ \alpha}})cos({{ \beta}})- sin({{ \alpha}})sin({{ \beta}}) \\ \quad \\ cos({{ \alpha}} - {{ \beta}})= cos({{ \alpha}})cos({{ \beta}}) + sin({{ \alpha}})sin({{ \beta}}) \\ \quad \\ [/tex]

[tex]\bf tan({{ \alpha}} + {{ \beta}}) = \cfrac{tan({{ \alpha}})+ tan({{ \beta}})}{1- tan({{ \alpha}})tan({{ \beta}})}\qquad tan({{ \alpha}} - {{ \beta}}) = \cfrac{tan({{ \alpha}})- tan({{ \beta}})}{1+ tan({{ \alpha}})tan({{ \beta}})}[/tex]

[tex]\bf sin(a+b)=\cfrac{6}{7}\cdot \cfrac{-1}{6}+\cfrac{-\sqrt{13}}{7}\cdot \cfrac{-\sqrt{35}}{6}\implies \cfrac{-1}{7}+\cfrac{\sqrt{455}}{42} \\\\\\ \cfrac{-6+\sqrt{455}}{42}\\\\ -------------------------------\\\\ cos(a-b)=\cfrac{-\sqrt{13}}{7}\cdot \cfrac{-1}{6}+\cfrac{6}{7}\cdot \cfrac{-\sqrt{35}}{6}\implies \cfrac{\sqrt{13}}{42}-\cfrac{\sqrt{35}}{7} \\\\\\ \cfrac{\sqrt{13}-6\sqrt{35}}{42}[/tex]

[tex]\bf -------------------------------\\\\ tan(a)=\cfrac{\frac{6}{7}}{-\frac{\sqrt{13}}{7}}\implies -\cfrac{6}{\sqrt{13}}\implies -\cfrac{6\sqrt{13}}{13} \\\\\\ tan(b)=\cfrac{\frac{-\sqrt{35}}{6}}{\frac{-1}{6}}\implies -\sqrt{35}\\\\ -------------------------------\\\\[/tex]

[tex]\bf tan(a+b)=\cfrac{-\frac{6}{\sqrt{13}}-\sqrt{35}}{1-\left( -\frac{6}{\sqrt{13}} \right)\left( -\sqrt{35} \right)}\implies \cfrac{\frac{-6-\sqrt{455}}{\sqrt{13}}}{1-\frac{6\sqrt{35}}{\sqrt{13}}} \\\\\\ \cfrac{\frac{-6-\sqrt{455}}{\sqrt{13}}}{\frac{\sqrt{13}-6\sqrt{35}}{\sqrt{13}}}\implies \cfrac{-6-\sqrt{455}}{\sqrt{13}-6\sqrt{35}}[/tex]

and now, let's rationalize the denominator of that one, hmmm let's see

[tex]\bf \cfrac{-6-\sqrt{455}}{\sqrt{13}-6\sqrt{35}}\cdot \cfrac{\sqrt{13}+6\sqrt{35}}{\sqrt{13}+6\sqrt{35}} \\\\\\ \cfrac{-6\sqrt{13}-36\sqrt{35}-\sqrt{5915}-6\sqrt{15925}}{({\sqrt{13}-6\sqrt{35}})({\sqrt{13}+6\sqrt{35}})} \\\\\\ \cfrac{-6\sqrt{13}-36\sqrt{35}-13\sqrt{35}-210\sqrt{13}}{(\sqrt{13})^2-(6\sqrt{35})^2} \\\\\\ \cfrac{-216\sqrt{13}-49\sqrt{35}}{13-210}\implies \cfrac{-216\sqrt{13}-49\sqrt{35}}{-197} \\\\\\ \cfrac{216\sqrt{13}+49\sqrt{35}}{197}[/tex]

sin(a+b) = -1/7 +√455/42 = 0.8721804464845457

cos(a-b) = √13/42 - √35/7 =  -0.7761476987942811

tan(a+b )= (6√13/13 + √35) / (1 - 6√455/13) = -0.525

Given sin(a) = 6/7 and cos(b) = -1/6, with a in quadrant II and b in quadrant III, we need to utilize trigonometric identities to find sin(a+b), cos(a-b), and tan(a+b).

Firstly, since a is in quadrant II, cos(a) is negative. We use the identity sin²(a) + cos²(a)=1 to find cos(a):

cos(a) = -√(1 - sin²(a)) = -√(1 - (6/7)²) = -√(1 - 36/49) = -√(13/49) = -√13/7

Similarly, since b is in quadrant III, sin(b) is also negative. We use the identity sin²(b) + cos²(b)=1 to find sin(b):

sin(b) = -√(1 - cos²(b)) = -√(1 - (-1/6)²) = -√(1 - 1/36) = -√(35/36) = -√35/6

Now we can use the angle addition and subtraction formulas:

1. sin(a + b) = sin(a)cos(b) + cos(a)sin(b)

sin(a + b) = (6/7)(-1/6) + (-√13/7)(-√35/6) = -1/7 + √(13×35)/(7×6) = -1/7 + √455/42 = -1/7 +√455/42

2. cos(a - b) = cos(a)cos(b) + sin(a)sin(b)

cos(a - b) = (-√13/7)(-1/6) + (6/7)(-√35/6) = √13/(7×6) - (6√35)/(7×6) = √13/42 - √35/7

3. tan(a + b) = (tan(a) + tan(b)) / (1 - tan(a)tan(b))

Using tan(a) = -sin(a)/cos(a) = -(6/7)/(-√13/7) = 6/√13 and tan(b) = sin(b)/cos(b) = (-√35/6)/(-1/6) = √35:tan(a + b) = (6/√13 + √35) / (1 - (6/√13)(√35)) = (6√13/13 + √35) / (1 - 6√455/13)

Round 5836197 to the nearest hundred

Answers

5838200 is to the nearest hundred.

Answer:

5836200.

Step-by-step explanation:

Given  :  5836197 .

To find : Round 5836197 to the nearest hundred.

Solution : We have given 5836197

Step 1 : First, we look for the rounding place which is the hundreds place.

Step 2 : Rounding place is 97.

Step 3 : 97  is greater than  50 then it would be rounded up mean next number to 97 would be increase to 1 and 97 become 00.

Step 4 : 5836200.

Therefore, 5836200.

write a fraction less than 1 with a denominator of 6 that is greater than 3/4

Answers

The answer would be 5/6.

Hope this helps!

Answer:= 5/6

Step-by-step explanation:hope this helps

Other Questions
On december 1, watson enterprises signed a $24,000, 60-day, 4% note payable as replacement of an account payable with erikson company. what is the journal entry that should be recorded upon signing the note? Escoge la mejor respuesta La pesca no es comun en mar del plata True or false? The snow fox can run at a rate of 8.5 feet per second. Write and solve an equation to find the time it takes the snow fox to travel 120ft. Please show your work. Which of the following numbers is not part of the solution to x -2?-2-2.45-8-1.76 What term is used to describe the process of restricting access to certain material on the web? The mcdonald's monopoly game is an example of which type of promotion? The offspring produced between the mating of a tiger and a lion, a liger, which is unable to reproduce, is an example of which form of reproductive isolation?a. temporal isolationb. behavior isolationc. hybrid infertilityd. gametic isolatione. hybrid inviability What is the clear pronunciation of every word called in acting? Announcement Register Enunciation Intonation Drag a statement or reason to each box to complete this proof. If 4x+5=17 , then x=3 . Why did many European countries experience economic growth while their governments practiced mercantilism?A. Mercantilism trade limits prevented sudden markets shifts that could lead to economic problems. B. Joint stock companies were required to pay their employees fair wages, allowing them to purchase more goods. C. Populations were growing so quickly that the increase in labor led to more productivity in the workplace. D. They were able to get large volumes of resources from the colonies they had claimed overseas. The keyboard preferences pane includes a list of keyboard shortcuts. During the revolutionary war, a massachusetts group of women accused a merchant of hoarding coffee. the group took matters into their own hands by how did the land gained in the Mexican cession affect political party unity in the united statesa.debate over immigrationb.it broke party unity over the issue of slaveryc.it strengthened party unity in the whig partyd.it did not significantly affect party unity The hypotenuse of right triangle ABC, line segment AC, measures 13 cm. The length of line segment BC is 5 cm. What is the approximate difference between mC and mA? Coping with stress involves building Identify each step as part of either the revising or proofreading stage of the writing process. If fish are caught faster than they can breed, what will happen to the population? Question 5 / 5 The homegrown Turkey farm is preparing their Thanksgiving shipment. In one container they can put 8 big turkey boxes or 10 small turkey boxes. They send 96 turkey boxes using more big boxes than small boxes. How many containers did they use? What point in the feasible region maximizes P for the objective function P = 2x + 3y? Constraints 2x+y15x+3y20x0,y0 A.(0, 15) B.(5, 5) C.(8, 7) D.(2, 6) Debbies colleague hasnt provided her the required details to complete an important report. She is upset by this, and she sends an email to her colleague. She would also like to keep her manager informed about the delay, but without her colleagues knowledge. What email feature can she use here?Debbie can use the __________ feature in the email application to copy her manager on the email without her colleague knowing she did so. Steam Workshop Downloader