To estimate the length of the lake, caleb starts at one end of the lake and walk 95m. He then turns a 60° angle and walks on a new path and walks 8m more then arrives at the other end of the lake. Approximately how long is the lake?

Answers

Answer 1

Answer:

Length of the lake is 97.30 m

Step-by-step explanation:

We have given Caleb starts at one end of the lake and walk 95 m

So [tex]d_1=95m[/tex]

And then he turns at an angle of 60°

So [tex]\Theta =60^{\circ}[/tex] and then again walk 8 m

So [tex]d_2=8m[/tex]

We have to fond the total length of the lake , that is d

Total length of the lake is given by [tex]d=\sqrt{d_1^2+d_2^2+2d_1d_2cos\Theta }=\sqrt{95^2+8^2+2\times 95\times 8\times cos60^{\circ}}=97.30m[/tex]

So length of the lake is 97.30 m

Answer 2

Final answer:

Using the Law of Cosines with Caleb's path measurements of 95 meters and 103 meters at a 60-degree angle, the length of the lake is found to be approximately 104 meters.

Explanation:

To estimate the length of the lake, we can represent Caleb's path as a triangle, where the length of the lake forms one side of the triangle. Caleb starts by walking 95 meters along one side, then makes a 60° angle and walks 8 meters more than the length of the first path, forming the second side of the triangle. The length of the lake, which is the final side, can be calculated using the Law of Cosines.

The Law of Cosines is given by c² = a² + b² - 2ab×cos(γ), where γ is the enclosed angle and a, b, and c are the lengths of the sides of the triangle.

In this case, a = 95m, b = 95m + 8m = 103m, and γ = 60°. Plugging these values into the Law of Cosines, we will find the length of the lake (c).

c² = 95² + 103² - 2×95×103×cos(60°)

c² = 9025 + 10609 - 19570×0.5

c² = 9025 + 10609 - 9785

c² = 10849

c ≈ √10849

c ≈ 104.16 meters

Therefore, the length of the lake is approximately 104 meters long.


Related Questions

A girl is now one-fourth as old as her father, and in seven years, she will be one-half as old as her father was twelve years ago. What are her and her father's present ages?A. father's age = 20; daughter's age = 5B. father's age = 52; daughter's age = 13C. father's age = 76; daughter's age = 19

Answers

Answer:

Option B -  father's age = 52; daughter's age = 13

Step-by-step explanation:

Given : A girl is now one-fourth as old as her father, and in seven years, she will be one-half as old as her father was twelve years ago.

To find : What are her and her father's present ages?

Solution :

Let the father's present age is 'x'.

A girl is now one-fourth as old as her father.

i.e. Girl age is [tex]\frac{x}{4}[/tex]

In seven years, she will be one-half as old as her father was twelve years ago.

i.e. [tex]\frac{x}{4}+7=\frac{1}{2}(x-12)[/tex]

[tex]\frac{x}{4}+7=\frac{x}{2}-6[/tex]

[tex]\frac{x}{4}-\frac{x}{2}=-6-7[/tex]

[tex]\frac{x-2x}{4}=-13[/tex]

[tex]-x=-52[/tex]

[tex]x=52[/tex]

The father's age is 52 years.

The daughter's age is [tex]\frac{52}{4}=13[/tex]

Therefore, option B is correct.

The length of the top of a computer desk is 2 1/4 feet longer than it's width. If it's width measures y feet, express its length as an algebraic expression in y

Answers

Answer:

Step-by-step explanation:

The top of the computer desk is rectangular in shape.

Let y represent the width of the rectangle.

The length of the top of the computer desk is 2 1/4 feet longer than its width. Converting 2 1/4 feet to improper fraction, it becomes 9/4 feet. Therefore, the algebraic expression of the length of the of the top of the computer desk in terms of y would be

Length = y + 9/4

After the mill in a small town closed down in 1970, the population of that town started decreasing according to the law of exponential growth and decay. By 1990, the population had decreased to 143 thousand. By 2019, the population further decreased down to 98 thousand. Heat was the original population in 1970.

Answers

Answer:

[tex]P_o = \frac{143000}{e^{-20*0.01303024661}}=110193.69[/tex]

And we can round this to the nearest up integer and we got 110194.  

Step-by-step explanation:

The natural growth and decay model is given by:

[tex]\frac{dP}{dt}=kP[/tex]   (1)

Where P represent the population and t the time in years since 1970.

If we integrate both sides from equation (1) we got:

[tex] \int \frac{dP}{P} =\int kdt [/tex]

[tex]ln|P| =kt +c[/tex]

And if we apply exponentials on both sides we got:

[tex]P= e^{kt} e^k [/tex]

And we can assume [tex]e^k = P_o[/tex]

And we have this model:

[tex]P(t) = P_o e^{kt}[/tex]

And for this case we want to find [tex]P_o[/tex]

By 1990 we have t=20 years since 1970 and we have this equation:

[tex]143000 = P_o e^{20k}[/tex]

And we can solve for [tex]P_o[/tex] like this:

[tex]P_o = \frac{143000}{e^{20k}}[/tex]   (1)

By 2019 we have 49 years since 1970 the equation is given by:

[tex]98000 = P_o e^{49k}[/tex]   (2)

And replacing [tex]P_o[/tex] from equation (1) we got:

[tex]98000=\frac{143000}{e^{20k}} e^{49k} =143000 e^{29k}[/tex]  

We can divide both sides by 143000 we got:

[tex]\frac{98000}{143000} =0.685 = e^{29k}[/tex]

And if we apply ln on both sides we got:

[tex]ln(0.685) = 29k[/tex]

And then k =-0.01303024661[/tex]

And replacing into equation (1) we got:

[tex]P_o = \frac{143000}{e^{-20*0.01303024661}}=110193.69[/tex]

And we can round this to the nearest up integer and we got 110194.  

The nine squares of a 3-by-3 chessboard are to be colored red and blue. The chessboard is free to rotate but cannot be flipped over. Determine the generating function for the number of nonequivalent colorings and the total number of nonequivalent colorings.

Answers

Answer:

[tex]a_n = 2^{\frac{n^2-1}{4} + 1} + \frac{2^{n^2} - \, 2^{\frac{n^2-1}{4} + 1}}{4}[/tex]

For n = 3, there are 134 possibilities

Step-by-step explanation:

First, lets calculate the generating function.

For each square we have 2 possibilities: red and blue. The Possibilities between n² squares multiply one with each other, giving you a total of 2^n² possibilities to fill the chessboard with the colors blue or red.

However, rotations are to be considered, then we should divide the result by 4, because there are 4 ways to flip the chessboard (including not moving it), that means that each configuration is equivalent to three other ones, so we are counting each configuration 4 times, with the exception of configurations that doesnt change with rotations.

A chessboard that doesnt change with rotations should have, in each position different from the center, the same colors than the other three positions it could be rotated into. As a result, we can define a symmetric by rotations chessboard with only (n²-1)/4 + 1 squares (the quarter part of the total of squares excluding the center plus the center).

We cocnlude that the total of configurations of symmetrical boards is [tex] 2^{\frac{n^2-1}{4} + 1} [/tex]

Since we have to divide by 4 the rest of configurations (because we are counted 4 times each one considering rotations), then the total number of configutations is

[tex]a_n = 2^{\frac{n^2-1}{4} + 1} + \frac{2^{n^2} - \, 2^{\frac{n^2-1}{4} + 1}}{4}[/tex]

If n = 3, then the total amount of possibilities are

[tex]a_3 = 2^{\frac{3^2-1}{4} + 1} + \frac{2^{3^2} - \, 2^{\frac{3^2-1}{4} + 1}}{4} =  134[/tex]

On the first day a total of 40 items were sold for $356. Define the variables and write a system of equations to find the number of cakes and pies sold

Answers

Question:

On the first day, a total of 40 items were sold for $356. Pies cost $10 and cakes cost $8. Define the variables, write a system of equations to find the number of cakes and pies sold, and state how many pies were sold.

Answer:

The variables are defined as:

"c" represent the number of cakes sold and "p" represent the number of pies sold

The system of equations used are:

c + p = 40 and 8c + 10p = 356

18 pies and 22 cakes were sold

Solution:

Let "c" represent the number of cakes sold

Let "p" represent the number of pies sold

Cost of 1 pie = $ 10

Cost of 1 cake = $ 8

Given that total of 40 items were sold

number of cakes + number of pies = 40

c + p = 40 ------ eqn 1

Given items were sold for $356

number of cakes sold x Cost of 1 cake + number of pies sold x Cost of 1 cake = 356

[tex]c \times 8 + p \times 10 = 356[/tex]

8c + 10p = 356  ----- eqn 2

Let us solve eqn 1 and eqn 2

From eqn 1,

p = 40 - c    ---- eqn 3

Substitute eqn 3 in eqn 2

8c + 10(40 - c) = 356

8c + 400 - 10c = 356

-2c = - 44

c = 22

Substitute c = 22 in eqn 3

p = 40 - c

p = 40 - 22

p = 18

Thus 18 pies and 22 cakes were sold

A tank in the shape of a right circular cone has height 12 feet and base radius 4 feet. The tank is inverted, with its vertex pointing down and base at the top. The tank contains a liquid with weight density 63 pounds per cubic foot, but is filled to a depth of 8 feet only. Set up, but DO NOT EVALUATE, an integral for the work (in foot-pounds) required to pump all the liquid present to a height one foot over the top of the tank.

Answers

Answer:

V = int(π(y/3)^2, 0, 8)

(Definite integration of π(y/3)^2 with lower boundary 0 and upper boundary 8)

Step-by-step explanation:

Set up cartesian axis (x and y) to the system.

Let y axis as the line of the centre of the cone, passing through its vertex and the centre of it's circular base. The x axis could be the 90 degree line to the y axis that passes the vertex. So the origin (0,0) is at the vertex.

I'm this setup , looking it as if we are looking it in 2 dimension, we'll see that there is a signature straight line on the x-y plane, which this line will form the cone as it revolute around the y-axis

Find the equation of the line:

Using height 12 and radius base 4, we can get the slope of the line

m = 12/4 = 3

It passes through origin, so the y-intercept is 0

Hence, y = 3x

Since the volume revolves around y-axis, we use the equation volume of revolution around y-axis

V = int(πx^2,a,b)

(Definite integration of πx^2 with lower boundary a and upper boundary b

Since y=3x

x = y/3

For this que

V = int(π(y/3)^2, 0, 8)

(Definite integration of π(y/3)^2 with lower boundary 0 and upper boundary 8)

The second term in a geometric sequence is 81. The common ratio for the geometric sequence is 3. Use the common ratio or equation to find the 4th and 6th terms in the geometric sequence.

Show your work

Answers

Answer:4th: 729 6th: 6561

Step-by-step explanation: Sorry, I’m not 100% sure but I will try to help out: :)

So 2nd term is 81 and you want the 4th and 6th term.

Common ratio is 3

I approached it like this:

81x3=243 (3rd Term)

243x3=729 (4th Term)

729x3=2187 (5th Term)

2187x3=6561 (6th Term)

So if this isn’t the correct way the only other way I can think to approach this is

81+3=84(3rd Term)

84+3=87(4th Term)

87+3=90(5th Term)

90+3=93(6th Term)

Hope this helps

Final answer:

The 4th term is 729 and the 6th term is 6561 in the given geometric sequence with a common ratio of 3, starting with the second term of 81.

Explanation:

To find the 4th and 6th terms in a geometric sequence, we use the formula for the nth term of a geometric sequence Tn = ar^(n-1), where a is the first term, r is the common ratio, and n is the term number.

Given that the second term is 81 and the common ratio (r) is 3, we can find the first term by using the second term's formula: T2 = ar^(2-1) = ar = 81, so a = 81/r = 81/3 = 27.

Now, to find the 4th term (T4), we substitute the values into the formula: T4 = ar^(4-1) = 27 * 3^(3) = 27 * 27 = 729.

Similarly, to find the 6th term (T6), we use the formula again: T6 = ar^(6-1) = 27 * 3^(5) = 27 * 243 = 6561.

In conclusion, the 4th term is 729 and the 6th term is 6561 in this geometric sequence.

Evaluate the expression \dfrac{x^5}{x^2} x 2 x 5 ​ start fraction, x, start superscript, 5, end superscript, divided by, x, squared, end fraction for x=2x=2x, equals, 2.

Answers

Answer:

  8

Step-by-step explanation:

Fill in the variable value and do the arithmetic.

  [tex]\dfrac{2^5}{2^2}=\dfrac{32}{4}=8[/tex]

___

Of course, the fraction can be simplified first:

  [tex]\dfrac{x^5}{x^2}=x^{5-2}=x^3\\\\2^3=8[/tex]

Final answer:

To evaluate the expression, substitute x with 2, simplify the exponents, and perform the multiplication

Explanation:

To evaluate the expression \dfrac{x^5}{x^2} \times 2 \times 5



Substitute x with 2 in the expression: \dfrac{2^5}{2^2} \times 2 \times 5Simplify the exponents: \dfrac{32}{4} \times 2 \times 5Perform the division: 8 \times 2 \times 5 = 80

Learn more about Algebra here:

https://brainly.com/question/24875240

#SPJ2

John weighs three times as much as Karen. Two times John's weight plus Karen's weight is 875 pounds. How much does John weigh? How much does Karen weigh?

Answers

Answer:

John- 375

Karen- 125

Step-by-step explanation:

Answer 1...

j =3k

2j + k = 875

substituting the first eqn into the 2nd

2(3k) + k = 875

6k+ k =875

7k = 875

k =875/7 =125

thus j = 3(125) =375

Answer:john weighs 375 pounds.

Karen weighs 125 pounds

Step-by-step explanation:

Let x represent the weight of John.

Let y represent the weight of Karen.

John weighs three times as much as Karen. This means that

x = 3y

Two times John's weight plus Karen's weight is 875 pounds. This means that

2x + y = 875 - - - - - - - -1

Substituting x = 3y into equation 1, it becomes

2 × 3y + y = 875

6y + y = 875

7y = 875

y = 875/7 = 125

Substituting y = 125 into x = 3y. It becomes

x = 3 × 125 = 375

You're really good at investing and you have $1,500 in your investment account.You make 8.5% interest a year on your investment account!For a year you owe $1,600 on a credit card.You pay 19% interest a year on this credit card debt.Answer these questions:Some of the answers are incorrect. Try again...Here is a hint: How much are you making on your investment? Calculate: $1,500 * 8.5%. What do you pay in interest on your card? You do the math: $1,600 * 19%. Looks like a huge loss of money, right? Enter the loss as a negative value.How much money are you making on your investment in a year?$ How much money are you paying in interest in a year on your card?$ What's your total gain/loss that year?$ Enter a negative value for a loss.

Answers

Answer:

Step-by-step explanation:

To determine how much are you making on your investment, we will apply the simple interest formula. It is expressed as

I = PRT/100

Where

P = principal or amount invested,

R = interest rate

T = time

From the information given,

P = $1,500

T = 1 year

R = 8.5

I =( 1500×8.5×1)/100

I = $127.5

For a year you owe $1,600 on a credit card. You pay 19% interest a year on this credit card debt.

Interest paid = (1600×19×1)/100 = $304

The loss is 304 - 127.5 = - $176.5

Final answer:

You are making $127.50 on your investment in a year and paying $304 in interest on your credit card debt in a year, resulting in a total loss of $176.50.

Explanation:

First, let's calculate how much money you are making on your investment in a year. To do this, multiply your initial investment of $1,500 by the interest rate of 8.5%: $1,500 * 8.5% = $127.50. So, you are making $127.50 on your investment in a year.

Next, let's calculate how much money you are paying in interest on your credit card debt in a year. To do this, multiply your credit card debt of $1,600 by the interest rate of 19%: $1,600 * 19% = $304. So, you are paying $304 in interest on your card in a year.

To calculate your total gain/loss for the year, subtract the amount you are paying in interest from the amount you are making on your investment: $127.50 - $304 = -$176.50. Therefore, you have a total loss of $176.50 for the year. Remember to enter a negative value for a loss.

Diane loves coasters that dip into tunnels during the ride.Her favorite coaster is modeled by h(t)=2t +23t-59t+24. Using rational route theorem, what are the possible rational zeros for the function

Answers

Answer:

The possible rational zeros for the function are

±1, ±2, ±3, ±4, ±6, ±8, ±12, ±24, ±1/2, ±3/2

Step-by-step explanation:

I believe that there is an error in the function with the exponents, it must be:

[tex]h(t) = 2t^{3} + 23t^{2}+59t+24[/tex]

If this is the function that you need, then we must use the rational zero theorem. It says that if  a polynomial function, written in descending order of the exponents, has integer coefficients, then any rational zero must be of the form ± p/ q, where p is a factor of the constant term and q is a factor of the leading coefficient.

Thus

In this case the constant term is 24 and then

p = ±1, ±2, ±3, ±4, ±6, ±8, ±12, ±24

The factor of the leading coefficient is 2, thus

q = ±1, ±2

The possible rational zeros for the function are

±1, ±2, ±3, ±4, ±6, ±8, ±12, ±24, ±1/2, ±3/2

Right triangle PQR is to be constructed in the xy-plane so that the right angle is at P and PR is parallel to the x-axis. The x- and y-coordinates of P, Q, and R are to be integers that satisfy the inequalities -4 <= x <= 5 and 6<= y<= 16. How many different triangles with these properties could be constructed?

(A) 110
(B) 1,100
(C) 9,900
(D) 10,000
(E) 12,100

Answers

Answer:

(C) 9900

Step-by-step explanation:

The right triangle which right angle is at P and PR is parallel to the x-axis can have 4 sets (A,B,C,D as illustrated) of format depends on which direction is the right angle located.

each set have

(1+2+3+4+5+6+7+8+9) x (1+2+3+4+5+6+7+8+9+10) = 45 x 55 = 2475 right triangles

4 sets: 2475 x 4 = 9900

How many possible 4-digit combinations are there with the numbers 2, 3, 4, 5, 6, 7, 8, and 9 if none of the numbers appear more than once (i.E. 2343, 2333, 2323, etc.)?

Answers

Answer:

[tex]1680[/tex]

Step-by-step explanation:

we need a 4-digit number from the numbers [tex]2,3,4,5,6,7,8\ and\ 9[/tex] (without repetition ).

possible number at thousand place [tex]=8[/tex]

Possible numbers at hundred place[tex]=8-1=7[/tex]

Possible numbers at [tex]10^{th}[/tex] place [tex]=7-1=6[/tex]

possible number at unit place [tex]=6-1=5[/tex]

So total possible numbers

[tex]=8\times7\times6\times5\\=1680[/tex]

Other method :

We are taking [tex]4[/tex] numbers out of [tex]8[/tex] and here order matters so we will use permutation.

Total possible numbers [tex]=^8P_{4}[/tex]

[tex]\frac{8!}{(8-4)!}\\ =\frac{8!}{4!}\\ =8\times7\times6\times5\\=1680[/tex]

A rectangle has a side that is 16 feet and another side there's 1/2 that links a square has a perimeter of 48 feet how much greater is the area of the Square in the area of the rectangle

Answers

Answer:

Area of rectangle = 128 square feet

Step-by-step explanation:

Given:- A rectangle with side(a)=16 feet, side (b) = [tex]\frac{1}{2}[/tex] that links to a square.

perimeter (p) = 48 feet.

To find:- area of the square of the rectangle=?

Now,

[tex]Perimeter\ of\ square\ (p) = (2\times a)+(2\times b)[/tex]

[tex]48=(2\times 16)+(2\times b)[/tex]

[tex]48=32+2b[/tex]

[tex]2b=48-32[/tex]

[tex]2b=16[/tex]

[tex]b=\frac{16}{2}[/tex]

[tex]b=8 feet[/tex] -------(equation 1)

(8 is half of square of 4=16, [tex]4^{2}=16,\ \frac{16}{2} = 8[/tex])

Now, to find the area of square:-

Area of square (A) = Length [tex]\times[/tex] breadth

Area of square (A)= side a [tex]\times[/tex] side b

A= 16 [tex]\times[/tex] 8

[tex]\therefore[/tex]A = 128 square feet

Therefore Area of rectangle = 128 square feet

1. what is x? (picture 1 and 2)
2. What is the length of NO? (3rd picture)
3. If LB = 6 and LN = 2x+5, what is x? (fourth picture)

Answers

Answer:

Part 1) [tex]x=6[/tex]

Part 2) [tex]x=5,75[/tex]

Part 3) [tex]NO=80\ units[/tex]

Part 4) [tex]x=3,5[/tex]

Step-by-step explanation:

Part 1) Find the value of x

we know that

In a parallelogram opposites sides are congruent and parallel

In this problem

GH=FE

substitute the given values

[tex]2x+10=22[/tex]

solve for x

subtract 10 both sides

[tex]2x=22-10[/tex]

[tex]2x=12[/tex]

Divide by 2 both sides

[tex]x=6[/tex]

Part 2) Find the value of x

we know that

In a parallelogram opposites sides are congruent and parallel

In this problem

FG=EH

substitute the given values

[tex]4x+5=28[/tex]

solve for x

subtract 5 both sides

[tex]4x=28-5[/tex]

[tex]4x=23[/tex]

divide by 4 both sides

[tex]x=5,75[/tex]

Part 3) What is the length of NO?

step 1

Find the value of x

we know that

In a parallelogram opposites sides are congruent and parallel

In this problem

NO=ML

substitute the given values

[tex]4x+20=2x+50[/tex]

solve for x

Group terms

[tex]4x-2x=50-20[/tex]

[tex]2x=30[/tex]

Divide by 2 both sides

[tex]x=15[/tex]

step 2

Find the value of NO

we have that

[tex]NO=4x+20[/tex]

substitute the value of x

[tex]NO=4(15)+20=80\ units[/tex]

Part 4) we know that

The diagonals in a parallelogram bisect each other

so

LB=BN

LN=LB+BN ----> by addition length postulate

LN=2LB

substitute the given values

[tex]2x+5=2(6)[/tex]

solve for x

[tex]2x+5=12[/tex]

subtract 5 both sides

[tex]2x=12-5[/tex]

[tex]2x=7[/tex]

Divide by 2 both sides

[tex]x=3,5[/tex]

Natalie visits a grocery store to buy tomatoes. The cost of tomatoes is $26. She is remitted the bill and received $4 in change from the cashier. Write the equation to find how much she paid the cashier? Let m equal amount she paid

Answers

Answer:

m-4=26

Step-by-step explanation: I guess and feel like this is correct for some reason

A certain company assigns employees to offices in such a way that some of the offices can be empty and more than one employee can be assigned to an office. In how many ways can the company assign 3 employees to 2 different offices?A. 5B. 6C. 7D. 8E. 9

Answers

Answer: The answer is 6

Step-by-step explanation: this is a combination because it is without repetition.

3!/(3-2)!

(3x2x1)/1!

6/1 = 6

So the answer is 6 different ways

In a pot worth $2.35, there are 6 quarters, 5 dimes, 5 pennies, and the rest of the coins are nickels. What is the ratio of nickels to dimes?

Answers

Answer:

6:5

Step-by-step explanation:

It is given that a pot worth $2.35 and there are 6 quarters, 5 dimes, 5 pennies, the rest of the coins are nickels.

We know that

$1 = 100 cents

1 penny = 1 cent = $0.01

1 nickel = 5 cents. = $0.05

1 dime = 10 cents. = $0.10

1 quarter = 25 cents = $0.25

The value of 6 quarters is

[tex]6\times 0.25=1.50[/tex]

The value of 5 dimes is

[tex]5\times 0.10=0.50[/tex]

The value of 5 pennies is

[tex]5\times 0.01=0.05[/tex]

Let x be the number of nickels. So, the value of x nickels is

[tex]x\times 0.05=0.05x[/tex]

Total value of 6 quarters, 5 dimes, 5 pennies, and x nickels is

[tex]Total =1.50+0.50+0.05+0.05x[/tex]

[tex]Total =2.05+0.05x[/tex]

It is given that the pot worth is $2.35.

[tex]2.05+0.05x=2.35[/tex]

Subtract 2.05 from both sides.

[tex]0.05x=0.30[/tex]

Divide both sides by 0.05.

[tex]x=6[/tex]

The number of nickels is 5.

[tex]\dfrac{Nickel}{Dimes}=\dfrac{6}{5}=6:5[/tex]

Therefore, the ratio of nickels to dimes is 6:5.

In a pot worth $2.35 containing 6 quarters, 5 dimes, 5 pennies, and some nickels, the ratio of nickels to dimes is 6:5.

To find the ratio of nickels to dimes, we need to determine the number of nickels and dimes in the pot. We know that there are 6 quarters, 5 dimes, and 5 pennies in the pot, which is a total of 16 coins. Therefore, the number of nickels should be the difference between the total number of coins and the sum of quarters, dimes, and pennies.

The total value of the coins in the pot is $2.35. Since 6 quarters are worth $1.50, 5 dimes are worth $0.50, and 5 pennies are worth $0.05, the remaining value should come from the nickels.

Thus, the value of the nickels is $2.35 - $1.50 - $0.50 - $0.05 = $0.30. Since each nickel is worth $0.05, the number of nickels is $0.30 ÷ $0.05 = 6.

The ratio of nickels to dimes is therefore 6:5, which means that for every 6 nickels, there are 5 dimes.

Learn more about ratios here:

https://brainly.com/question/32531170

#SPJ3

What is the Common difference in the sequence 10,20,30,40,50...?

Answers

Answer:

10

Step-by-step explanation:

divide the last number by the previous number

Answer:

10

Step-by-step explanation:

If you calculate it correctly, every number in front of that number it 10 above.

At a hardware store a tool set normally cost $80 during the sale this week the tools that cost $12 less than usual what percentage of the usual price is a savings explain or show your reasoning

Answers

15 % of usual price is a savings

Solution:

Given that tool set normally cost $80

During the sale this week the tools that cost $12 less than usual

To find: what percentage of the usual price is a savings

From given information,

Usual price of tool set = $ 80

Given that tools that cost $12 less than usual which means she saved $ 12

Savings = $ 12

To find what percentage of the usual price is a savings, we can solve by framing a expression,

Let "x" be the required percentage

Then x % of percentage is equal to savings price

x % of usual price = savings price

x % of 80 = 12

[tex]\frac{x}{100} \times 80 = 12\\\\x = \frac{12 \times 100}{80}\\\\x = 15 \%[/tex]

Therefore 15 % of usual price is a savings

Renee wants to put a fence around her Square Garden that has an area of 6500 square feet determine the perimeter of the garden to the nearest tenth of a foot

Answers

Answer:

299.3

Step-by-step explanation:

A group of friends decided to rent a house in Aspen, Colorado for a week of skiing. They each had to chip in $70 for the week’s lodging. If they had been able to convince three more people to go, the cost per person would have been reduced by $14. What was the rent for the week?

Answers

Answer:

70/5

Step-by-step explanation:

70/3 and then try 70/4 and then 70/5

Final answer:

The total rent for the week was $840, based on the given conditions of per person cost and the price decrease with additional participants.

Explanation:

The subject of this question is Mathematics, and this is a problem ideally pitched at high school level. It involves constructing equations from the given information to solve the problem.

Let's begin by determining the amount of people who went on the trip initially. We'll call them 'n'. The cost per person on the trip was $70, so that the total cost of the trip is $70n.

Now, if they had persuaded three more people to go (n + 3), the cost per person would've dropped by $14 to $56 which, multiplied by the new total of attendees would still be equal to the total cost of the trip ($56(n + 3)).

As such, we build the equation $70n = $56(n + 3). Here's the breakdown and solving of the equation: $70n = $56n + $168.

Subtracting $56n from both sides gives $14n = $168. Dividing both sides by 14 finally gives n = 12.

To find the total cost of the rent, substitute n = 12 into the equation $70n, yielding $70(12) = $840.

So, the rent for the week was $840.

Learn more about Equation solving here:

https://brainly.com/question/17595716

#SPJ12

There is a bag filled with marbles: 5 red, 8 blue, 4 yellow, and 3 green.
You want to draw a red then a blue marble. Do you have a better chance of drawing a red then a blue marble with or without replacing the first marble? Explain your answer.

need answer asap! if you could give me an explanation, that would be great! thank you and have a wonderful day!

Answers

Answer:

it depends

Step-by-step explanation:

If you draw a green one then you would do better without it but if you draw a red you would do better putting it back

Answer

no

Step-by-step explanation:

just because

. Let A = (−2, 4) and B = (7, 6). Find the point P on the line y = 2 that makes the total distance AP + BP as small as possible.

Answers

Answer:

P(1,2)

Step-by-step explanation:

There are 2 points.

A(-2,4) and B(7,6)

the point P on the y=2 can also represented as P(x,2)

We can use the distance formula to find the distances AP and BP

[tex]\text{dist} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex]

for AP: A(-2,4) and P(x,2)

[tex]AP = \sqrt{(-2 - x)^2 + (4 - 2)^2}[/tex]

[tex]AP = \sqrt{(-2 - x)^2 + 4}[/tex]

[tex]AP = \sqrt{(-1)^2(2 + x)^2 + 4}[/tex]

[tex]AP = \sqrt{(2 + x)^2 + 4}[/tex]

for BP: B(7,6) and P(x,2)

[tex]BP = \sqrt{(7 - x)^2 + (6 - 2)^2}[/tex]

[tex]BP = \sqrt{(7 - x)^2 + 16}[/tex]

the total distance AP + BP will be

[tex]\sqrt{(2 + x)^2 + 4}+\sqrt{(7 - x)^2 + 16}[/tex] (plot is given below)

Our task is to find the value of x such that the above expression is small as possible. (we can find this either through plotting or differentiating)

If you plot the above equation, the minimum point of the curve will be clearly visible, and it will be at x = 1. Hence, the point P(1,2) is such that the total distance AP + BP is as small as possible.

Final answer:

The point P that makes the total distance AP + BP smallest on the line y=2 is given by the x-coordinate of the midpoint of A and B because the shortest distance is in a straight line. Therefore, the point P is (2.5, 2).

Explanation:

To find the point P on the line y = 2 that makes the total distance AP + BP the smallest, you need to recall that the shortest distance between two points is a straight line. So, ideally, we want to find a point P (x,2) that is on the same vertical line (or x-coordinate) that intersects the line AB at the midpoint.

Step 1: Find the midpoint of A and B. The midpoint M is obtained by averaging the x and y coordinates of A and B: M = ((-2+7)/2 , (4+6)/2) = (2.5, 5).

Step 2: Since line y = 2 is horizontal, the x-coordinate of our point P will stay the same with the midpoint x-coordinate. Therefore, P has coordinates (2.5, 2).

So, the point on the line y = 2 that makes the total distance AP + BP as small as possible is P (2.5, 2).

Learn more about Point  here:

https://brainly.com/question/16410393

#SPJ3

Water evaporates from a pond at aa rate of 0.005 inches per hour. What is the change in the water level of the pond after 24 hours? Express your answer as a rational number

Answers

Answer:

Water level after 24 hours will be [tex]\frac{3}{25}\ inches[/tex].

Step-by-step explanation:

Given:

Evaporate rate of water= 0.005 inches per hour.

We need to find the level of water after 24 hours.

now we know the in 1 hour the water evaporates from a pool at a rate of 0.005 inches.

So To find the water level after 24 hrs we will multiply the evaporation rate with total number of hours which is 24 and the divide by 1 hour we get.

Framing in equation form we get;

water level after 24 hrs = [tex]\frac{24 \times 0.005}1 = 0.12\ inches[/tex]

Now to convert the number in rational form we have to multiply and divide the number by 100 we get;

[tex]\frac{0.12\times 100}{100} = \frac{12}{100}=\frac{3}{25}\ inches[/tex]

Hence Water level after 24 hours will be [tex]\frac{3}{25}\ inches[/tex].

What polynomial should be subtracted from 7x2−6x+5 to get the difference equal to x2−x.

Answers

Answer:

[tex]6x^2-5x+5[/tex] should be subtracted.

Step-by-step explanation:

we find the polynomial that is subtracted from 7x^2-6x+5 to get the difference equal to x^2-x

7x^2-6x+5-polynomial=x^2-x

To get the polynomial subtract x^2-x from the given polynomial

[tex]7x^2-6x+5 - (x^2-x)=  7x^2-6x+5-x^2+x[/tex]

[tex]6x^2-5x+5[/tex]

So [tex]6x^2-5x+5[/tex] should be subtracted.

Estimate 3.49x 7.508 by first rounding each number to the nearest whole number. Give your estimate as a whole number.

Answers

Answer:

24

Step-by-step explanation:

3.49 to the nearest whole number is 3

7.508 to the nearest whole number is 8

Multiplying both will yield 3 * 8 = 24

Although it might be mistaken that 3.49 could be approximated to 4, this is absolutely wrong. This is because we round up all values 5 and above after the decimal to 1 while we round down all values less than 5 after the decimal to 0.

Hence be it 3.4999, since it is less than 5, it is rounded as 3 to the nearest whole number digit

You begin with $90 in your savings account and your friend begins with $35 in her savings account. You deposite $10 in savings each week, and your friend deposites $15 in savings each week

Answers

Answer:

Part a) The graph in the attached figure (see the explanation)

Part b) The friend is not correct

Step-by-step explanation:

The questions are

a. Write and graph a system of linear equations that  represent the  amounts in each of your savings  accounts

b. Your friend says that in 10 weeks you will both have the same amount of money in your savings  accounts. Is your friend correct? Use the graph from part (a) to explain your answer.

Part a)

Let

x ----> the number of weeks

y ---> the amount in the saving account

we know that

The linear equation in slope intercept form is equal to

[tex]y=mx+b[/tex]

where

m is the slope or unit rate of the linear equation

b is the y-intercept or initial value of the linear equation

In this problem we have

Your saving accounts

The slope is equal to [tex]m=\$10\ each\ week[/tex]

The y-intercept is equal to [tex]b=\$90[/tex]

substitute

[tex]y=10x+90[/tex] ----> equation A

Your friend saving accounts

The slope is equal to [tex]m=\$15\ each\ week[/tex]

The y-intercept is equal to [tex]b=\$35[/tex]

substitute

[tex]y=15x+35[/tex] ----> equation B

using a graphing tool

the graph in the attached figure

Part b) Your friend says that in 10 weeks you will both  have the same amount of money in your savings  accounts. Is your friend correct? Use the graph  from part (a) to explain your answer

we know that

When solving a system of equations by graphing, the solution of the system is the intersection point both graphs

In this problem, the intersection point is (11,200)

That means ----> In 11 weeks, both you and your friend have the same amount of money saved up, $200

Therefore

The friend is not correct

Money in a particular savings account increases by about 6% after a year.How much money will be in the account after one year if the initial amount is $100 $50 $200 $125 x dollar?

Answers

Answer:

Part 1) [tex]\$106[/tex]

Part 2) [tex]\$53[/tex]

Part 3) [tex]\$212[/tex]

Part 4) [tex]\$132.50[/tex]

Part 5) [tex]\$1.06x[/tex]

Step-by-step explanation:

we have

Money in a particular savings account increases by about 6% after a year.

we know that

The simple interest formula is equal to

[tex]A=P(1+rt)[/tex]

where

A is the Final Investment Value

P is the Principal amount of money to be invested

r is the rate of interest  

t is Number of Time Periods

Part 1) How much money will be in the account after one year if the initial amount is $100

in this problem we have

[tex]t=1\ year\\ P=\$100\\ A=?\\r=6\%=6/100=0.06[/tex]

substitute in the formula above

[tex]A=100(1+0.06*1)[/tex]

[tex]A=100(1.06)[/tex]

[tex]A=\$106[/tex]

Part 2) How much money will be in the account after one year if the initial amount is $50

in this problem we have

[tex]t=1\ year\\ P=\$50\\ A=?\\r=6\%=6/100=0.06[/tex]

substitute in the formula above

[tex]A=50(1+0.06*1)[/tex]

[tex]A=50(1.06)[/tex]

[tex]A=\$53[/tex]

Part 3) How much money will be in the account after one year if the initial amount is $200

in this problem we have

[tex]t=1\ year\\ P=\$200\\ A=?\\r=6\%=6/100=0.06[/tex]

substitute in the formula above

[tex]A=200(1+0.06*1)[/tex]

[tex]A=200(1.06)[/tex]

[tex]A=\$212[/tex]

Part 4) How much money will be in the account after one year if the initial amount is $125

in this problem we have

[tex]t=1\ year\\ P=\$125\\ A=?\\r=6\%=6/100=0.06[/tex]

substitute in the formula above

[tex]A=125(1+0.06*1)[/tex]

[tex]A=125(1.06)[/tex]

[tex]A=\$132.50[/tex]

Part 5) How much money will be in the account after one year if the initial amount is $x

in this problem we have

[tex]t=1\ year\\ P=\$x\\ A=?\\r=6\%=6/100=0.06[/tex]

substitute in the formula above

[tex]A=x(1+0.06*1)[/tex]

[tex]A=x(1.06)[/tex]

[tex]A=\$1.06x[/tex]

Write the equation of the line that has a slope of 2 and passes through the point (-3,4).
A) y = 2x - 2
B) y = 2x + 2
C) y = 2x + 7
D) y = 2x + 10

Answers

Answer:

The answer to your question is letter D

Step-by-step explanation:

Data

slope = m = 2

Point (-3, 4)

Process

1.- Substitute the data in the line equation

                     y - y1 = m(x - x1)

                     y - 4 = 2 (x + 3)

2.- Expand

                     y - 4 = 2x + 6

3.- Solve for y and simplify

                     y = 2x + 6 + 4

                     y = 2x + 10

Answer:

y=2x+10

Step-by-step explanation:

Other Questions
Do abiotic elements interact with biotic elements in an ecosystem? Cells that absorb nutrients from the gastrointestinal tract are of what tissue type Scenario C At DoubleTalk, Inc., Joe, a supervisor, pushes his employees' performance by constantly checking their work and threatening them if they fail to keep their deadlines. After months of mistreatment, the employees get together and sign a letter to the human resources department to express their grievances. What form of influence are the employees using?a. Impression managementb. Silent authorityc. Referentd. Assetivenesse. Persuasion At which three points x1, x2, and x3 closest to x=0 but with x>0 will the displacement of the string y(x,t) be zero for all times? These are the first three nodal points. Express the first three nonzero nodal points as multiples of the wavelength , using constants like . List the factors that multiply in increasing order, separated by commas. "What will cause the time period of the fixed amount settlement option to be extended?" WHOEVER ANSWERS FIRST WILL RECEIVE BRAINLIEST AND EARN 100 PTS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Harriet Tubman and the Underground RailroadIn 1849, Harriet Tubman learned that she and her brothers were to be sold. When owners experienced money problems, it often made it necessary for them to sell persons held in slavery and other property. Tubmans family had been broken before. Three of Tubmans older sisters were sold and lost forever to the family and to history.Tubman and her brothers decided to take their lives into their own hands and make the effort to stay together. They left the property in the darkness of night. But they soon turned back when her brothers, one of them a brand-new father, had second thoughts. Punishment for escaping was severe. A short time later, Tubman escaped alone. She made use of the Underground Railroad to go to Pennsylvania and to freedom. All Northern states had voted to not allow slavery by 1804. Tubmans biographer, Sarah Bradford, quoted Tubman recalling, When I found I had crossed that line, I looked at my hands to see if I was the same person. There was such a glory over everything; the sun came like gold through the trees, and over the fields, and I felt like I was in Heaven.As a reaction to the cruel institution of slavery, the Underground Railroad was formed in the early nineteenth century. But this railroad was neither underground, nor did it have anything to do with trains. Instead, it was an organization of people who helped persons held in slavery in the United States travel from the South to the North and to freedom. The network provided transportation, money, safe houses, and other resources to the travelers. Details about the routes and the stops were only shared among a few people to protect the entire group. In Southern states, people caught sheltering the travelers could be jailed up to six months and fined. Once travelers reached Northern cities, they received assistance finding jobs and housing from committees of abolitionists that raised money to help them.Once in Pennsylvania, Tubman could not enjoy her freedom. Too many of her family members and friends still lived in slavery. She returned home in 1850 and helped several family members make the move north. This was the first of many trips for Tubman as a conductor on the Underground Railroad. For almost a decade and in about thirteen separate trips, Tubman led approximately seventy people to freedom. She provided instructions to fifty to sixty others to help them escape.When the Fugitive Slave Act of 1850 was enacted, it meant even greater danger for persons who were held in slavery and especially for those who had escaped. The act stated that the U.S. government must help owners regain control of persons they had once held in slavery. People who had escaped, often called runaways, could be captured and returned to their owners. They had no chance of legal defense or protection from the government. Anyone who refused to follow the orders of the act could be heavily fined. Also, people who captured runaways and returned them to their owners could make a lot of money. Tubman changed the Underground Railroads routes to deal with this added threat. The last stop for travelers became Canada, where slavery was not allowed.Tubman took risks daily. She used her experience to develop strategies to keep the Underground Railroad network safe and running smoothly. For example, she advised persons held in slavery to escape on a Saturday night. Since Sunday was a day of rest, owners would not discover the escape until Monday. People were encouraged to travel at night and to travel in spring and fall, when the days were shorter and the weather was mild. Tubman became well-known in the abolition and womens rights communities because of her intelligence, courage, and leadership.One of Tubmans last trips on the Underground Railroad was to bring her parents north to Canada. It was especially dangerous because Tubmans father was already in trouble for having sheltered runaways in his home. Although her parents were elderly, the trip was a success. Shortly after this, the Civil War began and the Underground Railroad stopped operating. Tubman turned her attention to the war effort. She first worked as a nurse and a cook, but quickly volunteered as a scout and a spy to help the army free persons held in slavery.Tubman was proud of her accomplishments. In 1896, Tubman spoke at a womens suffrage convention, I was the conductor of the Underground Railroad for eight years, and I can say what most conductors can't say I never ran my train off the track and I never lost a passenger. Match the different roles of people involved in the buying center with their responsibilities. initiatorsinfluencers buyers handle the process of choosing the vendor and negotiating the price identify the requirement for a product within the company provide specifications about the technology needed by the company What client characteristic may contraindicate the use of tramadol for the treatment of a clients pain following traumatic injuries? The principle underlying how salmon were genetically engineered to grow faster is the_________. A) removal of a gene responsible for feeling full after eating. B) replacement of inducible to constitutive hormone production. C) resistance to bacterial infections which waste metabolic energy in the salmon to fight off. D) addition of genes to enhance blood circulation and tissue development. The nine squares of a 3-by-3 chessboard are to be colored red and blue. The chessboard is free to rotate but cannot be flipped over. Determine the generating function for the number of nonequivalent colorings and the total number of nonequivalent colorings. Is the binomial a factor of the polynomial nominal function? Select Yes or No for each binomial. I accidentally said no for the first two on the chart. I need everything on the chart answered. Thanks! A local boys club sold 176 bags of mulch and made a total cost of $520.They sold hardwood mulch for $3.50 per bag and pine bark mulch for $2.75 per bag.How bags of each type of mulch did they sell? Why would the government pay artists to depict historical figures Animals making the territory with ex amples ofPlease Select the best answer from the choices provided It is important for the HHA to consult the __________________ about any special diets or dietary requirements clients have. Listed following are several objects in the solar system. Rank these objects from left to right based on their orbital period around the Sun from shortest to longest. 3.How does describing Kahlo as "the mother of the selfie" in paragraph 10 contribute to thedevelopment of ideas in the passage?A It connects Kahlo's art to present day.B. It proves that Kahlo was ahead of her time.It allows readers to better understand her work.It encourages readers to think about Kahlo more often. A half-gallon carton of organicmilk costs $4.45 now and the price isincreasing by 10 percent each year.What will be the price of the milk in 5years? Under the articles of confederation,how was power divided between state and the national government The label on a granola cereal box indicates that it contains 40 grams of total carbohydrate, 13 grams of sugar, and 240 Calories per serving. What percent of Calories in a serving comes from sugar? a. 12% b. 22% c. 45% d. 67% Steam Workshop Downloader