Answer:
Number of girls in PE class is 20
D. 20 girls
Step-by-step explanation:
We are given
Number of girls in 6th grade =120
Number of boys in 6th grade =102
so, firstly we will find ratios of girls and boys
[tex]\frac{G}{B}=\frac{120}{102}[/tex]
now, we have
17 boys are in the first PE class
Let's assume number girls in PE class as 'x'
we know that
ratios of boys and girls must be equal
so, we get
[tex]\frac{G}{B}=\frac{120}{102}=\frac{x}{17}[/tex]
now, we can solve for x
[tex]\frac{120}{102}=\frac{x}{17}[/tex]
[tex]x=17\times \frac{120}{102}[/tex]
[tex]x=20[/tex]
So,
Number of girls in PE class is 20
find the area of a triangle with the given base and height
7ft, 2in
Answer:
A = 84 inches^2
Step-by-step explanation:
We know that the formula for the area of a triangle is given by
A = 1/2 b*h
Let's substitute what we know
We need the units to be the same
Convert 7 ft to inches
1 ft = 12 inches
Multiply both sides by 7
7 ft = 84 inches
A = 1/2 *84*2
A = 84 inches^2
Prove that u(n) is a group under the operation of multiplication modulo n.
Answer:
The answer is the proof so it is long.
The question doesn't define u(n), but it's not hard to guess.
Group G with operation ∘
For all a and b and c in G:
1) identity: e ∈ G, e∘a = a∘e = a,
2) inverse: a' ∈ G, a∘a' = a'∘a = e,
3) closed: a∘b ∈ G,
4) associative: (a∘b)∘c = a∘(b∘c),
5) (optional) commutative: a∘b = b∘a.
Define group u(n) for n prime is the set of integers 0 < i < n with operation multiplication modulo n.
If n isn't prime, we exclude from the group all integers which share factors with n.
Identity: e = 1. Clearly 1∘a = a∘1 = a. (a is already < n).
Closed: u(n) is closed for n prime. We must show that for all a, b ∈ u(n), the integer product ab is not divisible by n, so that ab ≢ 0 (mod n). Since n is prime, ab ≠ n. Since a < n, b < n, no factors of ab can equal prime n. (If n isn't prime, we already excluded from u(n) all integers sharing factors with n).
Inverse: for all a ∈ u(n), there is a' ∈ u(n) with a∘a' = 1. To find a', we apply Euclid's algorithm and write 1 as a linear combination of n and a. The coefficient of a is a' < n.
Associative and Commutative:
(a∘b)∘c = a∘(b∘c) because (ab)c = a(bc)
a∘b = b∘a because ab = ba.
Answer:
The answer is the proof so it is long.
The question doesn't define u(n), but it's not hard to guess.
Group G with operation ∘
For all a and b and c in G:
1) identity: e ∈ G, e∘a = a∘e = a,
2) inverse: a' ∈ G, a∘a' = a'∘a = e,
3) closed: a∘b ∈ G,
4) associative: (a∘b)∘c = a∘(b∘c),
5) (optional) commutative: a∘b = b∘a.
Define group u(n) for n prime is the set of integers 0 < i < n with operation multiplication modulo n.
If n isn't prime, we exclude from the group all integers which share factors with n.
Identity: e = 1. Clearly 1∘a = a∘1 = a. (a is already < n).
Closed: u(n) is closed for n prime. We must show that for all a, b ∈ u(n), the integer product ab is not divisible by n, so that ab ≢ 0 (mod n). Since n is prime, ab ≠ n. Since a < n, b < n, no factors of ab can equal prime n. (If n isn't prime, we already excluded from u(n) all integers sharing factors with n).
Inverse: for all a ∈ u(n), there is a' ∈ u(n) with a∘a' = 1. To find a', we apply Euclid's algorithm and write 1 as a linear combination of n and a. The coefficient of a is a' < n.
Associative and Commutative:
(a∘b)∘c = a∘(b∘c) because (ab)c = a(bc)
a∘b = b∘a because ab = ba.
Write a sentence to represent the equation 4 m = -8.
Answer:
The product of 4 and m is -8.
Without numbers: The product of four and the variable m is negative eight.
Step-by-step explanation:
4m means m is multiplied by 4. The result of the multiplication operation is called a "product." The equal sign translates to "is".
The sentence 'Four times a certain number equals negative eight' corresponds to the equation 4m = -8, indicating that multiplying a number by four yields negative eight.
The sentence to represent the equation 4 m = -8 might be: "Four times a certain number equals negative eight." This sentence encapsulates the equation by specifying that the product of the number m and four is equivalent to negative eight, implying that m will have a negative value since it is equal to a negative number when multiplied by a positive.