The thermite reaction, used for welding iron, is the reaction of Fe3O4 with Al. 8 Al (s) + 3 Fe3O4 (s) ⟶ 4 Al2O3 (s) + 9 Fe (s) Δ H° = -3350. kJ/mol rxn. Because this large amount of heat cannot be rapidly dissipated to the surroundings, the reacting mass may reach temperatures near 3000. °C. How much heat (in kJ) is released by the reaction of 19.3 g of Al with 63.2 g of Fe3O4?

Answers

Answer 1

The reaction of 19.3 g of aluminum with 63.2 g of ferric oxide is exothermic, releasing 2395.25 kJ of heat. Aluminum is the limiting reagent in the reaction.

The limiting reagent is the reactant that is used up completely in the reaction. To determine the limiting reagent, compare the ratio of the moles of each reactant to the stoichiometric coefficients in the balanced chemical equation. The reactant with the smaller ratio is the limiting reagent.

1: Calculate the number of moles of each reactant.

Moles of aluminum = 19.3 g / 27 g/mol = 0.715 mol

Moles of ferric oxide = 63.2 g / 231.5 g/mol = 0.272 mol

2: Determine the limiting reagent.

The ratio of moles of aluminum to moles of ferric oxide is 0.715 mol / 0.272 mol = 2.63. The stoichiometric ratio of aluminum to ferric oxide in the balanced chemical equation is 8:3. Since 2.63 is less than 8/3, aluminum is the limiting reagent.

3: Calculate the amount of heat released.

q = -3350 kJ/mol * 0.715 mol = -2395.25 kJ

4: Interpret the answer.

The amount of heat released is -2395.25 kJ. This means that the reaction releases 2395.25 kJ of heat.

The amount of heat released by the reaction of 19.3 g of Al with 63.2 g of Fe_3O_4 is -2395.25 kJ.


Related Questions

How many extractions are required to recover at least 99.5% of the material in the organic layer if the partition coefficient is 10 and there is 50 mL of water and ether used in each extraction?

Answers

Answer:

At least 3 three extractions are required to recover at least 99.5 % of the material in the organic layer.

Explanation:

The partition coefficient of a solute (S) soluble in two immiscible solvents is given by the following formula

[tex]K_S=\frac{[S]_2}{[S]_1}[/tex]

The lower layer is taken as an aqueous layer (1), while the upper layer is organic (2). The fraction of solute remaining in the aqueous layer is given by the following formula

[tex]q^n=(\frac{V_1}{V_1 \times KV_2})^n[/tex]

Here, n denotes the number of extraction, and q^n represents the fraction of solute remaining in aqueous solvent after n number of extraction. According to the given data, the fraction of solute remaining in the aqueous layer after multiple extractions is 0.005, i.e., q^n=0.005. Mathematically,

[tex]0.005=(\frac{50}{50 + 50\times10})^n\\\\0.005=(0.091)^n[/tex]

Taking log on both sides

[tex]log(0.005)=nlog(0.091)[/tex]

[tex]log(0.005)=nlog(0.091)\\\\-2.301=-n1.04\\n=2.21[/tex]

The above calculations show that the number of extractions should be greater than 2, i.e, at least 3, in order to achieve extraction greater than 99.5 %.

Final answer:

With a partition coefficient of 10 and using 50mL each of water and ether, approximately three extractions are required to recover at least 99.5% of the material in the organic layer.

Explanation:

This question relates to an extraction process used in chemistry. The extraction process is governed by a partition coefficient, which is the ratio of the concentrations of a compound in the two solvents (organic layer and water in this case) at equilibrium. To calculate the number of extractions required to recover at least 99.5% of the material, we can use the formula:

Remaining fraction after n extractions = (1 - 1/(1+D))^n

Where D is the partition coefficient. By rearranging this equation, we get:

n = log(1 - desired fraction) / log (1 - 1/(1+D))

Substituting the given values into the equation, we find that approximately 3 extractions would be required in order to recover at least 99.5% of the material in the organic layer.

Learn more about Extractions and Partition Coefficients here:

https://brainly.com/question/14653083

#SPJ3

Write the charge and full ground-state electron configuration of the monatomic ion most likely to be formed by each:
(a) Al (b) S (c) Sr

Answers

Answer:

For a: The charge on the ion formed is +3

For b: The charge on the ion formed is -2

For c: The charge on the ion formed is +2

Explanation:

An ion is formed when an atom looses or gains electron.

When an atom looses electrons, it will form a positive ion known as cation.When an atom gains electrons, it will form a negative ion known as anion.

For the given options:

Option a:  Al

Aluminium is the 13th element of the periodic table having electronic configuration of [tex]1s^22s^22p^63s^23p^1[/tex]

This element will loose 3 electrons to form [tex]Al^{3+}[/tex] ion

The charge on the ion formed is +3

Option b:  S

Sulfur is the 16th element of the periodic table having electronic configuration of [tex]1s^22s^22p^63s^23p^4[/tex]

This element will gain 2 electrons to form [tex]S^{2-}[/tex] ion

The charge on the ion formed is -2

Option c:  Sr

Strontium is the 38th element of the periodic table having electronic configuration of [tex]1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^2[/tex]

This element will loose 2 electrons to form [tex]Sr^{2+}[/tex] ion

The charge on the ion formed is +2

Calculate the molality of a solution containing 17.85 g of glycerol (C3H8O3) in 87.4 g of ethanol (C2H5OH).

Answers

Answer:

Molality for the solution is 2.22 m

Explanation:

Molality is a sort of concentration. Indicated the moles of solute in 1kg of solvent. → mol/kg

Let's determine the moles of solute (mass / molar mass)

17.85 g / 92 g/mol = 0.194 moles

Let's convert the mass of solvent (g) to kg

87.4 g . 1kg / 1000 g = 0.0874 kg

Mol/kg → Molality

0.194 mol / 0.0874 kg = 2.22 m

The activation energy for the isomerization ol cyclopropane to propene is 274 kJ/mol. By what factor does the rate of this reaction increase as the temperature rises from 231 to 293 oC?

Answers

Answer:

The rate of the reaction increased by a factor of 1012.32

Explanation:

Applying Arrhenius equation

ln(k₂/k₁) = Ea/R(1/T₁ - 1/T₂)

where;

k₂/k₁ is the ratio of the rates which is the factor

Ea is the activation energy = 274 kJ/mol.

T₁ is the initial temperature = 231⁰C = 504 k

T₂ is the final temperature = 293⁰C = 566 k

R is gas constant = 8.314 J/Kmol

Substituting this values into the equation above;

ln(k₂/k₁) = 274000/8.314(1/504 - 1/566)

ln(k₂/k₁) = 32956.4589 (0.00198-0.00177)

ln(k₂/k₁)  = 6.92

k₂/k₁ = exp(6.92)

k₂/k₁ = 1012.32

The rate of the reaction increased by 1012.32

Answer:

By a factor of 2.25.

Explanation:

Using the Arrhenius equations for the given conditions:

k1 = A*(exp^(-Ea/(RT1))

k2 = A*(exp^(-Ea/(RT2))

T1 = 231°C

= 231 + 273.15 K

= 574.15 K

T2 = 293°C

= 293 + 273.15 K

= 566.15 K

Ea = 274 kJ mol^-1

R= 0.008314 kJ/mol.K

Now divide the second by the first:

k2/k1 = exp^(-Ea/R * (1/T2 - (1/T1))

= 0.444

2.25k2 = k1

Lithium ions in Lithium selenide (Li2Se) have an atomic radius of 73 pm whereas the selenium ion is 184 pm. This compound is most likely to adopt a:Select the correct answer below:
a. closest-packed array with lithium ions occupying tetrahedral holes
b. closest-packed array with lithium ions occupying octahedral holes
c. body-centered cubic array with lithium ions occupying cubic holes
d. none of the above

Answers

Explanation:

Formula according to the radius ratio rule is as follows.

             [tex]\frac{r_{+}}{r_{-}} = \frac{73}{184}[/tex]

                          = 0.397

According to the radius ratio rule, as the calculated value is 0.397 and it lies in between 0.225 to 0.414. Therefore, it means that the type of void is tetrahedral.

Thus, we can conclude that the given compound is most likely to adopt closest-packed array with lithium ions occupying tetrahedral holes.

Answer:

closest-packed array with lithium ions occupying tetrahedral holes

Explanation:

Given the small size of lithium ions and that they are present in twice the amount as selenide ions, they must occupy tetrahedral holes in a closest-packed array.

Compound A, C11H12O, which gave a negative Tollens test, was treated with LiAlH4, followed by dilute acid, to give compound B, which could be resolved into enantiomers. When optically active B was treated with CrO3 in pyridine, an optically inactive sample of A was obtained. Heating A with hydrazine in base gave hydrocarbon C, which, when heated with alkaline KMnO4, gave carboxylic acid D. Identify compounds A, B, and C.

Answers

Compound A is an optically active ketone, B is a chiral secondary alcohol, and C is an alkene formed from A by a Wolff-Kishner reduction. Acid D is a carboxylic acid crafted from the oxidation of alkene C.

This problem involves the identification of chemical compounds through a series of reactions and stereochemical considerations. We start by identifying compound A as an optically active ketone with the molecular formula C11H12O, since it gave a negative Tollens test. LiAlH4, a strong reducing agent, follows by acid treatment, produces compound B, an alcohol that can be resolved into enantiomers, suggesting that compound A must be a ketone, as LiAlH4 can reduce ketones to secondary alcohols, which can be chiral.

When compound B reacts with CrO3/pyridine, it reverts to the optically inactive ketone compound A. This suggests that compound B is a secondary alcohol that, when oxidized, returns to the original ketone without any chirality, indicating the presence of a stereocenter in B.

Heating compound A with hydrazine in base to give hydrocarbon C suggests a Wolff-Kishner reduction, which completely removes oxygen atoms from ketones or aldehydes to yield hydrocarbons. Finally, when compound C is oxidized with alkaline KMnO4 to give carboxylic acid D, this indicates that C is an alkene.

Compound A is Ketone, Compound B is chiral alcohol, Compound C is hydrocarbon, Compound D is carboxylic acid.

Let's break down the given information step by step:

1. Compound A, [tex]C_{11}H_{12}O[/tex], gave a negative Tollens test:

This suggests that compound A does not contain an aldehyde functional group. Instead, it may contain a ketone or another functional group that does not react with Tollens reagent.

2. Compound A was treated with [tex]LiAlH_4[/tex], followed by dilute acid, to give compound B, which could be resolved into enantiomers:

The reduction of a ketone with [tex]LiAlH_4[/tex] followed by hydrolysis with dilute acid converts the ketone to a chiral alcohol. Since compound B can be resolved into enantiomers, it suggests that compound A was a prochiral ketone.

3. When optically active B was treated with [tex]CrO_3[/tex] in pyridine, an optically inactive sample of A was obtained:

This reaction is a oxidation reaction known as the Jones oxidation. It converts a secondary alcohol (like B) into a ketone without affecting the optical activity. However, since an optically inactive sample of A was obtained, it suggests that compound B must have been racemic (an equal mixture of its enantiomers). This indicates that the chiral center in compound B was destroyed during the oxidation.

4. Heating A with hydrazine in base gave hydrocarbon C, which, when heated with alkaline KMnO4, gave carboxylic acid D:

Heating a ketone with hydrazine in base (Wolff-Kishner reduction) converts it into a hydrocarbon. This indicates that compound A was a ketone. Furthermore, oxidation of hydrocarbon C with alkaline [tex]KMnO_4[/tex]gives a carboxylic acid. This suggests that hydrocarbon C must have been a primary alcohol.

A gas of unknown pressure is contained in a vertical cylinder with a piston, of mass 1.1 kg and diameter 10.0 cm. The piston is free to move with negligible friction. A weight of mass 2.0 kg is placed on top of the piston. Knowing the atmospheric pressure (1.0 atm), find the pressure of the gas, in pascals.

Answers

Answer:

The answer the question, what is the pressure of the gas, in pascals is 101195.73 Pa

Explanation:

Firstly we list out the known variables

The known variables are

mass of piston = 1.1 kg, diameter of piston, D = 10.0 cm = 0.1 m

mass of weight = 2.0 kg atmospheric pressure = 1.0 atm

In this question the quantity required is the presssure of the gas in the cylinder after placing a weght on the piston

To solve this, we note that Pressure = Force per unit area

= Force/area, hence

We compute the area of the piston thus

Area = (πD²)÷4 = 0.0079 m²

While the sum of the mass of the piston and the added weight = 1.1 kg + 2.0 kg = 3.1 kg

The weight of the added mass and piston that is their force on the gas = W = Mass × gravity = 3.1 kg × 9.81 m/s² = 30.411 N

Therefore the pressure  = 30.411N/(0.0079 m²) = 3870.73 Pascals

The pressure of the gas = pressure due to the piston and the added weight + pressure due to the atmosphere

thus pressure of the gas = 3870.73 Pa + 1.0 atm =3870.73 Pa + 101325 Pa =101195.73 Pa

The pressure of the gas, in pascals is 101195.73 Pa

draw the major product, including regiochemistry, for the reaction of hex-3-yne with one equivalent of HCl. Is it an E configuration, Anti addition, Z configuration, syn addition?

Answers

Answer:

The reaction of hex-3-yne with one equivalent of HCl Is an Anti addition, see in the drawing the major product.

Explanation:

The mechanism of the reaction proceeds through a carbocation, formed in the most substituted carbon of the triple bond,  in this case it is indistinct because the triple bond is in the central carbons. Therefore, it is a regioselective reaction that follows Markovnikov's rule, adding the halogen to the more substituted carbon of the alkyne.

The anti addition consists in the addition of two substituents on opposite sides of a triple bond, which gives it greater stability.

A chemistry graduate student is given 125. mL of a 1.30 M propanoic acid (HC2H,Co2) solution. Propanoic acd is a weak acid with K - 1.3 10-5. what mass of KC2H CO2 should the student dissolve in the HC2H,CO2 solution to turn it into a buffer with pH 5.02?

Answers

Answer : The  mass of [tex]KC_2H_5CO_2[/tex] is, 24.5 grams

Explanation : Given,

[tex]K_a=1.3\times 10^{-5}[/tex]

pH = 5.02

Concentration of [tex]HC_2H_5CO_2[/tex] = 1.30 M

Volume of solution = 125 mL = 0.125 L

First we have to calculate the value of [tex]pK_a[/tex].

The expression used for the calculation of [tex]pK_a[/tex] is,

[tex]pK_a=-\log (K_a)[/tex]

Now put the value of [tex]K_a[/tex] in this expression, we get:

[tex]pK_a=-\log (1.3\times 10^{-5})[/tex]

[tex]pK_a=5-\log (1.3)[/tex]

[tex]pK_a=4.89[/tex]

Now we have to calculate the concentration of [tex]KC_2H_5CO_2[/tex]

Using Henderson Hesselbach equation :

[tex]pH=pK_a+\log \frac{[Salt]}{[Acid]}[/tex]

[tex]pH=pK_a+\log \frac{[KC_2H_5CO_2]}{[HC_2H_5CO_2]}[/tex]

Now put all the given values in this expression, we get:

[tex]5.02=4.89+\log (\frac{[KC_2H_5CO_2]}{1.30})[/tex]

[tex][KC_2H_5CO_2]=1.75M[/tex]

Now we have to calculate the moles of [tex]KC_2H_5CO_2[/tex]

[tex]\text{Moles of }KC_2H_5CO_2=1.75M\times 0.125L=0.219mol[/tex]

Now we have to calculate the mass of [tex]KC_2H_5CO_2[/tex]

[tex]\text{Mass of }KC_2H_5CO_2=\text{Moles of }KC_2H_5CO_2\times \text{Molar mass of }KC_2H_5CO_2[/tex]

Molar mass of [tex]KC_2H_5CO_2[/tex] = 112 g/mol

[tex]\text{Mass of }KC_2H_5CO_2=0.219mol\times 112g/mol=24.5g[/tex]

Thus, the mass of [tex]KC_2H_5CO_2[/tex] is, 24.5 grams

To find the mass of KC₂H₃CO₂ needed to create a buffer at pH 5.02, the Henderson-Hasselbalch equation is used to calculate the ratio of conjugate base to acid, then the molar mass is used to convert moles to mass, the concentration of A⁻ is approximately 1.755 M.

The question asks for the mass of potassium propanoate (KC₂H₃CO₂) needed to create a buffer with a specific pH from a solution of propanoic acid (KC₂H₃CO₂). To solve this, we apply the Henderson-Hasselbalch equation:

[tex]\[ pH = pKa + \log \left( \frac{[A^-]}{[HA]} \right) \][/tex]

Given variables:

pH = 5.02pKa = -log[tex](1.3 \times 10^{-5})[/tex][HA] = 1.30 M (concentration of propanoic acid)

Rearranging the equation to solve for A⁻:

A⁻ = [tex][HA] \times 10^{(pH - pKa)}[/tex]

A⁻ = 1.755M

After calculating A⁻, it's then converted from molarity to moles given the volume of the solution. Finally, the mass of KC₂H₃CO₂ is 1.755M by multiplying the number of moles of A⁻ by its molar mass.

Which element would you expect to be less metallic?
(a) Sb or As (b) Si or P (c) Be or Na

Answers

Explanation:

When we move across a period from left to right then there will occur an increase in electronegativity and also there will occur an increase in non-metallic character of the elements.

As both arsenic (As) and antimony (Sb) are group 15 elements. And, on moving down the group increases metallic character hence, Sb will be more metallic than As. Therefore, As is less metallic in nature than Sb.  

Silicon (Si) is a group 14 element and phosphorus (P) is a group 15 element. And, both of them lie in period 3 and since, non-metallic character increases on moving from left to right along a period. Therefore, phosphorus (P) is less metallic than silicon (Si).    

Sodium (Na) is a group 1A element (also known as alkali metal) and beryllium (Be) is a group 2A element (also known as alkaline earth metal). Hence, Be is less metallic than Na because on moving from left to right there occurs an increase in non-metallic character.

An atom has a diameter of 2.50 Å and the nucleus of that atom has a diameter of 9.00×10−5 Å . Determine the fraction of the volume of the atom that is taken up by the nucleus. Assume the atom and the nucleus are a sphere.

fraction of atomic volume: ?

Calculate the density of a proton, given that the mass of a proton is 1.0073 amu and the diameter of a proton is 1.72×10−15 m.

density: ? g/cm^3

Answers

1. The fraction of the atomic volume occupied by the nucleus is approximately 0.0000064 or 6.4 x 10^-6.

2. The density of a proton is approximately 5.77 x 10^20 g/cm^3.

Part 1: Fraction of atomic volume occupied by nucleus

**1. Calculate volumes of atom and nucleus:**

- Convert Å to m:

   - Atom diameter: 2.50 Å * 10^-10 m/Å = 2.50 x 10^-10 m

   - Nucleus diameter: 9.00 x 10^-5 Å * 10^-10 m/Å = 9.00 x 10^-15 m

- Calculate radii:

   - Atom radius: 2.50 x 10^-10 m / 2 = 1.25 x 10^-10 m

   - Nucleus radius: 9.00 x 10^-15 m / 2 = 4.50 x 10^-15 m

- Calculate volumes of spheres using the formula (4/3)πr³:

   - Atom volume: (4/3)π * (1.25 x 10^-10 m)³ ≈ 8.18 x 10^-31 m³

   - Nucleus volume: (4/3)π * (4.50 x 10^-15 m)³ ≈ 52.36 x 10^-44 m³

**2. Calculate fraction of volume occupied by nucleus:**

- Divide nucleus volume by atom volume:

   - Fraction = 52.36 x 10^-44 m³ / 8.18 x 10^-31 m³ ≈ 0.0000064

Therefore, the fraction of the atomic volume occupied by the nucleus is approximately 0.0000064 or 6.4 x 10^-6.

Part 2: Density of a proton

**1. Convert mass of proton to kg:**

- 1 amu = 1.66057 x 10^-27 kg

- Proton mass: 1.0073 amu * 1.66057 x 10^-27 kg/amu ≈ 1.6726 x 10^-27 kg

**2. Calculate volume of a proton from its diameter:**

- Proton radius: 1.72 x 10^-15 m / 2 = 8.60 x 10^-16 m

- Proton volume: (4/3)π * (8.60 x 10^-16 m)³ ≈ 2.90 x 10^-45 m³

**3. Calculate density:**

- Divide proton mass by its volume:

   - Density = 1.6726 x 10^-27 kg / 2.90 x 10^-45 m³ ≈ 5.77 x 10^17 kg/m³

**4. Convert density to g/cm^3:**

- 1 kg/m³ = 1000 g/cm³

- Density ≈ 5.77 x 10^17 kg/m³ * 1000 g/cm³ ≈ 5.77 x 10^20 g/cm³

Therefore, the density of a proton is approximately 5.77 x 10^20 g/cm^3.

The amino acid glycine (H2N–CH2–COOH) has pK values of 2.35 and 9.78. Indicate the structure and net charge of the molecular species that predominate at pH 2, 7, and 10. Use the following structure format and add or remove protons and charges to provide your answer.

Answers

Final answer:

Glycine, an amino acid, changes its structure and net charge in response to pH due to two dissociable protons. At pH 2 it's fully protonated with a net charge of +1. At pH 7, its carboxyl group loses a proton leaving the net charge to 0. By pH 10, both the carboxyl and amino group have lost protons, so the net charge is -1.

Explanation:

The amino acid glycine (H2N–CH2–COOH) has two dissociable protons, one associated with its carboxyl group (pK 2.35) and one with its amino group (pK 9.78). At very low pH values, protons are abundant, meaning glycine is in its fully protonated form with a net charge of +1. Thus, at pH 2, the structure is H3N+–CH2–COOH and the net charge is +1.

At pH 7, the proton on the carboxyl group is lost, leaving the carboxylate form (COO-) and the proceed ammonium group (NH3+). Our structure therefore becomes H3N+–CH2–COO- with a net charge of zero.

Finally, at pH 10, glycine loses both of its protons. The structure now is H2N–CH2–COO- and the net charge is -1.

Learn more about Glycine and pH here:

https://brainly.com/question/33407334

#SPJ6

An amino acid is usually more soluble in aqueous solvent at pH extremes than it is at a pH near the isolelectric point of the amino acid. (Note that this does not mean that the amino acid is insoluble at a pH near its pI.)

Which of the following statements correctly explains this phenomenon?

(Select all that apply.)

A. The neutral charge of an amino acid molecule at its isoelectric point will make the molecule hydrophobic.
B. At pH extremes, the amino acid molecules mostly carry a net charge, thus increasing their solubility in polar solvent.
C. At very low or very high pH, the amino acid molecules have increased charge, thus form more salt bonds with water solvent molecules.
D. At pH values far from the isoelectric point, individual amino acid molecules have greater kinetic energy, thus more readily stay in solution.

Answers

Final answer:

Amino acids are more soluble in aqueous solvent at pH extremes due to their charged nature, which increases their solubility in polar solvents. The neutral charge of an amino acid at its isoelectric point makes it hydrophobic and less soluble. At very low or very high pH, amino acids have increased charge and form more salt bonds with water, increasing their solubility.

Explanation:

This phenomenon can be explained by the properties of amino acids at different pH values. At the isoelectric point (pI), the amino acid is neutral, which makes it hydrophobic and less soluble in water (option A). At pH extremes, the amino acid molecules mostly carry a net charge, which increases their solubility in polar solvents (option B). In addition, at very low or very high pH, the amino acid molecules have increased charge and form more salt bonds with water solvent molecules, further enhancing their solubility (option C).

Draw the Lewis structure (including all lone pair electrons and any formal charges) for one of the four possible isomers of C3H9N.


The isomer I am using is propylamine, CH3 (CH2)2 NH2. How do you draw the lewis structure? Please include lone pairs and formal charges if needed.

Answers

Answer and Explanation

The isomer picked is the N-Propylamine.

It has a lone pair of electron available on the electron rich Nitrogen and no formal charge.

Since it will be hard to draw the Lewis structure in this answer format, I'll attach a picture of the Lewis structure to this answer.

The lone pair of electron is shown by the two dots on the Nitrogen atom.

The Lewis structure for propylamine is drawn by connecting a chain of three carbon atoms with the appropriate number of hydrogen atoms, and attaching the nitrogen atom to the third carbon with two of its own hydrogen atoms and a lone pair, ensuring all atoms follow the octet rule without any formal charges.

To draw the Lewis structure for propylamine (CH₃(CH₂)₂NH₂), you should follow the basic rules of drawing Lewis structures and consider the number of valence electrons that each atom has. Carbon (C) has 4 valence electrons, Hydrogen (H) has 1, and Nitrogen (N) has 5. Here's the step-by-step breakdown:

Draw a chain of three carbon atoms (the propyl group).Attach three hydrogen atoms to the first and second carbon atoms, and two hydrogens to the third carbon.Attach the nitrogen atom to the third carbon atom.Add two hydrogen atoms to the nitrogen atom.Complete the octet around nitrogen if needed by adding a lone pair of electrons.

In propylamine, no formal charges are present as all the atoms have the correct number of electrons around them for neutrality. The nitrogen atom has a free lone pair and there are no pi bonds, so each bond is a single bond.

Match the following aqueous solutions with the appropriate letter from the column on the right. Assume complete dissociation of electrolytes. D 1. 0.11 m Fe(NO3)3 A. Lowest freezing point C 2. 0.18 m NaOH B. Second lowest freezing point B 3. 0.21 m FeSO4 C. Third lowest freezing point A 4. 0.38 m Glucose (nonelectrolyte) D. Highest freezing point An error has been detected in your answer. Check

Answers

Answer:

1)- 0.11 m Fe(NO₃)₃  ⇒ A- Lowest freezing point

2)- 0.18 m NaOH ⇒ D- Highest freezing point

3)- 0.21 m FeSO₄ ⇒ B- Second lowest freezing point

4)- 0.38 m Glucose ⇒ C- Third lowest freezing point

Explanation:

Freezing point depression is given by the following equation:

ΔTf= Kf x m x i

As it is a depression point (final temperature is lower than initial temperature), as higher is ΔTf, lower is the freezing point. Kf is the cryoscopic constant. For water, Kf= 1.853 K·kg/mol. At high m (molality of solute) and i (Van't Hoff factor, dissociated species), the freezing point will be low.

Kf is the same for all solution, so we can simply calculate m x i and order the solutions from high m x i (lowest freezing point) to low m x i (highest freezing point):

Fe(NO₃)₃⇒ Fe³⁺ + 3 NO₃⁻      -------> i= 1 + 3= 4

      m x i = 0.11 x 4 = 0.44

      A) Lowest freezing point

NaOH ⇒ Na⁺ + OH⁻     -------------> i= 1+1= 2

    m x i = 0.18 x 2= 0.36

    D) Highest freezing point

FeSO₄ ⇒ Fe²⁺ + SO₄⁻     -------------> i= 1+1= 2

    m x i = 0.21 x 1= 0.42

    B) Second lowest freezing point

Glucose     -------------> non electrolyte : i=1

    m x i = 0.38 x 1 = 0.38

    C) Third lowest freezing point

A fall in the hotness and coldness at which the matter freezes is called freezing point depression.

It can be calculated using:

[tex]\Delta \text{T}_{\text{f}} &= \text{K}_{\text{f}} \times \text{m} \times \text{ i}[/tex]

The initial temperature is higher than the final temperature as it is a depression point.

Higher the [tex]\Delta \text{T}_{\text{f}}[/tex]  lower will be the freezing point.

[tex]\text{k}_{\text{f}}[/tex] is the constant for cryoscopic.

When m (molality) and the i (Van't Hoff factor) are high the freezing point would be low.

For all the solution [tex]\text{k}_{\text{f}}[/tex] value is constant hence, m × i can be calculated to know the order of lowest and highest freezing points.

The correct matches are:

1) 0.11 m Fe(NO₃)₃ ⇒ Option A. Lowest freezing point

Fe(NO₃)₃⇒ Fe³⁺ + 3 NO₃⁻  ⇒  i = 1 + 3 = 4

m x i = 0.11 x 4 = 0.44

Option A. Lowest freezing point

2) 0.18 m NaOH ⇒ Option D. Highest freezing point

NaOH ⇒ Na⁺ + OH⁻  ⇒ i = 1+1 = 2

m x i = 0.18 x 2= 0.36

Option D. Highest freezing point

3) 0.21 m FeSO₄ ⇒ Option B. Second lowest freezing point

FeSO₄ ⇒ Fe²⁺ + SO₄⁻  ⇒ i = 1+1 = 2

m x i = 0.21 x 1= 0.42

Option B. Second lowest freezing point

4) 0.38 m Glucose ⇒ Option C. Third lowest freezing point

Glucose  ⇒ non electrolyte : i = 1

m x i = 0.38 x 1 = 0.38

Option C. Third lowest freezing point

To learn more about freezing point depression refer to the link:

https://brainly.com/question/25165904

Consider the reaction with the rate law, Rate = k{BrO3-}{Br-}{H+}2 By what factor does the rate change if the concentration of H+ is decreased by a factor of 4? Just put in the number as a whole number or fraction?

Answers

Final answer:

The rate changes by a factor of 1/16 when the concentration of H+ is decreased by a factor of 4 in the given rate law.

Explanation:

The reaction with the rate law Rate = k{BrO3-}{Br-}{H+}2 indicates that the rate of the reaction is directly proportional to the concentration of H+ raised to the second power. Thus, if the concentration of H+ is decreased by a factor of 4, the rate of the reaction would decrease by a factor of 42 or 16. Therefore, the rate changes by a factor of 1/16 when the concentration of H+ decreases by a factor of 4.

The rate law for the given reaction is Rate = k{BrO3-}{Br-}{H+}^2. If the concentration of H+ is decreased by a factor of 4, it means the new concentration of H+ would be 1/4 of the original concentration. Since the rate law is quadratic with respect to H+, the rate would change by a factor of (1/4)^2, which is 1/16. Therefore, the rate would decrease by a factor of 1/16 or 0.0625.

The rate of the reaction changes by a factor of [tex]\(\frac{1}{16}\)[/tex] (or decreases to [tex]\(\frac{1}{16}\)[/tex] of its original rate) when the concentration of[tex]\( \text{H}^+ \)[/tex] is decreased by a factor of 4.

Given the reaction with the rate law:

[tex]\[ \text{Rate} = k[\text{BrO}_3^-][\text{Br}^-][\text{H}^+]^2 \][/tex]

We need to determine how the rate changes if the concentration of[tex]\( \text{H}^+ \)[/tex] is decreased by a factor of 4.

Step-by-Step Explanation:

1. Initial Rate Law Expression:

[tex]\[ \text{Rate}_1 = k[\text{BrO}_3^-][\text{Br}^-][\text{H}^+]^2 \][/tex]

2. Change in [tex]\( \text{H}^+ \)[/tex] Concentration:

  Let's denote the initial concentration of[tex]\( \text{H}^+ \)[/tex]as [tex]\([ \text{H}^+ ]_1\)[/tex]. If the concentration of[tex]\( \text{H}^+ \)[/tex] is decreased by a factor of 4, the new concentration will be:

[tex]\[ [ \text{H}^+ ]_2 = \frac{[ \text{H}^+ ]_1}{4} \][/tex]

3. New Rate Law Expression:

  Substitute the new concentration of [tex]\( \text{H}^+ \)[/tex] into the rate law:

[tex]\[ \text{Rate}_2 = k[\text{BrO}_3^-][\text{Br}^-]\left( \frac{[ \text{H}^+ ]_1}{4} \right)^2 \][/tex]

4. Simplify the Expression:

[tex]\[ \text{Rate}_2 = k[\text{BrO}_3^-][\text{Br}^-]\left( \frac{[ \text{H}^+ ]_1^2}{4^2} \right) \][/tex]

[tex]\[ \text{Rate}_2 = k[\text{BrO}_3^-][\text{Br}^-]\left( \frac{[ \text{H}^+ ]_1^2}{16} \right) \][/tex]

5. Relate [tex]\( \text{Rate}_2 \) to \( \text{Rate}_1 \)[/tex] :

  From the initial rate law, we know that:

 [tex]\[ \text{Rate}_1 = k[\text{BrO}_3^-][\text{Br}^-][\text{H}^+]_1^2 \][/tex]

  So, we can write:

[tex]\[ \text{Rate}_2 = \frac{\text{Rate}_1}{16} \][/tex]

6. Factor by Which the Rate Changes:

  The rate decreases by a factor of 16.

Calculate the energies of one photon of ultraviolet (λ = 1 x 10⁻⁸ m), visible (λ = 5 x 10⁻⁷ m), and infrared (λ = 1 x 10⁴ m) light. What do the answers indicate about the relationship between the wavelength and energy of light?

Answers

Answer:

Energy of ultraviolet light is 19.878 10⁻¹⁸ JEnergy of visible light is 3.9756 X 10⁻¹⁹ JEnergy of infrared light is 19.878 X 10⁻³⁰ J

The answers indicate that wavelength is inversely proportional to the energy of light (photon)

Explanation:

Energy of photon E = hc/λ

where;

h is Planck's constant = 6.626 X 10⁻³⁴js

c is the speed of light (photon) = 3 X 10⁸ m/s

λ is the wavelength of the photon

For ultraviolet ray, with wavelength λ = 1 x 10⁻⁸ m

E = (6.626 X 10⁻³⁴ X 3 X 10⁸)/ (1 x 10⁻⁸)

E = 19.878 10⁻¹⁸ J

For Visible light, with wavelength λ = 5 x 10⁻⁷ m

E = (6.626 X 10⁻³⁴ X 3 X 10⁸)/ (5 x 10⁻⁷)

E = 3.9756 X 10⁻¹⁹ J

For Infrared, with wavelength λ = 1 x 10⁴ m

E = (6.626 X 10⁻³⁴ X 3 X 10⁸)/ (1 x 10⁴)

E = 19.878 X 10⁻³⁰ J

From the result above, ultraviolet ray has the shortest wavelength, but it has the highest energy among other lights.

Also infrared has the highest wavelength but the least energy among other lights.

Hence, wavelength is inversely proportional to the energy of light (photon).

The energies of one photon of ultraviolet (λ = 1 x 10⁻⁸ m), visible (λ = 5 x 10⁻⁷ m), and infrared (λ = 1 x 10⁴ m) light are [tex]1.988 \times 10^{-17} \, \text{J} \),[/tex]  [tex]3.98 \times 10^{-19} \, \text{J} \),[/tex] [tex]1.99 \times 10^{-30} \, \text{J} \)[/tex] respectively. The answers indicate that as the wavelength of light decreases, the energy of the photons increases.

To calculate the energy of a photon, we use the formula:

[tex]\[ E = \frac{hc}{\lambda} \][/tex]

where:

- E is the energy of the photon

- h  is Planck's constant [tex](\( 6.626 \times 10^{-34} \, \text{J} \cdot \text{s} \))[/tex]

- c is the speed of light in a vacuum [tex](\( 3.00 \times 10^8 \, \text{m/s} \))[/tex]

- [tex]\( \lambda \)[/tex] is the wavelength of the photon

Let's calculate the energy for each type of light:

Ultraviolet Light (λ = 1 x 10⁻⁸ m)

[tex]\[ E_\text{UV} = \frac{6.626 \times 10^{-34} \, \text{J} \cdot \text{s} \times 3.00 \times 10^8 \, \text{m/s}}{1 \times 10^{-8} \, \text{m}} \][/tex]

Visible Light (λ = 5 x 10⁻⁷ m)

[tex]\[ E_\text{Visible} = \frac{6.626 \times 10^{-34} \, \text{J} \cdot \text{s} \times 3.00 \times 10^8 \, \text{m/s}}{5 \times 10^{-7} \, \text{m}} \][/tex]

Infrared Light (λ = 1 x 10⁴ m)

[tex]\[ E_\text{IR} = \frac{6.626 \times 10^{-34} \, \text{J} \cdot \text{s} \times 3.00 \times 10^8 \, \text{m/s}}{1 \times 10^4 \, \text{m}} \][/tex]

Let's compute these values:

1. Ultraviolet Light:

[tex]\[ E_\text{UV} = \frac{6.626 \times 10^{-34} \times 3.00 \times 10^8}{1 \times 10^{-8}} \][/tex]

[tex]\[ E_\text{UV} = \frac{19.878 \times 10^{-26}}{1 \times 10^{-8}} \][/tex]

[tex]\[ E_\text{UV} = 19.878 \times 10^{-18} \][/tex]

[tex]\[ E_\text{UV} = 1.988 \times 10^{-17} \, \text{J} \][/tex]

2. Visible Light:

[tex]\[ E_\text{Visible} = \frac{6.626 \times 10^{-34} \times 3.00 \times 10^8}{5 \times 10^{-7}} \]\[ E_\text{Visible} = \frac{19.878 \times 10^{-26}}{5 \times 10^{-7}} \]\[ E_\text{Visible} = 3.9756 \times 10^{-19} \]\[ E_\text{Visible} = 3.98 \times 10^{-19} \, \text{J} \][/tex]

3. Infrared Light:

[tex]\[ E_\text{IR} = \frac{6.626 \times 10^{-34} \times 3.00 \times 10^8}{1 \times 10^4} \]\[ E_\text{IR} = \frac{19.878 \times 10^{-26}}{1 \times 10^4} \]\[ E_\text{IR} = 1.9878 \times 10^{-30} \]\[ E_\text{IR} = 1.99 \times 10^{-30} \, \text{J} \][/tex]

Summary of Energies

- Ultraviolet Light (λ = 1 x 10⁻⁸ m): [tex]\( E_\text{UV} = 1.988 \times 10^{-17} \, \text{J} \)[/tex]

- Visible Light (λ = 5 x 10⁻⁷ m): [tex]\( E_\text{Visible} = 3.98 \times 10^{-19} \, \text{J} \)[/tex]

- Infrared Light (λ = 1 x 10⁴ m): [tex]\( E_\text{IR} = 1.99 \times 10^{-30} \, \text{J} \)[/tex]

Relationship between Wavelength and Energy

Specifically:

- Ultraviolet light has the shortest wavelength and the highest energy.

- Visible light has a moderate wavelength and moderate energy.

- Infrared light has the longest wavelength and the lowest energy.

This inverse relationship between wavelength and photon energy is consistent with the equation [tex]\( E = \frac{hc}{\lambda} \)[/tex]. As [tex]\( \lambda \) (wavelength) decreases, \( E \)[/tex] (energy) increases, and vice versa.

A chemical reaction produced 10.1 cm3 of nitrogen gas at 23 °C and 746 mmHg. What is the volume of this gas if the temperature and pressure are changed to 0 °C and 760 mmHg?

Answers

Answer:

volume of gas = 9.1436cm³

Explanation:

We will only temperature from °C to K since the conversion is done by the addition of 273 to the Celsius value.

Its not necessary to convert pressure and volume as their conversions are done by multiplication and upon division using the combined gas equation, the factors used in their conversions will cancel out.

V1 =10.1cm³ , P1 =746mmHg,     T1=23°C =23+273=296k

V2 =? ,   P2 =760mmmHg ,     T2=0°C = 0+273 =273K

Using the combined gas equation to calculate for V2;

[tex]\frac{V1P1}{T1}=\frac{V2P2}{T2} \\ re-arranging, \\V2 =\frac{V1P1T2}{P2T1}[/tex]

[tex]V2 =\frac{10.1*746*273}{760*296}[/tex]

V2=9.1436cm³

g What is the molarity of an aqueous solution that is 2.50 % glucose (C6H12O6) by mass? Assume that the density of the solution is 1.04 g/cm3

Answers

Answer:

0.144 M

Explanation:

First, we will calculate the mass/volume percent (% m/v) using the following expression.

% m/v = % m/m × density

% m/v = 2.50 % × 1.04 g/cm³

% m/v = 2.60 %

This means that there are 2.60 grams of solute per 100 cm³ (100 mL) of solution. The molarity of glucose is:

M = mass of glucose / molar mass of glucose × liters of solution

M = 2.60 g / 180.16 g/mol × 0.100 L

M = 0.144 M

What are the n, l, and possible ml values for the 2p and 5f sublevels?

Answers

Final answer:

The 2p sublevel has quantum numbers n=2, l=1, and possible ml values of -1, 0, +1, with a maximum of 6 electrons. The 5f sublevel has quantum numbers n=5, l=3, and possible ml values ranging from -3 to +3, holding up to 14 electrons.

Explanation:

The n, l, and possible ml values for 2p and 5f sublevels are derived from the quantum numbers that define the properties of electrons in atoms. For the 2p sublevel, n is 2 (the principal quantum number indicating the second shell), l is 1 (the angular momentum quantum number corresponding to a p sublevel), and the possible ml values range from -1 to +1 (which are -1, 0, and 1), making for three possible orientations.

For the 5f sublevel, n is 5 (indicating the fifth shell), l is 3 (f sublevel), and the possible ml values range from -3 to +3 (which are -3, -2, -1, 0, 1, 2, 3), resulting in a total of seven possible orientations. Using the formula maximum number of electrons that can be in a subshell = 2(2l + 1), we can calculate that the 2p sublevel can hold a maximum of 6 electrons and the 5f sublevel can hold up to 14 electrons.

A certain liquid X has a normal boiling point of 118.4 °C and a boiling point elevation constant K=2.40 °С kg-mol-1. A solution is prepared by dissolving some benzamide (C7H7NO) in 150g of X. This solution boils at 120.6 °C. Calculate the mass of C7H7NO that was dissolved.Be sure your answer is rounded to the correct number of significiant digits.

Answers

Answer:

43.47 g

Explanation:

The boiling point elevation is described as:

ΔT = K * m

Where ΔT is the difference in boiling points: 120.6-118.4 = 2.2 °C

K is the boiling point elevation constant, K= 2.40 °C·kg·mol⁻¹

and m is the molality of the solution (molality = mol solute/kg solvent).

So first we calculate the molality of the solution:

ΔT = K * m2.2 °C = 2.40 °C·kg·mol⁻¹ * mm=0.917 m

Now we calculate the moles of benzamide (C₇H₇NO, MW=315g/mol), using the given mass of the liquid X.

150 g ⇒ 150/1000 = 0.150 kg0.917 m = molC₇H₇NO / 0.150kgmolC₇H₇NO = 0.138 mol

Finally we convert moles of C₇H₇NO into grams, using its molecular weight:

0.138 molC₇H₇NO * 315g/mol = 43.47 g

Final answer:

To calculate the mass of C7H7NO dissolved in the solution, use the formula for boiling point elevation in a solution.

Explanation:

The mass of C7H7NO that was dissolved in the solution can be calculated using the formula:

ΔTb = i * K * m

Where ΔTb is the boiling point elevation, i is the van't Hoff factor (number of particles the solute dissociates into), K is the boiling point elevation constant, and m is the molality of the solution.

Substitute the given values into the equation to find the mass of C7H7NO dissolved.

For each of the following sublevels, give the n and l values and the number of orbitals: (a) 6g; (b) 4s; (c) 3d.

Answers

Answer:

(a) 6g. Shell 6, n = 6. Subshell g, l = 4. Number of orbitals in sublevel = 9

(b) 4s. Shell 4, n = 4. Subshell s, l = 0. Number of orbitals in sublevel = 1

(c) 3d. Shell 3, n = 3. Subshell d, l = 2. Number of orbitals in sublevel = 5

Explanation:

The rules for electron quantum numbers are:

1. Shell number, 1 ≤ n, n = 1, 2, 3...

2. Subshell number, 0 ≤ l ≤ n − 1, orbital s - 0, p - 1, d - 2, f - 3

3. Orbital energy shift, -l ≤ ml ≤ l

4. Spin, either -1/2 or +1/2

So,

(a) 6g. Shell 6, n = 6. Subshell g, l = 4. Number of orbitals in sublevel = 2l+1 = 9

(b) 4s. Shell 4, n = 4. Subshell s, l = 0. Number of orbitals in sublevel = 2l+1 = 1

(c) 3d. Shell 3, n = 3. Subshell d, l = 2. Number of orbitals in sublevel = 2l+1 = 5

(a) 6g Shell 6, n = 6. Subshell g, l = 4. Number of orbitals in sublevel = 9

(b) 4s Shell 4, n = 4. Subshell s, l = 0. Number of orbitals in sublevel = 1

(c) 3d Shell 3, n = 3. Subshell d, l = 2. Number of orbitals in sublevel = 5

What are Quantum numbers?

There are a total of four quantum numbers: the principal quantum number (n), the orbital angular momentum quantum number (l), the magnetic quantum number (ml), and the electron spin quantum number (ms).

The rules for electron quantum numbers are:

1. Shell number, 1 ≤ n, n = 1, 2, 3...

2. Subshell number, 0 ≤ l ≤ n − 1, orbital s - 0, p - 1, d - 2, f - 3

3. Orbital energy shift, -l ≤ ml ≤ l

4. Spin, either -1/2 or +1/2

(a) 6g. Shell 6, n = 6. Subshell g, l = 4. Number of orbitals in sublevel = 2l+1 = 9

(b) 4s. Shell 4, n = 4. Subshell s, l = 0. Number of orbitals in sublevel = 2l+1 = 1

(c) 3d. Shell 3, n = 3. Subshell d, l = 2. Number of orbitals in sublevel = 2l+1 = 5

Find more information about Quantum number here:

brainly.com/question/11575590

Niobium (Nb; Z = 41) has an anomalous ground-state electron configuration for a Group 5B(5) element: [Kr] 5s¹4d⁴. What is the expected electron configuration for elements in this group? Draw partial orbital diagrams to show how paramagnetic measurements could support niobium’s actual configuration.

Answers

Answer:

Explanation:

Niobium has an anomalous ground-state electron configuration for a Group 5 element: [Kr] 5s¹4d⁴ . IT is anomalous because in normal course , it should have been [Kr] 5s²4d³ Or [Kr] 5s⁰4d⁵ . It is so because 5s subshell

has lesser energy than 4d subshell ,  or half filled 4d subshell is more stable. But the stable configuration is [Kr] 5s¹4d⁴ . It is so because the energy gap between 5s and 4d is very little. So one electron of 5s² gets Transferred to 4d subshell.  This paramagnetic behavior is confirmed by its dipole moment , equivalent to 5 unpaired electrons.

A 4.36-g sample of an unknown alkali metal hydroxide is dissolved in 100.0 mL of water. An acid-base indicator is added, and the resulting solution is titrated with 2.50 M HCl(aq) solution. The indicator changes color, signaling that the equivalence point has been reached, after 17.0 mL of the hydrochloric acid solution has been added . What is the identity of the alkali metal cation:
Li+,Na+,K+,Rb+,
or
Cs+?

Answers

Final answer:

The alkali metal cation in the unknown metal hydroxide that has been reacted with hydrochloric acid is Potassium (K+). The identity of the cation was determined by performing a stoichiometric calculation based on the balanced chemical reaction and the molar masses of the alkali metal hydroxide.

Explanation:

This is a stoichiometry problem that requires understanding of acid-base titration reactions. In a neutralization reaction, an acid reacts with a base to form water plus a salt. Here, the hydrochloric acid (HCl) is reacting with the alkali metal hydroxide (MOH) to form water (H2O) and a salt (MCl). The balanced chemical reaction is HCl + MOH -> H2O + MCl.

The mole ratio between HCl and MOH in this reaction is 1:1. This means that for each mole of HCl used, one mole of MOH will react. From the volume (17.0 mL) and molarity (2.5 M) of HCl used, we can calculate the number of moles of HCl, which will also be the number of moles of MOH because of the 1:1 mole ratio.

mol HCl = Molarity x Volume = 2.50 mol/L x 17.0 x 10-3 L = 0.0425 mol. Hence, the number of moles of MOH = 0.0425 mol.

The molar mass of alkali metal hydroxide (MOH) is its mass divided by the number of moles. Hence, Molar mass = mass (g) / moles = 4.36 g / 0.0425 mol = 102.59 g/mol. This molar mass is closest to the molar mass of Potassium Hydroxide (KOH), which is 39.10 (K) + 15.9994 (O) + 1.00784 (H) = 56.11 g/mol. So, the alkali metal cation in the unknown metal hydroxide is K+ (Potassium).

Learn more about Chemical Stoichiometry here:

https://brainly.com/question/30415532

#SPJ12

The provided unknown sample contains Rubidium (Rb⁺) as its alkali metal cation. This conclusion is based on titration calculations, yielding a molar mass closest to Rb.

To identify the alkali metal cation (Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺) from the given sample, we need to perform a titration calculation. Here are the steps:

First, calculate the moles of HCl used in the titration:

Molarity (M) of HCl = 2.50 MVolume (V) of HCl = 17.0 mL = 0.0170 LMoles of HCl = M × V = 2.50 mol/L × 0.0170 L = 0.0425 mol

The balanced equation for the reaction is:

MOH + HCl → MCl + H2O

Since the reaction is 1:1, moles of MOH = moles of HCl = 0.0425 mol

Next, calculate the molar mass of the alkali metal hydroxide (MOH):

The mass of MOH = 4.36 gMoles of MOH = 0.0425 molMolar mass of MOH = mass / moles = 4.36 g / 0.0425 mol ≈ 102.59 g/mol

Given MOH is an alkali metal hydroxide, its molar mass is the sum of the molar masses of M, O, and H, which is represented as:

M + 17.01 (since the molar mass of OH is 17.01 g/mol)

Therefore, M = 102.59 - 17.01 ≈ 85.58 g/mol

Match this result with the molar masses of the alkali metals:

Li: 6.94 g/molNa: 22.99 g/molK: 39.10 g/molRb: 85.47 g/molCs: 132.91 g/mol

The metal with a molar mass closest to 85.58 g/mol is Rb (Rubidium).

Therefore, the alkali metal cation is Rb⁺ (Rubidium).

Calcium carbonate decomposes into calcium oxide and carbon dioxide. If 530 g of calcium carbonate decomposes, how many grams of carbon dioxide gas is produced?

Answers

Answer:

233 g

Explanation:

Let's consider the following reaction.

CaCO₃ → CaO + CO₂

We can establish the following relations:

The molar mass of calcium carbonate is 100.09 g/mol.The molar ratio of calcium carbonate to carbon dioxide is 1:1.The molar mass of carbon dioxide is 44.01 g/mol

The mass of carbon dioxide produced from 530 g of calcium carbonate is:

[tex]530gCaCO_{3}\frac{1molCaCO_{3}}{100.09gCaCO_{3}} ,\frac{1molCO_{2}}{1molCaCO_{3}} .\frac{44.01gCO_{2}}{1molCO_{2}} =233gCO_{2}[/tex]

233 gram of carbon dioxide gas is produced from the decomposition of calcium carbonate.

Decomposition of calcium carbonate

[tex]CaCO_3\rightarrow CaO + CO_2[/tex]

From the above decomposition, we can say that the molar ratio of calcium carbonate to carbon dioxide is 1:1.

The molar mass of calcium carbonate is 100.09 g/mol.

The molar ratio of calcium carbonate to carbon dioxide is 1:1.

The molar mass of carbon dioxide is 44.01 g/mol

The mass of carbon dioxide produced from 530 g of calcium carbonate is:

[tex]{530\ gCaCO_3}\times\frac{1molCaCO_3}{100gCaCO_3} \times\frac{1molCO_2}{1molCaCO_3} \times\frac{44.01\ gCO_2}{1molCO_2} =233\ gCO_2[/tex]

So, the 233 g [tex]CO_2[/tex] will be produced.

Find more information about the decomposition and production here

brainly.com/question/883757

What kind of intermolecular forces act between a hydrogen chloride molecule and a hydrogen iodide molecule?

Answers

Answer:

Since ΔEN > 0, the bond is covalent polar and the molecule is polar (dipole). Since ΔEN > 0, the bond is covalent polar and the molecule is polar (dipole). HI and ClF interact through a dipole-dipole force

Explanation:

Final answer:

Dipole-dipole forces act between a hydrogen chloride molecule and a hydrogen iodide molecule due to the partially positive hydrogen atom and partially negative chlorine atom in a hydrogen chloride molecule.

Explanation:

Dipole-dipole forces, which are attractive forces between polar molecules, act between a hydrogen chloride molecule and a hydrogen iodide molecule. These forces occur because a hydrogen chloride molecule has a partially positive hydrogen atom and a partially negative chlorine atom. In a collection of many hydrogen chloride molecules, the oppositely charged regions of neighboring molecules will align themselves near each other.

If you need to produce X-ray radiation with a wavelength of 1 Å. a. Through what voltage difference must the electron be accelerated in vacuum so that it can, upon colliding with a target, generate such a photon? (Assume that all of the electron’s energy is transferred to the photon.)

Answers

Answer:

12.4×10^3 V

Explanation:

From E=hc/wavelength= eV

The voltage becomes

V= hc/e* wavelength

V= 6.63*10^-34*3*10^8/1.6*10^-19*1*10^-10

Note that the energy of the photon is transferred to the electron. That is the basic assumption we have applied in solving this problem. The kinetic energy of the electron is equal to the product of the electron charge and the acceleration potential.

Give the characteristic of a first order reaction having only one reactant.a. The rate of the reaction is not proportional to the concentration of the reactantb. The rate of the reaction is proportional to the square of the concentration of the reactantc. The rate of the reaction is proportional to the square root of the concentration of the reactantd. The rate of the reaction is proportional to the natural logarithm of the concentration of the reactante. The rate of the reaction is directly proportional to the concentration of the reactant

Answers

Answer:

E) The rate of the reaction is directly proportional to the concentration of the reactant.

Explanation:

Give the characteristic of a first order reaction having only one reactant.

A) The rate of the reaction is not proportional to the concentration of the reactant.

B) The rate of the reaction is proportional to the square of the concentration of the reactant.

C) The rate of the reaction is proportional to the square root of the concentration of the reactant.

D) The rate of the reaction is proportional to the natural logarithm of the concentration of the reactant.

E) The rate of the reaction is directly proportional to the concentration of the reactant.

Answer:

The rate of the reaction is directly proportional to the concentration of the reactant.

Explanation:

When I was a boy, Uncle Wilbur let me watch as he analyzed the iron content of runoff from his banana ranch. A 25.0-mL sample was acidifi ed with nitric acid and treated with excess KSCN to form a red complex. (KSCN itself is co

Answers

Answer:

The question is incomplete as some details are missing. Here is the complete question ; When I was a boy, Uncle Wilbur let me watch as he analyzed the iron content of runoff from his banana ranch. A 25.0-mL sample was acidified with nitric acid and treated with excess KSCN to form a red complex. (KSCN itself is colorless.) The solution was then diluted to 100.0 mL and put in a variable-pathlength cell. For comparison, a 10.0-mL reference sample of 6.80 104 M Fe3 was treated with HNO3 and KSCN and diluted to 50.0 mL. The reference was placed in a cell with a 1.00-cm light path. The runoff sample exhibited the same absorbance as the reference when the pathlength of the runoff cell was 2.48 cm. What was the concentration of iron in Uncle Wilbur

Explanation:

The concept of beer Lambert Law and the dilution formula was used in solving the question. According to Beer Lambert law, as light enters through a solution that has an intensity Io, and emerges with intensity I with an assumed concentration c in mol/dm3 at a length l cm.

Mathematically from beer lambert law ; ecl =Ig (Io/I), where e is the extinction coefficient.

The attached file shows the detailed steps and appropriate substitution.

Magnesium Oxide decomposes to produce 3.54 grams of oxygen gas. How many grams of magnesium oxide decomposed?

Answers

Let us solve for it

Explanation:

Magnesium oxide

It is MgO  Its molecular mass is : 24 +16=40 g When MgO decomposes it forms = 3.54 g of oxygen gas  when 40 g of MgO decomposes it forms = 16g of oxygen  or we can say that : 16g of oxygen is produced when 40 g of MgO is decomposed . 1g of oxygen will be formed from =40/16g of MgO  3.54 g of oxygen will be formed = 40/16 x 3.54 =8.85g of MgO  

Other Questions
Ocean pollution: affects the amount of oxygen in the atmosphere is a result of coastal cities dumping sewage is caused by super tankers that spill oil all of the above An annular aluminum fin of rectangular profile is attached to a circular tube having an outside diameter of 25 mm and a surface temperature of 250C. The fin is 1 mm thick and 10 mm long, and the temperature and the convection coefficient associated with the adjoining fluid are 25C and 25W/m2 .K, respectively.a) What is the heat loss per fin? What is the fin efficiency?b) If 200 such fins are spaced at 5-mm increments along the tube length, what is the heat loss per meter of tube length?c) If the tube had no fins, what would be the heat loss per meter of tube length? d) Using this result and that from part (b), what is the "fin array effectiveness"? Write the expression in standard form.(4f-3+2g)-(-4g+2) La profesora a los alumnos. (mirar) True or False? When shooting OTS shots of two actors / subjects speaking to each other, it is best to place the camera(s) over the same shoulder of each subject (i.e. over both of their left shoulders or both of their right shoulders). A jet fighter pilot wishes to accelerate from rest at a constant acceleration of 5 g to reach Mach 3 (three times the speed of sound) as quickly as possible. Experimental tests reveal that he will black out if this acceleration lasts for more than 5.0 s. Use 331 m/s for the speed of sound. (a) Will the period of acceleration last long enough to cause him to black out? (b) What is the greatest speed he can reach with an acceleration of 5g before he blacks out? An example of human environment interactions include settlements Of the different reasons given that people choose to become entrepreneurs (following a passion, filling a need, running a better business, and inventing a new product), which do you think is most likely to lead to a successful business? Justify your choice. What is the purpose of this document?The Security CouncilHaving considered the complaint of twenty-nine MemberStates contained in document S/4279 and Add.11concerning "the situation arising out of the large-scalekillings of unarmed and peaceful demonstrators againstracial discrimination and segregation in the Union ofSouth Africa"... [d]eplores the policies and actions of theGovernment of the Union of South Africa which havegiven rise to the present situation.-UN. Security Council Resolution 134,April 1, 1960to end racial discrimination and segregation in UNcountriesto describe the characteristics of apartheidto condemn South Africa's actions in theSharpeville massacreto encourage demonstrations against thegovernment Farmer Jones raises ducks and cows. He looks out his window and sees 54 animals with a total of 122 feet. If each animal is normal, have many of each type of animal does he have Question 3 of 52 PointsWhich adjective best describes the narrator's father according to thenarrator?OA. ImmoralB. CompassionateOc. CruelOD. Social 0. A 1700-W machine operates at 120 V. What imachine operates at 120 V. What is the resistance in the machine?A. 7.1 x 1022 ohmsB. 1.2 x 1021 ohmsC. 1.4 ohmsD. 8.5 ohms Interest versus dividend expense Michaels Corporation expects earnings before interest and taxes to be $ 42 comma 000 for the current period. Assuming a flat ordinary tax rate of 22 %, compute the firm's earnings after taxes and earnings available for common stockholders (earnings after taxes and preferred stock dividends, if any) under the following conditions: a. The firm pays $ 11 comma 500 in interest. b. The firm pays $ 11 comma 500 in preferred stock dividends. Sasha works for a large corporation, and sometimes, she finds it difficult to see how she fits into the corporate picture. However, recently, her company decides to establish an employee stock ownership plan. Which is a benefit of this type of plan? A. It allows employees to take over the management of the company. B. It can make employees feel that their work benefits only the owners. C. It can boost employee productivity. D. It can build a partnership between managers and owners. E. It can provide employees with higher regular wages. What volume of a 0.130 M NH4I solution is required to react with 905 mL of a 0.280 M Pb(NO3)2 solution? ANSWER ASAP!!!What do the Stamp Act and the Townshend Acts have in common? Check all of the boxes that apply A.Both were rejected by colonists who thought that the British government was imposing unfair taxes. B. Both had to do with taxing tea C. Both were repealed after hostile reactions from the colonists. D. Both were intended to lower taxes in the colonies. E. Both were accepted and praised by the colonists. The branch like structures on the heads of neurons that receive signals from other neurons are called ____. Investigate the functions available in PHP, or another suitable Web scripting language, to interpret the common HTML and URL encodings used on form data so that the values are canonicalized to a standard form before checking or further use. Can someone please help me with this? will give you brainiest if correctThank you so much Which is true about SCSI connectors? Choose two answers. A SCSI controller can hold several devices on a single chain SCSI connectors are used in high-end servers SCSI connectors are used in laptops SCSI connectors are used on tablets Steam Workshop Downloader