The second side of a triangular deck is 6 feet longer than the shortest side and a third side that is 6 feet shorter than twice the length of the shortest side. If the perimeter of the deck is 56 ​feet, what are the lengths of the three​ sides?

Answers

Answer 1

Answer:

14 ft20 ft22 ft

Step-by-step explanation:

Let s represent the length of the shortest side. Then the other two sides are ...

s +62s -6

The perimeter is the sum of the lengths of the three sides, so is ...

  56 ft = s + (s+6) + (2s-6) = 4s . . . . collect terms

  14 ft = s . . . . . . . divide by the coefficient of s

The shortest side is 14 ft; the second side is 20 ft; the third side is 22 ft.

Answer 2

Final answer:

Using the given information about the sides of the triangular deck and its perimeter, we set up an equation to solve for the shortest side and then used that to find the lengths of the other two sides. The three sides of the triangular deck are 14 feet, 20 feet, and 22 feet.

Explanation:

To solve the problem, we need to set up an equation based on the given information. Let's define the shortest side of the triangle as x feet. According to the problem, the second side is x + 6 feet, and the third side is 2x - 6 feet. The perimeter of the triangle is the sum of the lengths of all three sides, which is given as 56 feet.

We can set up the following equation:

x + (x + 6) + (2x - 6) = 56

Combining like terms, we get:

4x = 56

Divide both sides by 4:

x = 14

Now we can find the lengths of the sides:

The shortest side: 14 feet

The second side: 14 + 6 = 20 feet

The third side: 2(14) - 6 = 22 feet


Related Questions

Help with Algebra! (Photo attached)

Answers

Answer:

  D.  The graph of g(x) is shifted 2 units up.

Step-by-step explanation:

Adding 2 to the y-coordinate of a point shifts it up by 2 units.

___

The graph of f(x) is all points (x, f(x)). When you add 2 to f(x), you make the graph of g(x) be all points (x, g(x)) = (x, f(x)+2). That is all of the points on the original graph are shifted up by 2 units.

Seth and Eva are biking on a trail. Seth begins 8 miles ahead of Eva and bikes at an average speed of 4 miles per hour. Eva bikes at an average speed of 6 miles per hour. How much time will it take for Eva to catch up with Seth on the trail?

Answers

Answer:

4 hours

Step-by-step explanation:

0:8

6:12

12:16

18:20

24:24

Answer: 4 hours

Step-by-step explanation:

In a certain region, the equation  y=19.485x+86.912  models the amount of a homeowner’s water bill, in dollars, where x is the number of residents in the home.


What does the slope of the equation represent in context of the situation?

1. The water bill increases by about $19 every month.

2. The water bill increases by about $19 for every additional resident in the home.

3. The water bill increases by about $87 every month.

4. The water bill increases by about $87 for every additional resident in the home.

Answers

Answer:

It's choice 2.

Step-by-step explanation:

y=19.485x+86.912

The 19.485 is the slope of the graph of this equation.  This gives the rate of change of the amount of the bill (above $86.912)  for  each added resident (x).

There are rabbits and chickens in Sally's backyard: 22 heads and 76 legs. How many rabbits and how many chickens are there?

Answers

there is 6 chickens and 16 rabbits, need the work tho?

6 chickens 16 rabbits

A car will be traveling a total distance of 520 miles. The first part of the trip takes 2 hours, and the car’s average rate is 65 miles per hour. If the entire trip takes 8 hours, what is the car’s average rate, in miles per hour, during the second part of the trip?

49

57

50

65

Answers

Final answer:

The car's average rate during the second part of the trip is 65 miles per hour, which is calculated by dividing the remaining distance of 390 miles by the remaining travel time of 6 hours.

Explanation:

We need to find the average rate of the car during the second part of the trip. We know the total distance of the trip is 520 miles and the total time for the trip is 8 hours. Since the first part of the trip was at 65 miles per hour for 2 hours, the car would have covered 130 miles (65 miles/hour * 2 hours).

We subtract the distance covered in the first part of the trip from the total distance to find the distance covered during the second part of the trip: 520 miles - 130 miles = 390 miles. The remaining time for the second part of the trip is 8 hours - 2 hours = 6 hours.

To find the average speed during the second part of the trip, we divide the remaining distance by the remaining time:
Average rate = Distance / Time = 390 miles / 6 hours = 65 miles per hour.

Determine whether each set of side lengths could be the sides of a right triangle. Drag and drop each set of side lengths to the correct box. 10.5cm,20.8cm,23.3cm

6cm, 22.9cm,20.1cm

Answers

Answer:

10.5cm,20.8cm,23.3cm — yes6cm, 22.9cm,20.1cm — no

Step-by-step explanation:

If the sides form a right triangle, the sum of the squares of the shorter two sides will equal the square of the longest side.

1. 10.5^2 + 20.8^2 = 23.3^2 . . . . . true algebraic statement; right triangle

__

2. 6^2 +20.1^2 = 440.01 ≠ 22.9^2 = 524.41 . . . . . this is an obtuse triangle

Jivesh also has a more powerful Model B rocket. For this rocket, he uses the equation h=-490t^2+1260t. When is the height of the Model B rocket 810 centimeters? ( it also includes number 19, but I need 20)

Answers

Answer:

1.29 s

Step-by-step explanation:

h = -490t² + 1260t

810 = -490t² + 1260t

490t² - 1260t + 810 = 0

49t² - 126t + 81 = 0

(7t - 9)² = 0

7t - 9 = 0

t = 9/7

t ≈ 1.29

Final answer:

To find the time when the rocket is at a height of 810 cm, set the equation -490t^2 + 1260t equal to 810 and solve for t using the quadratic formula. The quadratic formula will give two solutions: choose the positive solution as we cannot have negative time.

Explanation:

We are given the equation h=-490t^2+1260t to represent the height of the rocket. We're also told that the height h is 810 cm and we are asked to solve for time t when this is the case.

To find the time when the rocket's height is 810 cm, we can first set the equation equal to 810: -490t^2 + 1260t = 810.

We can then simplify that to -490t^2 + 1260t - 810 = 0 and solve for t using the quadratic formula t = [-b ± sqrt(b² - 4ac)] / 2a, where a = -490, b = 1260 and c = -810.

This will give us the two points in time at which the rocket is at a height of 810 cm. Remember, the negative solution is likely extraneous as we cannot have negative time, so you should consider only the positive solution.

Learn more about Quadratic Equations here:

https://brainly.com/question/34196754

#SPJ2

PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!

Tammy knows that the factors of a polynomial are ƒ(x) = (x − 2)(x − 1)(x + 4) and the solutions are x = −4, 1, and 2. Which graph models this polynomial?

Answers

The answer would be D, where all of the given x values touch the x axis

Answer: D)

Step-by-step explanation:

The equation is: (x - 2)(x - 1)(x + 4) = 0

We can find the x-intercepts by Applying the Zero Product Property:

x - 2 = 0           x - 1 = 0             x + 4 = 0

x = 2                 x = 1                   x = -4

Which graph shows the curve crossing the x-axis at these points?  D

A 180-watt iHome® is used on an average of three hours a day. Find the cost of listening to the iHome for one week at a cost of $0.13 per kilowatt-hour.


A. $0.49

B. $11.34

C. $491.40

D. $0.07

Answers

Hello!

The answer is:

The correct option is:

A. $0.49

Why?

From the statement, we know that the iHome is used on average three hours a day, and we are asked to find the cost for a week, so first, we need to calculate the total hours that the iHome is used for, and then, calculate the kilowatt-hour consumption rate.

[tex]TotalTime_{week}=3\frac{hours}{day} *7days=21hours[/tex]

[tex]TotalEnergyConsumption_{week}=180watt*21hours=3780watt.hour[/tex]

Now, we must remember that:

[tex]1Kilowatt=1000watts[/tex]

So,

[tex]3780watts=3780watts.hour*\frac{1KiloWatt}{1000watts}=3.78KiloWatt.hour[/tex]

Then, calculating the cost, we have:

[tex]TotalCost_{week}=0.13\frac{dollar}{killowat.hour}*3.78killowat.hour=0.49(dollar)[/tex]

Hence, we have that the correct option is:

A. $0.49

Have a nice day!

I really really REALLY NEED HELP ON this!!!


Simplify: 4^sqrt(400)/4^sqrt(5) Show your work.

Answers

Answer:

[tex]2\sqrt[4]{5}[/tex]

Step-by-step explanation:

First, you calculate the quotient which is [tex]\sqrt[4]{80}[/tex]

Then you simplify the radical which is [tex]2\sqrt[4]{5}[/tex]

Inputting this in a calculator will give you 2.99 which is also correct.

In a fruit cocktail, for every 25 ml of orange juice you need 30 ml of apple juice and 45 ml of coconut milk. What proportion of the cocktail is coconut milk? Give your answer as a fraction in its simplest form.

Answers

Answer:

9 / 20

Step-by-step explanation:

We can form a ratio with the information "for every 25 ml of orange juice you need 30 ml of apple juice and 45 ml of coconut milk"

25 : 30 : 45

Total = 100

Coconut milk = 45 ml

45 / 100 = 9 / 20

A set of telephone poles is stacked in a pile, 8 layers high. The top layer consists of 20 telephone
poles. The next layer down consists of 24 telephone poles. The third layer consists of 28
telephone poles. If this pattern continues for the remaining 5 layers, how many telephone poles
are in the pile?
A. 224
B. 244
C. 252
D. 272

Answers

Answer:

D. 272 poles

Explanation:

We are given that:

The top layer has 20 poles, the next down one has 24 poles and the third one has 28 poles

We can note that each layer has 4 poles more that the one above it

Based on this, we can get the number of poles in each layer as follows:

Top layer has 20 poles

Second one has 20 + 4 = 24 poles

Third one has 24 + 4 = 28 poles

Fourth one has 28 + 4 = 32 poles

Fifth one has 32 + 4 = 36 poles

Sixth one has 36 + 4 = 40 poles

Seventh one has 40 + 4 = 44 poles

Eighth one has 44 + 4 = 48 poles

Now, we can get the total number of poles by adding the poles in all layers

This is done as follows:

Total number of poles = 20 + 24 + 28 + 32 + 36 + 40 + 44 + 48

Total number of poles = 272 poles

Hope this helps :)

"No solutions & all real numbers"


Solve each equation showing all work:

1.) -2(6 - 2x) = 4(-3 + x)

2.) 5 - 1(2x + 3) = -2(4 + x)

Answers

Answer:

1.)[tex]-12+4x=-12+4x[/tex]

2.) [tex]2-2x \neq -8-2x[/tex]

Step-by-step explanation:

The distributive property states that multiplying a sum by a number gives the same result as multiplying each addend by the number and then adding all the products.

[tex]a(b+c)=ab+ac[/tex]

For the first equation

[tex]-2(6-2x)=4(-3+x)\\(-2)(6)+(-2)(-2x)=(4)(-3)+(4)(x)\\-12+4x=-12+4x[/tex]

For the second equation

[tex]5-1(2x+3)=-2(4+x)\\5+((-1)(2x)+(-1)(3))= (-2)(4)+(-2)(x)\\5+(-2x-3) = -8+(-2x)\\5-2x-3=-8-2x\\2-2x \neq -8-2x[/tex]

.

3. A projectile is fired from ground level with an initial velocity of 35 m/s at an angle of 35° with the horizontal. How long will it take for the projectile to reach the ground?

Answers

Answer: 4.10s

t=2Vi*sin(theta)/g

Vi=initial velocity=35m/s

g=9.8m/s^2

t=2*35*sin(35)/9.8=4.10s

Answer:

4.1 seconds to the nearest tenth.

Step-by-step explanation:

The vertical component of the velocity = 35 sin 4.935 m/s.

The relation between the height (h) of the projectile and time is given by:

h = ut + 1/2 g^2   where u = initial velocity, t = the time and g = acceleration due to gravity which we can take to be 9.8 m/s/s. When the projectile hits the ground h = 0 .

So we have h = 35sin35 t - 4.9t^2 = 0

t(35sin35 - 4.9t) = 0

4.9t = 35 sin35

t = 35 sin 35 / 4.9

=  4.097 seconds

What is the probability of getting a spade or a red card?

Answers

Answer:

  3/4

Step-by-step explanation:

1/2 the deck is red cards.

1/4 of the deck is spades.

There are no spades that are red cards, so the probability of drawing a red card or a spade at random from a well-shuffled deck is ...

  1/2 + 1/4 = 3/4

Line l is parallel to line m. The slope of? line l is 8/5 . What is the slope of line m?

Answers

Answer:

8/5

Step-by-step explanation:

The slope of two parallel lines is always the same, just are in different locations on the x or y axis.

One jar of jelly costs $2.32 for 16 ounces. Another jar costs $2.03 for 13 ounces. Which is the better buy? Why? The jelly that costs $____ for ____ ounces is the better buy. The unit rate for this jar of jelly is $____, or approximately $____ per ounce. The unit rate for the second jar of jelly is $____, or approximately $____ per ounce. Question 4 options: Blank # 1 Blank # 2 Blank # 3 Blank # 4 Blank # 5 Blank # 6

Answers

Answer:

The jar of jelly that costs $2.32 for 16 ounces is the better buy, because the unit rate is less

Step-by-step explanation:

step 1

Find the units rate

One jar of jelly costs $2.32 for 16 ounces

so

The unit rate is equal to [tex]\frac{2.32}{16}= 0.145\frac{\$}{ounce}[/tex]

Another jar costs $2.03 for 13 ounces

so

The unit rate is equal to [tex]\frac{2.03}{13}= 0.156\frac{\$}{ounce}[/tex]

step 2

Compare the unit rates

[tex]0.145\frac{\$}{ounce} < 0.156\frac{\$}{ounce}[/tex]

therefore

The jar of jelly that costs $2.32 for 16 ounces is the better buy, because the unit rate is less

The jelly that costs $2.32 for 16 ounces is the better buy. The unit rate for this jar of jelly is $0.145 or approximately $0.15 per ounce. The unit rate for the second jar of jelly is $0.156 or approximately $0.16 per ounce

a chef plans to mix 100% vinegar with italian dressing. the italian dressing contains 7% vinegar. the chef wants to make 310 milliliters of a mixture that contains 19% vinegar. how much vinegar and how much italian dreessing should she use ?
vinegar: ? milliliters
italian dressing: ? milliliters

Answers

Let [tex]x[/tex] be the amount (mL) of the pure vinegar the chef will use, and [tex]y[/tex] the amount of dressing. She wants to end up with a 310 mL mixture, so

[tex]x+y=310[/tex]

For each mL used of the dressing, 0.07 mL is vinegar, and the chef wants to end up with a 19% vinegar mixture, so

[tex]x+0.07y=0.19(x+y)=58.9[/tex]

Now

[tex]x+y=310\implies y=310-x[/tex]

[tex]\implies x+0.07(310-x)=58.9[/tex]

[tex]\implies0.93x+21.7=58.9[/tex]

[tex]\implies0.93x=37.2[/tex]

[tex]\implies x=40[/tex]

[tex]\implies y=270[/tex]

Two search teams spot a stranded climber on a mountain. The first search team is 0.5 miles from the second search team. If the angle of elevation from the first search team to the stranded climber is 15° and the angle of elevation from the second search team is 22° to the stranded climber, what is the altitude of the climber if both search teams are standing at an altitude of 1 mile high?

Answers

Answer:

The altitude of the climber is 1.40 miles

Step-by-step explanation:

see the attached figure to better understand the problem

we know that

In the right triangle BCD

tan(22°)=h/(x-0.5)

h=tan(22°)*(x-0.5) ----> equation A

In the right triangle ACD

tan(15°)=h/x

h=tan(15°)*(x) ----> equation B

Equate equation A and equation B and solve for x

tan(22°)*(x-0.5)=tan(15°)*(x)

tan(22°)*x-tan(22°)*0.5=tan(15°)*x

x[tan(22°)-tan(15°)]=tan(22°)*0.5

x=tan(22°)*0.5/[tan(22°)-tan(15°)]

x=1.48 miles

Find the value oh h

h=tan(15°)*(1.48)=0.40 miles

therefore

The altitude of the climber is equal to

0.40+1=1.40 miles

Answer:

Step-by-step explanation:

Just solved a similar problem and figured it out, the angle of elevation is somewhat unintuitive as the angle of the second search team needs to be flipped. The diagram should look more like this:
This isn't an explanation of the math but more of a visualization for those that just needed the 2D representation. The real answer would be 1.081 miles (:

Solve the following equation for y.
2y + 2 = 36

Answers

Solving step by step:

2y + 2 = 36

Move the constant to the right and change the sign.

2y = 36 - 2

Calculate the right side.

2y = 34

Divide both sides by 2.

y = 17

Answer:

y = 3 • ± √2 = ± 4.2426

Step-by-step explanation:

2y2 -  36  = 0  

Step  2  :

Step  3  :

Pulling out like terms :

3.1     Pull out like factors :

  2y2 - 36  =   2 • (y2 - 18)  

Trying to factor as a Difference of Squares :

3.2      Factoring:  y2 - 18  

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =

        A2 - AB + BA - B2 =

        A2 - AB + AB - B2 =  

        A2 - B2

Note :  AB = BA is the commutative property of multiplication.  

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check : 18 is not a square !!  

Ruling : Binomial can not be factored as the difference of two perfect squares.

Equation at the end of step  3  :

 2 • (y2 - 18)  = 0  

Step  4  :

Equations which are never true :

4.1      Solve :    2   =  0

This equation has no solution.

A a non-zero constant never equals zero.

Solving a Single Variable Equation :

4.2      Solve  :    y2-18 = 0  

Add  18  to both sides of the equation :  

                     y2 = 18  

 

When two things are equal, their square roots are equal. Taking the square root of the two sides of the equation we get:  

                     y  =  ± √ 18  

Can  √ 18 be simplified ?

Yes!   The prime factorization of  18   is

  2•3•3  

To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

√ 18   =  √ 2•3•3   =

               ±  3 • √ 2  

The equation has two real solutions  

These solutions are  y = 3 • ± √2 = ± 4.2426

Match the one-to-one functions with their inverse functions.

Answers

I'll match them for you, but to find the inverse of an equation, all you must do is

Switch x and y Solve for y again for the "inverse" !

[tex]f(x)^{-1}  = 5x[/tex]  →  [tex]f(x) = \frac{x}{5}[/tex]

[tex]f(x)^{-1} = \frac{x^{3}}{2}[/tex]  →  [tex]f(x) = \sqrt[3]{2x}[/tex]

[tex]f(x)^{-1} = x + 10[/tex]  →  [tex]f(x) = x - 10[/tex]

[tex]f(x)^{-1} = \frac{3(x+17)}{2}[/tex]  →  [tex]f(x) = \frac{2x}{3} -17[/tex]

Hope I help ! :)

ANSWER

[tex] \boxed {f(x)= \frac{2x}{3} - 17\to \: f ^{ - 1} (x)=\frac{3x + 51}{2}}[/tex]

[tex] \boxed {f(x) = x - 10 \to {f}^{ - 1} (x) = x + 10 }[/tex]

[tex] \boxed {f(x) = \sqrt[3]{2x} \to {f}^{ - 1} (x) = \frac{ {x}^{3} }{2} }[/tex]

[tex] \boxed {f(x) = \frac{x}{5} \to{f}^{ - 1} (x) = 5x}[/tex]

EXPLANATION

1.

Given :

[tex]f(x) = \frac{2x}{3} - 17[/tex]

Let

[tex]y =\frac{2x}{3} - 17[/tex]

Interchange x and y.

[tex]x=\frac{2y}{3} - 17[/tex]

Solve for y.

[tex]x + 17=\frac{2y}{3} [/tex]

[tex]3x + 51=2y[/tex]

[tex]y=\frac{3x + 51}{2} [/tex]

[tex]f ^{ - 1} (x)=\frac{3x + 51}{2} [/tex]

2.

Given: f(x)=x-10

Let y=x-10

Interchange x and y.

x=y-10

Solve for y.

y=x+10

This implies that,

[tex] {f}^{ - 1} (x) = x + 10[/tex]

3.

Given:

[tex]f(x) = \sqrt[3]{2x} [/tex]

Let

[tex]y=\sqrt[3]{2x} [/tex]

Interchange x and y.

[tex]x=\sqrt[3]{2y} [/tex]

solve for y.

[tex] {x}^{3} = 2y[/tex]

[tex]y = \frac{ {x}^{3} }{2} [/tex]

[tex] {f}^{ - 1} (x) = \frac{ {x}^{3} }{2} [/tex]

4.

Given:

[tex]f(x) = \frac{x}{5} [/tex]

Let

[tex]y = \frac{x}{5} [/tex]

Interchange x and y.

[tex]x = \frac{y}{5} [/tex]

Solve for y.

[tex]y = 5x[/tex]

[tex] {f}^{ - 1} (x) = 5x[/tex]

Tickets cost $4.75 for adults and $2.50 for children What is the total cost of the tickets for two adults and three children

Answers

Answer:

$9.50 - for adults

$7.50 - children

Step-by-step explanation:

All you have to do is multiply $4.75 by 2 since there are two adults and multiply $2.50 by 3 since there  are three children.

Please please help!!

Answers

Answer:

240.3

Step-by-step explanation:

       Tan(31) = y/400ft

400 tan (31) = y

                 y = 240,3

The manager of a frozen yogurt shop wants to add some new flavors that will appeal to customers. Which surveying method is most likely to produce a representative sample of the yogurt shop's customers?

Answers

Final answer:

The surveying method that is most likely to produce a representative sample of the yogurt shop's customers is true random sampling.

Explanation:

The surveying method that is most likely to produce a representative sample of the yogurt shop's customers is the true random sampling method. This method involves randomly selecting participants from the entire population of yogurt shop customers, ensuring that each customer has an equal chance of being selected. This helps to minimize bias and ensure that the sample is representative of the entire customer population.

For example, the manager can generate a list of all the customers who have made purchases at the yogurt shop over a specific period of time, and then use a random number generator or a random selection method to choose a certain number of customers from the list. This will ensure that the selected participants represent the diversity of the yogurt shop's customer base.

The most appropriate surveying method for the yogurt shop manager to obtain a representative sample of customers is systematic sampling.

To obtain a representative sample of the yogurt shop's customers, the most appropriate surveying method would be a systematic sampling approach. This involves selecting every nth customer who visits the shop during different times of the day and different days of the week.

By using a systematic sampling method, the manager can ensure that the sample includes customers from various demographic groups, such as different age ranges, genders, and visiting patterns. This approach reduces the potential for bias that may arise from convenience sampling methods, where only customers who are readily available or willing to participate are surveyed.

Additionally, the systematic sampling method allows the manager to capture the preferences of both regular and occasional customers, as well as those who visit during peak and off-peak hours. This comprehensive representation of the customer base increases the likelihood that the survey results will accurately reflect the preferences of the yogurt shop's overall customer population.

Systematic sampling is more time-consuming and resource-intensive than convenience sampling, but it is a more reliable method for obtaining a representative sample of the yogurt shop's customers, which is crucial for making informed decisions about introducing new flavors that will appeal to a wide range of customers.

Please give details on how to do this:


Given the translation T(-2, 5), translate the given ordered pairs: (2, 5) and (-1, 7

Answers

Answer:

It is 15.

Step-by-step explanation:

The function below shows the number of car owners f(t), in thousands, in a city in different years t:f(t) = 1.1t2 − 2.5t + 1.5The average rate of change of f(t) from t = 3 to t = 5 is ______ thousand owners per year.Answer for Blank 1:

Answers

Answer:

The average rate of change is : [tex]6.3[/tex]

Step-by-step explanation:

The number of car owners is modeled by the function;

[tex]f(t)=1.1t^2-2.5t+1.5[/tex], where t is the different number of years.

The average rate of change  of f(t)  from t=3 to t=5 is simply the slope of the secant line connecting:

(3, f(3)) and (5,f(5))

Which is given by:

[tex]\frac{f(5)-f(3)}{5-3}[/tex]

Now, we substitute t=3 into the function to get;

[tex]f(3)=1.1(3)^2-2.5(3)+1.5[/tex]

[tex]f(3)=3.9[/tex]

We substitute t=5 into the function to get;

[tex]f(5)=1.1(5)^2-2.5(5)+1.5[/tex]

[tex]f(5)=16.5[/tex]

Therefore the average rate of change is : [tex]\frac{14.5-3.9}{2}=6.3[/tex]

Bob has 35 liters of lemonade if he distributes all the lemonade equally into 7 juice pitchers, how much lemonade will be in each pitcher?

Answers

Answer:

5 liters

Step-by-step explanation:

Divide 35 liters evenly between the 7 pitchers and you'll have 5 liters in each pitcher.

Final answer:

To find the amount of lemonade in each pitcher, divide the total amount of lemonade by the number of pitchers. In this case, each pitcher will contain 5 liters of lemonade.

Explanation:

To find the amount of lemonade in each pitcher, we divide the total amount of lemonade by the number of pitchers. In this case, Bob has 35 liters of lemonade and 7 pitchers. So, to find the amount of lemonade in each pitcher, we divide 35 by 7.



35 ÷ 7 = 5 liters of lemonade



Therefore, there will be 5 liters of lemonade in each pitcher.

If Bob has 35 liters of lemonade and he distributes it equally into 7 juice pitchers, we need to perform a division to find out how much lemonade will be in each pitcher. The calculation is straightforward:

Divide the total volume of lemonade by the number of pitchers.

35 liters ÷ 7 pitchers = 5 liters per pitcher.

Therefore, each juice pitcher will contain 5 liters of lemonade.

I have a vase that is shaped like a rectangular prism. The height is 10 inches. The length of the base is 6 inches. The width of the base is 5 inches. What is 2/3 of the volume of the vase? If necessary, round to the nearest whole number.

Answers

Answer:

[tex]200in^3[/tex]

Step-by-step explanation:

To solve this, we are using the formula for the volume of a rectangular prism:

[tex]V=whl[/tex]

where

[tex]w[/tex] is the width of the base

[tex]l[/tex] is the length of the base

[tex]h[/tex] is the height of the prism

We know from our problem that the height is 10 inches. The length of the base is 6 inches. The width of the base is 5 inches.

Replacing values

[tex]V=(5in)(10in)(6in)[/tex]

[tex]V=300in^3[/tex]

Now, to find 2/3 of that volume, we just need to multiply it by 2/3

[tex]\frac{2}{3} V=\frac{2}{3} 300in^3[/tex]

[tex]\frac{2}{3} V=200in^3[/tex]

We can conclude that 2/3 of the volume of the vase is 200 cubic inches.

How do you use a system of equations to find the solution algebraically?

Answers

Answer:

Pemdas

Step-by-step explanation:

Parenthesis

Exponents

Multiplication

Division

Addition

Subtraction

You go from left to right and solve in the order called Pemdas.

Final answer:

To use a system of equations to find the solution algebraically, follow these steps: identify the unknowns and knowns, write down the equations, solve for one variable, substitute the expression into the other equation(s), solve for the remaining variables, and check your answer(s) for reasonableness.

Explanation:Using a System of Equations to Find the Solution Algebraically

1. Identify the unknowns and knowns.

2. Write down the equations that represent the given information.

3. Solve one of the equations for one variable in terms of the other.

4. Substitute this expression into the other equation(s), replacing the variable.

5. Solve the resulting equation(s) to find the value(s) of the remaining variable(s).

6. Check your answer(s) to ensure they make sense in the context of the problem.

The table shows the estimated number of deer living in a forest over a five-year period. Are the data best represented by a linear, exponential, or quadratic model? Write an equation to model the data.

0/89 1/55 2/34 3/21 4/13


a. quadratic; y = 0.62x2 + 89

b. exponential; y = 89 • 0.62x

c. linear; y = 0.62x + 89

d. quadratic; y = 89x2 + 0.62

Answers

Answer:

 

exponential; y = 89 • 0.62^x

Step-by-step explanation:

Answer:

Option B exponential y = 89 · 0.62x

Step-by-step explanation:

The table shows the estimated number of deer living in a forest over a five year period.

Year            Number of deers

0                     89

1                      55

2                     34

3                     21

4                     13

Now we have to find the model representing this situation. Difference in number of deer, in the forest.

We can see there is a common ratio between each successive term r = [tex]\frac{55}{89}[/tex] = 0.618

r = [tex]\frac{34}{55}[/tex] = 0.618

so it can be represented by an exponential model.

[tex]y=a (r) ^{x}[/tex]

[tex]y=89(62) ^{x}[/tex]

Option B is the answer.

Other Questions
Which property was use to simplify this expression? (will be marked brainliest)4 (b+2) = 4b + 8Distributive property Commutative property Associative propertyInverse property how many repeating digits are in 0.64 WHERE ARE TARGET CELLS FOR PARATHYROID HORMONE LOCATED? Sleep problems and eating issues are _____of stressemotional signsphysical signsbehavioral signsnervous signs Use the Divergence Theorem to compute the net outward flux of the vector field F across the boundary of region D. D is the region between the spheres of radius 4 and 5 centered at the origin. F = What arguments could be made for or against forcing people to buy health insurance? When the flashlight is in the air and the refracted ray enters the water, how does the angle of refraction compare with the angle of incidence? Systolic blood pressure is the amount of pressure that blood exerts __________ Which theory suggests that altruistic behavior is governed by calculations of rewards and costs? In January 2004, NASA landed exploration vehicles on Mars. Part of the descent consisted of the following stages:Stage A: Friction with the atmosphere reduced the speed from 19300 km/h to 1600 km/h in 4.0 min.Stage B: A parachute then opened to slow it down to 321 km/h in 94 s.Stage C: Retro rockets then fired to reduce its speed to zero over a distance of 75 m.Assume that each stage followed immediately after the preceding one and that the acceleration during each stage was constant.1- Find the rocket's acceleration (in m/s2) during stage A2- Find the rocket's acceleration (in m/s2) during stage B3-Find the rocket's acceleration (in m/s2) during stage C Please help me with this If f(-2)=16 which could be the equation for f(x)A. f(x)=x-18B.f(x)=20-2xC. f(x)=3x+24D.f(x)=8-4x PLEASE HELP ME SOLVE THIS Which expression is equivalent to log_5(x/4)^2? Name the intersection of plane KCG and a plane that contains L and D if ST=15 and RT=40 then RS= ? Quadrilaterals find m Given the function f(x) = 6x2 13, what is f(-3)? A. -67 B. -4 C. 41 D. 311 What song was on countrys first million-selling record? What is the coefficient in this expression?5-4.7-2x+5/8A. -4.7B. -2C. 5/8D. 5 Steam Workshop Downloader