Answer : The weight of first bar is, 1 kg
Explanation :
Let the weight of first bar and second bar be, x and y.
The ratio of gold and silver in first bar is, 2 : 3
The ratio of gold and silver in second bar is, 3 : 7
The final ratio of gold and silver in first and second bar is, 5 : 11
Total weight of bar = 8 kg
The equations will be:
[tex]\frac{2}{5}x+\frac{3}{10}y=\frac{5}{16}\times 8[/tex] ..........(1)
[tex]\frac{3}{5}x+\frac{7}{10}y=\frac{11}{16}\times 8[/tex] ..........(2)
Solving both the equations, we get:
[tex]4x+3y=25[/tex] ..........(3)
[tex]6x+7y=55[/tex] ..........(4)
Now we are multiplying equation 3 by 6 and equation 4 by 4, we get:
[tex]24x+18y=150[/tex] ..........(5)
[tex]24x+28y=220[/tex] ..........(6)
Now we are subtracting equation 5 from 6, we get the value of 'y'.
y = 7
Now put the value of 'y' in equation 5, we get the value of 'x'.
x = 1
Thus, the weight of first bar and second bar is, 1 kg and 7 kg respectively.
When dissolving a solid or liquid, as the temperature of the solvent increases, the rate of dissolution?
A. increases.
B. decreases.
C. stays the same.
D. either increases or decreases, depending upon the liquid.
Answer:A. Increases
Explanation:
Heating or an increase in temperature increases the kinetic energy of particles thereby increasing their motion and how they relate and react with one another.
Increase in the temperature of the solvent is directly proportional to the rate of dissolution. The rate of dissolution increases due to the increase in kinetic energy. This makes the solvent particles interact faster with the solute particles thereby increasing the dissolution rate.
The number of substrate molecules converted to product in a given unit of time by a single enzyme molecule at saturation is referred to as the: dissociation constant maximum velocity turnover number Michaelis constant
The turnover number refers to the number of substrate molecules converted to product per unit time by a single enzyme molecule at saturation. The Michaelis constant (Km) indicates substrate concentration for half-maximal enzyme activity, and the maximum velocity (Vmax) is reached when enzyme active sites are saturated.
The number of substrate molecules converted to product in a given unit of time by a single enzyme molecule at saturation is referred to as the turnover number, also known as kcat. This measure of enzymatic activity provides a direct indication of the active site's catalytic efficiency within the enzyme's turnover rate.
In contrast, the Michaelis constant (Km) represents the substrate concentration at which the enzyme achieves half of its maximum reaction rate, or Vmax/2. This constant is used to determine the enzyme's affinity for a substrate, with a low Km indicating a high affinity, and vice versa.
When an enzyme operates in an environment with a high concentration of substrate, it will eventually reach a point where every active site is saturated with substrate -- this is the maximum velocity (Vmax) of the reaction. The Vmax is dependent on both the speed of the enzyme and the total number of enzyme molecules available.
The relationship between Vmax, Km, and substrate concentration ([S]) is described by the Michaelis-Menten equation, which is fundamental in the study of enzyme kinetics.
Choose whether the statements about oil sands are true or false. The viscosity of bitumen is about 100 times greater than the viscosity of water. Oil from oil sand deposits is only obtained by first heating the sands at high temperatures. Oil sands contain sand, water, and light crude oil.
The First 2 statements stated above were false whereas the third one is a true statement.
Explanation:
The viscosity of bitumen is about 100 times greater than the viscosity of water - FalseReason - The viscosity of bitumen is about not 100 times greater than the viscosity of water, it is actually 100, 000 times greater.
Oil from oil sand deposits is only obtained by first heating the sands at high temperatures is False.Reason- Oil from oil sand deposits is not obtained by first heating the sands at high temperatures but by using steams
Oil sands contain sand, water, and light crude oil is true.Compared to a hydrocarbon chain where all the carbon atoms are linked by single bonds, a hydrocarbon chain with the same number of carbon atoms, but with one or more double bonds, will _____.
Answer:
Be more constrained in structure
Explanation:
This is because double bonds confer unsaturation on an organic molecules. The molecules are more ordered as they have lesser number of hydrogen atoms in them.
Having same number of carbon atoms means they are corresponding molecules.
For example. Ethyne is corresponding to ethane. Since ethyne has less number of hydrogen atoms than ethane, it will be more constrained in structure than ethane.
A hydrocarbon chain with the same number of carbon atoms, but with one or more double bonds, will be more constrained in structure.
Hydrocarbon:A hydrocarbon is any of a class of organic chemicals made up of only the elements carbon (C) and hydrogen (H).
This is because double bonds unsaturation on an organic molecules. The molecules are more ordered as they have lesser number of hydrogen atoms in them.
Having same number of carbon atoms means they are corresponding molecules.
Learn more about Hydrocarbon here:
brainly.com/question/84088
Objects with higher temperatures:________________.1. emit only shortwave radiation. 2. emit most of their energy in the form of longwave energy. 3. radiate less total energy than cooler objects radiate. 4. emit more shortwave radiation than cooler objects do.
Objects with higher temperatures emit more electromagnetic energy than cooler objects and do so at shorter wavelengths. This results in hotter objects emitting a larger fraction of their energy as shortwave radiation compared to cooler objects.
Explanation:The question asks how objects with higher temperatures behave in terms of radiation. Based on the principles of physics, objects with higher temperatures emit more electromagnetic energy and do so at shorter wavelengths compared to cooler objects. This is because a higher temperature results in more vigorous atomic collisions, releasing energy across a spectrum but more intensely at shorter wavelengths. For instance, as a metal heats up, its color changes from dull red to bright orange-red and, at even higher temperatures, to brilliant yellow or blue-white, indicating emissions at shorter wavelengths. Similarly, the sun, being much hotter than the Earth, emits most of its energy in the shortwave end of the electromagnetic spectrum, whereas the Earth emits in the longwave end.
Hence, the correct statement is: Objects with higher temperatures emit more shortwave radiation than cooler objects do. This is aligned with the scientific understanding that hotter bodies not only radiate more energy across all wavelengths compared to cooler ones but also shift their peak emission towards shorter wavelengths, thereby emitting a larger fraction of their energy at these higher frequencies and energies.
The equation shows a --the breaking and forming of chemical bonds that leads to a change in the composition of matter. 2. In the equation, CO2 is a . 3. In the equation, C6H12O6 is a . 4. In O2, the type of bond that holds the two oxygen atoms together is a . 5. In H2O, the type of bond that holds one of the hydrogen atoms to the oxygen atom is a . 6. The number of oxygen atoms on the left side of the equation is the number of oxygen atoms on the right side.
A chemical equation is said to be balanced if the quantity of each type of atom in the reaction is the same on both the reactant and product sides. In a balanced chemical equation, the mass and the charge are both equal. Here the given equation is C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O.
This means that new products are formed due to the change in the chemical composition of the reactants.
Hence, the equation shows a chemical reaction - the breaking and forming of chemical bonds that leads to a change in the composition of matter.
1. The equation is C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O.
2. And, in the given equation CO₂ is a product.
3. In the equation, C₆H₁₂O₆ is a reactant.
4. In O₂, the type of bond that holds the two oxygen atoms together is a non-polar covalent bond.
5. In H₂O, the type of bond that holds one of the hydrogen atoms to the oxygen atom is a polar covalent bond.
6. The number of oxygen atoms on the left side of the equation is equal to the number of oxygen atoms on the right side.
To know more about balanced equation, visit;
https://brainly.com/question/20485252
#SPJ6
A scientist wants to make a solution of tribasic solution phosphate, na3po4, for a laboratory experiment. How many grams of na3po4 will be needed to produce 675 ml of a solution that has a concentration of na+ ions of 1.50 m
Answer:
55.75g
Explanation:
From
m/M = CV
Where
m= required mass of solute
M= molar mass of solute
C= concentration of solution
V= volume of solution=675ml
Molar mass of solute= 3(23) + 31 + 4(16)= 69+31+64=164gmol-1
Number of moles of sodium ions present= 1.5× 675/1000= 1.01 moles
Since 1 mole of Na3PO4 contains 3 moles of Na+
It implies that 1.01/3 moles of Na3PO4 are present in solution= 0.34moles
mass of Na3PO4= number of moles × molar mass= 0.34 × 164 =55.75g
The carbocation electrophile in a friedel-crafts reaction can be generated in ways other than by reaction of an alkyl chloride with alcl3.give an example
Answer: iron (II) Chloride can be used instead of AlCl3
Explanation:
Friedel–Crafts alkylation reaction involves the introduction of alkyl group in an aromatic ring with an alkyl halide using a strong Lewis acid, such as aluminium chloride, ferric chloride, or other MXn reagent, as catalyst.
The function of AlCl3 or fecl3 in Friedel-Craft reaction, is to produce electrophile, which later adds to benzene ring. This electrophilic aromatic substitution allows the synthesis of monoacylated products from the reaction between arenes and acyl chlorides or anhydrides. The products are deactivated and do not undergo a second substitution. Normally, a stoichiometric amount of the Lewis acid catalyst is required for both the substrate and the product form complexes.
AlCl3 or fecl3 (and other Lewis acids like it) will coordinate to halogens, and facilitate the breaking of these bonds. In doing so, it increases the electrophilic nature of its binding partner, making it much more reactive as to complete the reaction.
What mass (g) of barium iodide is contained in 188 ml of a barium iodide solution that has an iodide ion concentration of 0.532m 19.6 39.1 19,600 39,100 276
The mass of barium iodide in 188 ml of a 0.532M solution is calculated to be approximately 39.11 grams using concepts of molarity, moles, and molar mass.
Explanation:The question is asking to find out the mass of barium iodide in a solution, given a certain volume and a concentration. The question is a standard calculation involving molarity and volume. Molarity (M) is defined as the number of moles of solute per liter of solution. Therefore, you can calculate the number of moles of solute first using the formula M = n/V, where n is the number of moles and V is the volume in liters. We can convert 188 mL to liters (0.188 L) and we know the molarity is 0.532M, so the number of moles in the solution is 0.532M * 0.188 L = 0.10 moles of iodide ions. To find the mass of barium iodide, we multiply this number by the molar mass of barium iodide, which is roughly 391.136 g/mol (from barium's molar mass of 137.327 g/mol and iodine's molar mass of 253.809 g/mol). Thus, the mass of barium iodide is 0.10 moles * 391.136 g/mol = 39.11 g.
Learn more about Molarity Calculation here:https://brainly.com/question/15948514
#SPJ2
hich of the statements is true regarding CO2? All of these choices are correct. CO2 plays a vital role in maintaining Earth's temperature. CO2 can be produced by natural and man-made processes. CO2 is released as a product of respiration. CO2 is a greenhouse gas.
Matter are anything that is made up of atoms. The quantity of matter can be observed only on the basis of mass and volume calculation. Therefore, all of the given choices are correct.
What is matter?Matter is a substance that has some mass and can occupy some volume. The matter is mainly used in science. Matter can be solid, liquid or gas.
Matter is anything that is made up of atoms. Anything around us that can be physically seen and touched are matter. Ice, water and water vapors are example of matter. Mass can also be represented as number of molecules. Volume is measured only in liter.
CO[tex]_2[/tex] plays a vital role in maintaining Earth's temperature. CO[tex]_2[/tex] can be produced by natural and man-made processes. CO[tex]_2[/tex] is released as a product of respiration. CO[tex]_2[/tex] is a greenhouse gas.
Therefore, all of the given choices are correct.
To learn more about matter, here:
https://brainly.com/question/4562319
#SPJ5
A wooden object from a prehistoric site has a carbon-14 activity of 10 cpm compared to 40 cpm for new wood. If carbon-14 has a half-life of 5730 yr, what is the age of the wood?
Answer:
The answer to your question is 11460 years
Explanation:
Data
Carbon-14 activity 10 cpm
half-life = 5730 yr
Real carbon-14 activity 40 cpm
Process
1.- Write a chart to solve this problem
Real carbon-14 40 cpm Time 0 years
After a half-life 20 cpm Time 5730 years
After a half-life 10 cpm Time 5730 years
Total time 11460 years
2.- Conclusion
The wooden object is 11460 years old.
In a research project, a scientist adds 0.1 mole of HCN, 0.1 mole of H3O , and 0.1mole of CN- to water to make a total volume of 1 L. Will this reaction proceed to a greater extent in the forward direction or in the reverse direction
Answer:
Reverse; since the value of Q is greater than the value of K
Explanation:
The equation for the reaction can be expressed as:
[tex]HCN + H_2 O[/tex] ⇄ [tex]H_3O^+ +CN^{-}[/tex] [tex]k_a = 6.2 * 10^ {-10[/tex]
[tex]Q = \frac{[H_3O^+][CN^-]}{[HCN]}[/tex]
[tex]Q = \frac{(0.1)(0.1)}{(0.1)}[/tex]
Q = 0.1
[tex]k_a = 6.2 * 10^ {-10[/tex]
Q > [tex]K_{a}[/tex]
If the value of Q is greater than [tex]K_{a}[/tex] Value; the reaction will definitely shift to reverse direction.
In the laboratory 6.67 g of Sr(NO3)2 is dissolved in enough water to form 0.750 L. A 0.100 L sample is withdrawn from this stock solution and titrated with a 0.0460 M solution of Na3PO4. a. What is the concentration of the Sr(NO3)2stock solution? b. Write a balanced molecular equation for the titration reaction. c. How many milliliters of the Na3PO4 solution are required to precipitate all the Sr2+ ions in the 0.100 L sample? (MM's: Sr(NO3)2 = 211.64; Na3PO4 =163.94)Name
Answer:
The answer to your question is below
Explanation:
Data
mass of Sr(NO₃)₂ = 6.67 g Final volume = 0.750 L
Sample 0.100 L
[Na₃PO₄] = 0.046 M
a) [Sr(NO₃)₂
MM = 211.64 g
211.64 g ---------------------- 1 mol
6.67 g ---------------------- x
x = (6.67 x 1) / 211.64
x = 0.032 mol
Molarity = 0.032 / 0.75
Molarity = 0.042
b)
3Sr(NO₃)₂ + 2Na₃PO₄ ⇒ Sr₃(PO₄)₂ + 6NaNO₃
Reactants Elements Products
3 Sr 3
6 N 6
6 Na 6
2 P 2
24 O 24
c)
Calculate the moles of Sr(NO₃)₂ in 100 ml or 0.1 L
Molarity = moles / volume
Moles = Molarity x volume
Moles = 0.042 x 0.1
Moles = 0.0042
3 moles of Sr(NO₃)₂ --------------- 2 moles of Na₃PO₄
0.0042 moles of Sr(NO₃)₂ -------- x
x = (0.0042 x 2) / 3
x = 0.0028 moles of Na₃PO₄
Molarity = moles / volume
Volume = moles / Molarity
Volume = 0.0028 / 0.046
Volume = 0.060 L or 60.9 mL
Identify the number of bonding pairs and lone pairs of electrons in carbon dioxide. a) 2 bonding pairs and 4 lone pair b) 4 bonding pairs and 2 lone pairs c) 4 bonding pairs and 4 lone pairs d) 2 bonding pairs and 2 lone pairs e) 4 bonding pairs and 1 lone pair
Final answer:
Carbon dioxide (CO₂) consists of two oxygen atoms bonded to a central carbon atom. Each oxygen atom forms a double bond with the carbon atom. The double bond consists of two bonding pairs of electrons. Therefore, carbon dioxide has 2 bonding pairs and 0 lone pairs of electrons.
Explanation:
Carbon dioxide (CO₂) consists of two oxygen atoms bonded to a central carbon atom. Each oxygen atom forms a double bond with the carbon atom. The double bond consists of two bonding pairs of electrons. Therefore, carbon dioxide has 2 bonding pairs and 0 lone pairs of electrons. The correct option is d) 2 bonding pairs and 2 lone pairs.
The correct option is b. 4 bonding pairs and 2 lone pairs.
To determine the number of bonding pairs and lone pairs in carbon dioxide (CO2), we need to consider the Lewis structure of the molecule. Carbon dioxide has a total of 16 valence electrons, 4 from the carbon atom and 6 from each of the two oxygen atoms.
In the Lewis structure of CO2, the carbon atom is double-bonded to each oxygen atom. Each double bond consists of one sigma (σ) bond and one pi (π) bond. Since there are two double bonds, there are a total of 4 bonding pairs of electrons (2 sigma bonds and 2 pi bonds).
The Lewis structure of CO2 is as follows:
O=C=O
Here, the carbon atom has no lone pairs, as it forms double bonds with both oxygen atoms. Each oxygen atom has 2 lone pairs of electrons, but since we are asked about the entire CO2 molecule, we consider the lone pairs on both oxygen atoms together. Therefore, there are 2 lone pairs in total for the CO2 molecule.
In summary, carbon dioxide has 4 bonding pairs of electrons (from the 2 double bonds) and 2 lone pairs of electrons (1 on each oxygen atom). This matches option b.
Which of the answer choices correctly describes a solvent made of molecules that have areas of partial positive and negative charge?
ionizing solvent
polar solvent
true solvent
nonpolar solvent
Answer: polar solvent
Explanation:
Polarity can be said to mean, charge separation. Thus, polar solvents are solvents that have charge separation and the ability to solvate i.e dissolve ions.
A polar solvent molecule has slight electrical charge as a result of its shape. A typical and most common example is water, with an oxygen and two hydrogen atoms. The two hydrogen atoms are at an angle to the single oxygen atom. Water is the classic polar solvent. The oxygen atom tends to polarize electron density to itself.
In CF4 and NF3, the ___electron groups on the central C and N atoms have a ___ arrangement. The shapes of the molecules are determined by the number of ___ of electrons: since CF4 has ___ bonded atom(s) and ___ lone pair(s) of electrons, the shape is ___. Since NF3 has ___ bonded atom(s) and ___ lone pair(s) of electrons, the shape is ___.
Answer:
Explanation:
In CF4 and NF3, the valence electron groups on the central C and N atoms have a tetrahedral arrangement. The shapes of the molecules are determined by the number of bonding and nonbonding of electrons: since CF4 has four bonded atom(s) and zero lone pair(s) of electrons, the shape is tetrahedral.
CF4 and NF3 have electron groups which are arranged tetrahedrally. CF4, having four bonded atoms and no lone pairs, has a tetrahedral shape. NF3, having three bonded atoms and a lone pair of electrons, has a trigonal pyramidal shape.
Explanation:In CF4 (Carbon Tetrafluoride) and NF3 (Nitrogen Trifluoride), the electron groups on the central carbon (C) and nitrogen (N) atoms have a tetrahedral arrangement. The shapes of these molecules are determined by the number of lone pairs of electrons.
In CF4, there are four bonded atoms and no lone pair of electrons, thus, the shape is tetrahedral. On the other hand, in NF3, nitrogen is bonded to three fluorine atoms and has one lone pair of electrons, so it has a trigonal pyramidal shape.
Learn more about Molecular Shapes here:https://brainly.com/question/1984146
#SPJ3
Gerald's science teacher mixed room temperature samples of hydrochloric acid and sodium hydroxide in a large beaker. The solution still looked clear like water, but when the students carefully touched the beaker one at a time, it felt warm to the touch.
Answer:
A.
A chemical reaction was producing a new substance.
Explanation:
Equation of the reaction
NaOH + HCl --> NaCl + H2O
Heat of neutralization is the amount of heat evolved when one mole of acid reacts with one mole of an alkaline to form one mole of water.
When a neutralisation reaction is carried out, there is an exothermic change; energy released into the surroundings therefore since heat is given out which is what is felt.
hich of the following is TRUE? Group of answer choices A neutral solution does not contain any H3O+ or OH- A neutral solution contains [H2O] = [H3O⁺] A basic solution has [OH⁻] > [H3O⁺] An acidic solution has [H3O⁺] > [H2O] A basic solution does not contain H3O+
Answer:
a basic solution has [OH-] > [H3O+]
Regarding the formula Al203 which of the following is accurate
Answer:
D. The subscript 2 indicates that two atoms of aluminum are present in the substance.
Explanation:
The answer choices are:
A. The coefficient 3 indicates that there are a total of three atoms of oxygen present in the substance. B. The subscript 2 indicates that two atoms of oxygen are present in the substance. C. The chemical symbol Al indicates that oxygen is present in the substance. D. The subscript 2 indicates that two atoms of aluminum are present in the substance.Solution
The correct formula is:
[tex]Al_2O_3[/tex]
What you must know to answer this question is that the chemical formulas indicate the number of atoms of each element in the formula by placing a subscript to the right of the chemical symbol that represents the atom.
Thus, we can deal with each statement:
A. The coefficient 3 indicates that there are a total of three atoms of oxygen present in the substance.
Incorrect. 3 is not a coefficient but a subscript. Thus this option is wrong.
B. The subscript 2 indicates that two atoms of oxygen are present in the substance.
Incorrect. The subscript 2 is to the right of tha aluminum symbol, thus it does not represent the number of atoms of oxygen.
C. The chemical symbol Al indicates that oxygen is present in the substance.
Incorrect. The chemical symbol Al indicates that aluminum is present in the substance. Thus, this is wrong.
D. The subscript 2 indicates that two atoms of aluminum are present in the substance.
Correct. The subscript 2 is to the right of the symbol Al, which is the chemical symbol for aluminum. Thus, this indicates that there are two atoms of aluminum in the substance.
A pump contains 1.5 L of air at 175 kPa. You draw back on the piston of the pump, expanding the volume until the pressure reads 45 kPa. What is the new volume of air in the pump?
Answer:
[tex]\large \boxed{\text{86.8 L}}[/tex]
Explanation:
The temperature and amount of gas are constant, so we can use Boyle’s Law.
[tex]p_{1}V_{1} = p_{2}V_{2}[/tex]
Data:
[tex]\begin{array}{rclrcl}p_{1}& =& \text{0.579 atm}\qquad & V_{1} &= & \text{150 L} \\p_{2}& =& \text{1.00 atm}\qquad & V_{2} &= & ?\\\end{array}[/tex]
Calculations:
[tex]\begin{array}{rcl}0.579 \times 150 & =& 1.00V_{2}\\86.85 & = & 1.00V_{2}\\V_{2} & = &\dfrac{86.85}{1.00}\\\\& = &\textbf{86.8}\\\end{array}\\\text{The new volume of the gas is } \large \boxed{\textbf{86.8 L}}[/tex]
The electron configuration of Ne is:
1s 12s 12p 3
1s 22s 22p 6
1s 22s 22p 33s 2
1s 22s 22p 5
1s 22s 22p 63s 1
The correct answer would be....
1s^2 2s^2 2p^6
Two or more than two atoms with different physical or chemical properties can not combine together to form an element. Therefore, the electronic configuration of Neon is 1s²2s²2p⁶.
What is element?Element generally consist of atoms or we can atoms combine to form element. Atoms of an element is always same, means all the properties of all atoms of one type of element is same.
The systematic distribution of electrons in the various atomic orbitals is called its electronic configuration. The atomic number of neon is 10. The electronic configuration of neon is 1s²2s²2p⁶. 1,2,3 represents the number of shells and s and represents the orbitals. The superscripts represents the number of electrons in each orbitals.
Therefore, the electronic configuration of Neon is 1s²2s²2p⁶.
To know more about element, here:
brainly.com/question/8460633
#SPJ3
The relative atomic mass of Chlorine is 35.45. Calculate the percentage abundance of the two isotopes of Chlorine, 35Cl and 37Cl in a sample of chlorine gas. (Total 2 marks)
Answer:
35Cl = 75.9 %
37Cl = 24.1 %
Explanation:
Step 1: Data given
The relative atomic mass of Chlorine = 35.45 amu
Mass of the isotopes:
35Cl = 34.96885269 amu
37Cl = 36.96590258 amu
Step 2: Calculate percentage abundance
35.45 = x*34.96885269 + y*36.96590258
x+y = 1 x = 1-y
35.45 = (1-y)*34.96885269 + y*36.96590258
35.45 = 34.96885269 - 34.96885269y +36.96590258y
0.48114731 = 1,99704989y
y = 0.241 = 24.1 %
35Cl = 34.96885269 amu = 75.9 %
37Cl = 36.96590258 amu = 24.1 %
Precipitation reactions and ionic equations
(look at attachment)
Answer:
Net ionic equation: 2OH⁻(aq) + Fe²⁺(aq) → Fe(OH)₂(s)
Net ionic equation: 2K⁺(aq) + CH₃COO⁻ (aq) + 2Na⁺(aq) + S⁻²(aq) → NO REACTION
Net ionic equation: CO₃⁻²(aq) + Pb⁺²(aq) → PbCO₃(s)
Explanation:
a. Solutions of calcium hydroxide and Iron (II) chloride are mixed:
We identify the reactants:
Ca(OH)₂ , FeCl₂
In excess, the Fe(OH)₂ can make precipitate
Salts from chlorides with elements from group II are soluble.
The reaction is: Ca(OH)₂(aq) + FeCl₂(aq) → Fe(OH)₂(s) + CaCl₂(aq)
Ca(OH)₂(aq) + FeCl₂(aq) → Fe(OH)₂(s) + CaCl₂(aq)
We dissociate the compounds, except for the solid
Ca²⁺(aq) + 2OH⁻(aq) + Fe²⁺(aq) + 2Cl⁻(aq) → Fe(OH)₂(s) + Ca²⁺ + 2Cl⁻(aq)
Net ionic equation: 2OH⁻(aq) + Fe²⁺(aq) → Fe(OH)₂(s)
b. Solutions of potassium acetate and sodium sulfide are mixed:
The reactants are: KCH₃COOH and Na₂S
In this case there are no precipitates, because all the salts are soluble
We make the complete reaction:
2KCH₃COO (aq) + Na₂S(aq) → K₂S(aq) + 2NaCH₃COO (aq)
Net ionic equation is:
2K⁺(aq) + CH₃COO⁻ (aq) + 2Na⁺(aq) + S⁻²(aq) → 2K⁺(aq) + S⁻²(aq) + 2Na⁺(aq) + CH₃COO⁻ (aq)
c. Solutions of ammonium carbonate and lead(II) nitrate are mixed:
In this case, the reactants are: (NH₄)₂CO₃ and Pb(NO₃)₂
All salts from nitrate are soluble.
Carbonate makes a precipitate when it bonds Pb.
The complete reaction is:
(NH₄)₂CO₃(aq) + Pb(NO₃)₂(aq) → PbCO₃(s) + 2NH₄NO₃(aq)
We dissociate all of the compounds, except for the solid in order to make the net ionic equation:
2NH₄⁺(aq) +CO₃⁻²(aq) + Pb⁺²(aq) +2NO₃⁻(aq) → PbCO₃(s) + 2NH₄⁺ (aq) + 2NO₃⁻(aq)
The net ionic equation is: CO₃⁻²(aq) + Pb⁺²(aq) → PbCO₃(s)
The ions that are repeated, are called spectators ions. We all cancel them.
A metal object with mass of 23.2 g 23.2 g is heated to 97.0 °C 97.0 °C and then transferred to an insulated container containing 90.0 g 90.0 g of water at 20.5 °C. 20.5 °C. The water temperature rises and the temperature of the metal object falls until they both reach the same final temperature of 22.6 °C. 22.6 °C. What is the specific heat of this metal object? Assume that all the heat lost by the metal object is absorbed by the water.
Answer:
The specific heat of the object [tex]C_{obj}[/tex] = 0.457 [tex]\frac{KJ}{kg K}[/tex]
Explanation:
Mass of the object [tex]m_{obj}[/tex] = 23.2 gm
Initial temperature [tex]T_{obj}[/tex] = 97 ° c
Mass of the water [tex]m_{w}[/tex] = 90 gm
Initial temperature of water [tex]T_{w}[/tex] = 20.5 ° c
Final temperature of both water & object [tex]T_{f}[/tex] = 22.6 ° c
It is given that heat lost by the object = heat gain by the water
⇒ [tex]m_{obj}[/tex] [tex]C_{obj}[/tex] ( [tex]T_{obj}[/tex] - [tex]T_{f}[/tex] ) = [tex]m_{w}[/tex] [tex]C_{w}[/tex] ( [tex]T_{f}[/tex] - [tex]T_{w}[/tex])
Put all the values in above formula we get
⇒ 23.2 × [tex]C_{obj}[/tex] ( 97 - 22.6 ) = 90 × 4.18 × ( 22.6 - 20.5 )
⇒ [tex]C_{obj}[/tex] = 0.457 [tex]\frac{KJ}{kg K}[/tex]
This is the specific heat of the object.
The volume of a sample of chlorine gas is 8.00 liters at 45.0 degrees Celsius and 0.966 atm. How many moles of chlorine are present in the sample? R = 0.0821 (atm)(L)(mol-1)(K-1)
Answer:
Number of moles of Cl₂ = 0.3 mol
Explanation:
Given data:
Number of moles of Cl₂ = ?
Pressure = 0.966 atm
Volume = 8.00 L
Temperature = 45°C
Solution:
The given problem will be solve by using general gas equation, which is,
PV = nRT
R = general gas constant (0.0821 atm.L/mol.K)
Now we will convert the °C into K.
Temperature = 45+ 273 = 318 K
Now we will put the values in formula.
n = PV/RT
n = 0.966 atm × 8.00 L / 318 K ×0.0821 atm.L/mol.K
n = 7.728/26.1078 /mol
n = 0.3 mol
Whch compounds is most reactive toward nucleophilic acyl substitution?
Answer:
There are five main types of acyl derivatives. Acid halides are the most reactive towards nucleophiles, followed by anhydrides, esters, and amides. Carboxylate ions are essentially unreactive towards nucleophilic substitution, since they possess no leaving group
When we think about the carbon cycle and human activities, it is important to differentiate between facts and hypotheses. Which of the following is NOT a fact, but is a hypothesis? A. The amount of carbon dioxide in the atmosphere has increased since 1950. B. Increasing atmospheric carbon dioxide will cause mean global temperature to increase by 2 degrees Celsius over the next century. C. The burning of fossil fuels contributes substantially to the ongoing rise of atmospheric CO2. D. In the past, atmospheric CO2 levels reached levels higher than those observed today.
Answer:
B. Increasing atmospheric carbon dioxide will cause mean global temperature to increase by 2 degrees Celsius over the next century.
Explanation:
By definition, a hypothesis is a tentative statement or prediction with little or no experimental test. Hypotheses are always formulated such that they can be rejected if experimental findings are against them.
Hypotheses are predictive and as such, the tone is often in future tense.
From the available options, only option B sound predictive of what might happen in the future.
Hence, the correct option is B.
HELP ASAP!!!!!!! PLEASE!!!!!!!!
The relationship between electricity and magnetism is called
a. current.
b. electromagnetism.
c. a solenoid.
d. voltage.
Answer:
b
Explanation:
Which of the following is/are INCORRECT conversions in the metric system? Circle ALL that are false - there may be more than one! - for a complete answer.
(a) 1 km = 1000 m (b) 50 mL = 0.50 L
(c) 125 mm = 12.5 cm (d) 23 pm = 0.000000000023 m
Answer:
(b) 50 mL = 0.50 L
Explanation:
Metric system is a measurement system that uses decimalized in all their factor, which mean every rank difference can be expressed as a factor of 10(deci=10). The decimalized number makes it easier to convert the unit, make the metric system easier to be learned and used.
The Metric system will use a prefix to determine the factor, a kilo is 1000, mili is 1/1000, centi is 1/100, pico is 1/10^12.
(a) 1 km = 1000 m
True, kilo is 1000
(b) 50 mL = 0.50 L
This option is false. mili is 1/1000, so 50/1000= 0.05 L
(c) 125 mm = 12.5 cm
True, mili is 1/1000 while centi is 1/100.
So 125mm will be: 125mm * 100mm/1000cm= 12.5cm
(d) 23 pm = 0.000 000 000 023 m
True, pico is 10^-12
Final answer:
The incorrect metric system conversions are option (b), 50 mL = 0.50 L (it should be 0.05 L), and option (c) is correct, with 125 mm actually equaling 12.5 cm. The other options (a) and (d) are correctly converted.
Explanation:
The incorrect conversions in the metric system from the options provided are:
(b) 50 mL = 0.50 L is incorrect because 50 mL equals 0.05 L, not 0.50 L.(c) 125 mm = 12.5 cm is incorrect because 125 mm equals 12.5 cm, as the conversion between millimeters and centimeters is accurate with 10 mm being equivalent to 1 cm.The correct conversions are:
(a) 1 km = 1000 m (This is a correct conversion.)(d) 23 pm = 0.000000000023 m (This is also a correct conversion in the metric system as 1 picometer (pm) equals 1 x 10-12 meters.)To clarify option (b), it is important to remember that 1 liter (L) equals 1000 milliliters (mL). Therefore, 50 mL should be divided by 1000 to convert to liters, which results in 0.05 L, not 0.50 L.
The overall energy involved in the formation of CsCl from Cs(s) and Cl2(g) is −443 kJ mol−1. Given the following information: heat of sublimation for Cs is +76 kJ mol−1, bond dissociation energy for 12Cl2 is +121 kJ mol−1, Ei1 for Cs is +376 kJ mol−1, and Eea for Cl(g) is 349 kJ mol−1. what is the magnitude of the lattice energy for CsCl?
Explanation:
It is given that total energy is -443 kJ/mol and formula to calculate the lattice energy is as follows.
Total energy = heat of sublimation + bond dissociation energies + ionization energy for Cs + EA of [tex]Cl^{-}[/tex] + lattice energy
-443 kJ/mol = 76 + 121 + 376 - 349 + Lattice energy
Lattice energy = (-443 - 76 -121 - 376 + 349) kJ
Lattice energy = -667 kJ
Therefore, we can conclude that -667 kJ is the magnitude of the lattice energy for CsCl.