Two objects are made of the same material, but they have different masses and temperatures.

Part A

If the objects are brought into thermal contact, which one will have the greater temperature change?

a. The one with the lesser mass.
b. The one with the lower initial temperature.
c. The one with the higher initial temperature.
d. The one with the higher specific heat.
e. The one with the greater mass.
f. Not enough information

Answers

Answer 1
Final answer:

c. The object with the higher initial temperature will have a greater temperature change when brought into thermal contact with another object.

Explanation:

The object with the higher initial temperature will have a greater temperature change when brought into thermal contact with another object. This is because energy transfers from the object with the higher temperature to the object with the lower temperature until they reach thermal equilibrium.

Mass and specific heat do not directly affect the temperature change. The mass only affects the amount of energy transferred, while the specific heat determines how much energy is needed to raise the temperature.

Therefore, the correct answer is c. The one with the higher initial temperature.

Learn more about Thermal contact here:

https://brainly.com/question/24591871

#SPJ3


Related Questions

A running back with a mass of 86 kg and a velocity of 9 m/s (toward the right) collides with, and is held by, a 129-kg defensive tackle going in the opposite direction (toward the left). What is the velocity of the tackle before the collision for their velocity afterward to be zero

Answers

Final answer:

The velocity of the defensive tackle before the collision is -6 m/s (toward the left).

Explanation:

According to the law of conservation of momentum, the total momentum before the collision is equal to the total momentum after the collision. Since the two players stick together after the collision, their velocities will be equal but opposite in direction.

Let's assume that the velocity of the defensive tackle before the collision is v. The total momentum before the collision is given by:

m1 * v1 + m2 * v2 = (m1 + m2) * v

Where:

m1 = mass of the running back = 86 kg

v1 = velocity of the running back = 9 m/s (toward the right)

m2 = mass of the defensive tackle = 129 kg

v2 = velocity of the defensive tackle (to be determined)

Using the above equation, we can solve for v:

(86 kg * 9 m/s) + (129 kg * v2) = (86 kg + 129 kg) * 0

774 kg*m/s + 129 kg * v2 = 0 kg*m/s

v2 = -6 m/s

Therefore, the velocity of the defensive tackle before the collision is -6 m/s (toward the left).

A pressure cooker cooks a lot faster than an ordinary pan by maintaining a higher pressure and temperature inside. the lid of a pressure cooker is well sealed, and steam can escape only through an opening in the middle of the lid. a separate metal piece, the petcock, sits on top of this opening and prevents steam from escaping until the pressure force overcomes the weight of the petcock. the periodic escape of the steam in this manner prevents any potentially dangerous pressure buildup and keeps the pressure inside at a constant value. determine the mass of the petcock of a pressure cooker whose operation pressure is 100 kpa gauge and has an opening cross-sectional area of 4 mm2. assume an atmospheric pressure of 101 kpa.

Answers

A pressure cooker cooks a lot faster than an ordinary pan by maintaining a higher pressure and temperature inside. The mass of the petcock of the pressure cooker is approximate [tex]40.8\ gm[/tex].

The pressure force on the petcock is the difference between the pressure inside the cooker and the atmospheric pressure, multiplied by the cross-sectional area of the opening:

Pressure force = (Pressure inside - Atmospheric pressure) * Opening area

Given that the operating pressure is 100 kPa gauge and the atmospheric pressure is 101 kPa,

Pressure inside[tex]= (100+ 101) \times 1000 = 201000\ Pa[/tex]

Atmospheric pressure [tex]= 101 \times 1000 = 101000\ Pa[/tex]

Now, calculate the pressure force:

Pressure force[tex]= (201000\ Pa - 101000\ Pa) \times 4\ mm^2[/tex]

Pressure force [tex]= 100000\ Pa \times 4 \times 10^{-6} m^2[/tex]

Pressure force [tex]= 0.4\ N[/tex]

The weight of the petcock is equal to the force of gravity acting on it:

Weight = mass × gravitational acceleration

[tex]Weight = mass \times 9.8 m/s^2\\m \times 9.8 = 0.4 \\m = 0.4 / 9.8 \\m = 0.0408\ kg[/tex]

So, the mass of the petcock of the pressure cooker is approximate [tex]40.8\ gm[/tex].

To know more about the pressure:

https://brainly.com/question/30673967

#SPJ12

To find the mass of the petcock, we calculate the force exerted by the steam using the given pressure and area, then equate it to the weight of the petcock. This gives us a mass of approximately 0.082 kg.

To determine the mass of the petcock in a pressure cooker, we need to understand the pressure dynamics and forces at play. The pressure cooker operates at a gauge pressure of [tex]100 kPa,[/tex] and the cross-sectional area of the opening through which steam escapes is given as [tex]4 mm^2[/tex].

First, let's convert the cross-sectional area from [tex]mm^2[/tex] to [tex]m^2[/tex]:

[tex]4 mm^2 = 4 \times 10^{-6} m^2[/tex]

The force exerted by the steam on the petcock can be calculated using the pressure-force relationship: [tex]F = PA[/tex]

Here, P is the absolute pressure inside the cooker, which is the sum of the gauge pressure and the atmospheric pressure:

[tex]P = 100 kPa (gauge) + 101 kPa (atmospheric) = 201 kPa[/tex]

The force is then:

[tex]F = P \times A = 201,000 Pa \times 4 \times 10^{-6} m^2 = 0.804 N[/tex]

The force exerted by the petcock due to its weight is [tex]F = mg[/tex], where m is the mass and g is the acceleration due to gravity ([tex]9.81 m/s^2[/tex]).

Setting the force exerted by the steam equal to the weight of the petcock gives us:

[tex]mg = 0.804 N[/tex]

Therefore, the mass of the petcock is:

[tex]m = F/g = 0.804 N / 9.81 m/s^2 \approx 0.082 kg[/tex]

Thus, the mass of the petcock is approximately [tex]0.082 kg[/tex].

A white billiard ball with mass mw = 1.43 kg is moving directly to the right with a speed of v = 3.39 m/s and collides elastically with a black billiard ball with the same mass mb = 1.43 kg that is initially at rest. The two collide elastically and the white ball ends up moving at an angle above the horizontal of θw = 38° and the black ball ends up moving at an angle below the horizontal of θb = 52°. 1)What is the final speed of the white ball? m/s 2)What is the final speed of the black ball? m/s 3)What is the magnitude of the final total momentum of the system? kg-m/s 4)What is the final total energy of the system?

Answers

Answer: a) VW = 1.28m/s

b) Vb = 3.86m/s

c) p = 5.82kgm/s

d) E = 11.84J

Explanation: To solve this question, we make use of explosion formula in linear momentum concept.

Please find the attached file for the solution

A 6.0-cm-diameter, 11-cm-long cylinder contains 100 mg of oxygen (O2) at a pressure less than 1 atm. The cap on one end of the cylinder is held in place only by the pressure of the air. One day when the atmospheric pressure is 100 kPa, it takes a 173 N force to pull the cap off.

Answers

Explanation:

The given data  is as follows.

Mass of oxygen present = 100 mg = [tex]100 \times 10^{-3}[/tex] g

So, moles of oxygen present are calculated as follows.

      n = [tex]\frac{100 \times 10^{-3}}{32}[/tex]

         = [tex]3.125 \times 10^{-3}[/tex] moles

Diameter of cylinder = 6 cm = [tex]6 \times 10^{-2}[/tex] m

                              = 0.06 m

Now, we will calculate the cross sectional area (A) as follows.

    A = [tex]\pi \times \frac{(0.06)^{2}}{4}[/tex]

        = [tex]2.82 \times 10^{-3} m^{2}[/tex]

Length of tube = 11 cm = 0.11 m

Hence, volume (V) = [tex]2.82 \times 10^{-3} \times 0.11[/tex]

                              = [tex]3.11 \times 10^{-4} m^{3}[/tex]

Now, we assume that the inside pressure is P .

And,   [tex]P_{atm}[/tex] = 100 kPa = 100000 Pa,

Pressure difference = 100000 - P

Hence, force required to open is as follows.

      Force = Pressure difference × A

                = [tex](100000 - P) \times 2.82 \times 10^{-3}[/tex]

We are given that force is 173 N.

Thus,

         [tex](100000 - P) \times 2.82 \times 10^{-3}[/tex] = 173

Solving we get,

          P = [tex]3.8650 \times 10^{4} Pa[/tex]

            = 38.65 kPa

According to the ideal gas equation, PV = nRT

So, we will put the values into the above formula as follows.

                PV = nRT

    [tex]38.65 \times 3.11 \times 10^{-4} = 3.125 \times 10^{-3} \times 8.314 \times T[/tex]

                    T = 462.66 K

Thus, we can conclude that temperature of the gas is 462.66 K.

A 0.9 µF capacitor is charged to a potential difference of 10.0 V. The wires connecting the capacitor to the battery are then disconnected from the battery and connected across a second, initially uncharged, capacitor. The potential difference across the 0.9 µF capacitor then drops to 2 V. What is the capacitance of the second capacitor?

Answers

Answer:

3.6μF

Explanation:

The charge on the capacitor is defined by the formula

q = CV

because the charge will be conserved

q₁ = C₁V₂

q₂ = C₂V₂ where C₂ V₂ represent the charge on the newly connected capacitor  and the voltage drop across the two capacitor will be the same

q = q₁ + q₂ = C₁V₂ + C₂V₂

CV = CV₂ + C₂V₂

CV - CV₂ = C₂V₂

C ( V - V₂) = C₂V₂

C ( V/ V₂ - V₂ /V₂) = C₂

C₂ = 0.9 ( 10 /2) - 1) = 0.9( 5 - 1) = 3.6μF

Two identical wires A and B are subject to tension. The tension in wire A is 3 times larger than that in wire B. Find the ratio of the frequencies of the first harmonic in these two wires, fA1 / fB1.

Answers

Answer:

1.732

Explanation:

Let

Tension in wire B=T

Tension in wire A=3 T

We have to find the ratio of the frequencies of the first harmonic in these two wires.

When two wires are identical then the length of both wires are same.

Suppose, the length of each wire=l

Frequency=[tex]\frac{1}{2l}\sqrt{\frac{T}{\mu}}[/tex]

Where [tex]\mu=[/tex]Mass per unit length

Mass per unit length of both wires are same because the two wires are identical.

[tex]\mu_A=\mu_B[/tex]

[tex]\frac{f_A}{f_B}=\frac{\frac{1}{2l}\sqrt{\frac{T_A}{\mu_A}}}{\frac{1}{2l}\sqrt{\frac{T_B}{\mu_B}}}[/tex]

[tex]\frac{f_A}{f_B}=\frac{\frac{1}{2l}\sqrt{\frac{T_A}{\mu_A}}}{\frac{1}{2l}\sqrt{\frac{T_B}{\mu_A}}}=\sqrt{\frac{T_A}{T_B}}=\sqrt{\frac{3T}{T}}[/tex]

[tex]\frac{f_A}{f_B}=\sqrt 3=1.732[/tex]

The ratio of the frequencies of the first harmonic in these two wires is [tex]\sqrt{3}[/tex].

The given parameters;

tension in wire A = Ttension in wire B = 3T

The frequency of first harmonic of each wire is calculated as follows;

[tex]F_ A = \frac{1}{2l} \sqrt{\frac{3T}{\mu} } \\\\F_B = \frac{1}{2l} \sqrt{\frac{T}{\mu} }[/tex]

where;

l is the length of the wiresT is the tension on the wireμ is the mass per unit length

The ratio of the two frequencies is calculated as follows;

[tex]\frac{F_A}{F_B} = \frac{\frac{1}{2l} \sqrt{\frac{3T}{\mu} } }{\frac{1}{2l} \sqrt{\frac{T}{\mu} } } \\\\\frac{F_A}{F_B} = \sqrt{\frac{3T}{T} } \\\\\frac{F_A}{F_B} = \sqrt{3}[/tex]

Thus, the ratio of the frequencies of the first harmonic in these two wires is [tex]\sqrt{3}[/tex].

Learn more here:https://brainly.com/question/14149129

A bulb pile is driven to the ground with a 2.5 ton hammer. The drop height is 22 ft and the volume in last batch driven is 4 cu ft. Establish the safe load if the number of blows to drive the last batch is 36, volume of base and plug is 27 cu ft, and the soil K value is 28.

Answers

Answer:

159.1 ton

Explanation:

The solution is shown in the attached file

Answer:

The safe load is 159 ton

Explanation:

The safe load is equal to:

[tex]L=\frac{WHBV^{2/3} }{K}[/tex]

Where:

W = weight of hammer = 2.5 ton

H = drop height = 22 ft

B = number of blows used to drive the last batch = 36/4 = 9 ft³

K = dimensionless constant = 28

V = uncompacted volume = 27 ft³

Replacing values:

[tex]L=\frac{2.5*22*9*(27^{2/3}) }{28} =159ton[/tex]

The wheel of a stationary exercise bicycle at your gym makes one rotation in 0.670 s. Consider two points on this wheel: Point P is 10.0 cm from the rotation axis, and point Q is 20.0 cm from the rotation axis. Find the speed of point P on the spinning wheel.

Answers

Answer:

0.938 m/s.

Explanation:

Given:

ω = 1 rev in 0.67 s

In rad/s,

1 rev = 2pi rad

ω = 2pi ÷ 0.67

= 9.38 rad/s

Rp = 10 cm

= 0.1 m

V = ω × r

= 9.38 × 0.1

= 0.938 m/s.

The deflection plates in an oscilloscope are 10 cm by 2 cm with a gap distance of 1 mm. A 100 volt potential difference is suddenly applied to the initially uncharged plates through a 1025 ohm resistor in series with the deflection plates. How long does it take for the potential difference between the deflection plates to reach 55 volts?

Answers

Explanation:

Given data:

Area A = 10 cm×2 cm = 20×10⁻⁴ m²

Distance d between the plates = 1 mm = 1×10⁻³m

Voltage of the battery is emf = 100 V

Resistance = 1025 ohm

Solution:

In RC circuit, the voltage between the plates is related to time t. Initially the voltage is equal to that of battery V₀ = emf = 100V. But After time t the resistance and capacitor changes it and the final voltage is V that is given by

[tex]V = V_{0}(1-e^{\frac{-t}{RC} } )\\\frac{V}{V_{0} } = 1-e(^{\frac{-t}{RC} }) \\e^{\frac{-t}{RC} } = 1- \frac{V}{V_{0} }[/tex]

Taking natural log on both sides,

[tex]e^{\frac{-t}{RC} } = 1- \frac{V}{V_{0} } \\\frac{-t}{RC} = ln(1-\frac{V}{V_{0} } )\\t = -RCln(1 - \frac{V}{V_{0} })[/tex]

[tex]t = -RC ln (1-\frac{V}{V_{0} })[/tex]        (1)

Now we can calculate the capacitance by using the area of the plates.

C = ε₀A/d

  = [tex]\frac{(8.85*10^{-12))} (20*10^{-4}) }{1*10^{-3} }[/tex]

  = 18×10⁻¹²F

Now we can get the time when the voltage drop from 100 to 55 V by putting the values of C, V₀, V and R in the equation (1)

[tex]t = -RC ln (1-\frac{V}{V_{0} })[/tex]

 = -(1025Ω)(18×10⁻¹² F) ln( 1 - 55/100)

 = 15×10⁻⁹s

= 15 ns

Atmospheric pressure is reported in a variety of units depending on local meteorological preferences. In many European countries the unit millibar (mbar) is preferred, in other countries the unit hectopascal (1 hPa = 1 mbar) is used, and in the United States inches of mercury (in Hg) is the commonly used unit. In most chemistry textbooks the units most commonly used are torr, mmHg, and atmospheres (atm). The unit atm is defined at sea level to be 1 atm = 760 mm Hg exactly. The density of mercury is 13.534 times that of water, if atmospheric pressure will support 769.6 mm Hg, what height of a water column would that same pressure support in mm?

Answers

Answer:

[tex]h_w=10415.7664\ mm[/tex] of water column.

Explanation:

Given:

density of mercury, [tex]S_m=13.534[/tex]

height of the mercury column supported by the atmosphere, [tex]h_m=769.6\ mm[/tex]

As we know that the equivalent pressure in terms of liquid column is given as:

[tex]P=\rho.g.h[/tex]

so,

[tex]S_m\times 1000\times g.h_m=\rho_w.g.h_w[/tex]

where:

[tex]g=[/tex] gravity

[tex]h_w=[/tex] height of water column

[tex]\rho_w=[/tex] density of water

[tex]13534\times 9.8\times 769.6=1000\times 9.8\times h_w[/tex]

[tex]h_w=10415.7664\ mm[/tex] of water column.

Final answer:

The atmospheric pressure that supports a 769.6 mm column of mercury will support a water column that is 13.6 times taller due to the density difference, resulting in a water column approximately 10,466.56 mm, or about 10.47 meters, tall.

Explanation:

When we talk about atmospheric pressure, we often use various units like millimeters of mercury (mmHg) or torr, which are equivalent to 1 atm of pressure, defined as exactly 760 mmHg. Since mercury is about 13.6 times denser than water, a column of mercury under atmospheric pressure is much shorter than a column of water under the same pressure. To find the height of a water column supported by a pressure of 769.6 mm Hg, we can set up a proportion using the densities of mercury and water. Since 1 atm supports a 760 mm column of mercury, and the density of mercury is 13.6 times that of water, the same pressure will support a water column that is 13.6 times taller.

The calculation is straightforward:

Height of mercury column (Hg): 769.6 mmDensity ratio (Hg:water): 13.6Height of water column = Height of mercury column × Density ratioHeight of water column = 769.6 mm × 13.6Height of water column = 10466.56 mm

Therefore, the atmospheric pressure that supports a 769.6 mm Hg column will support a water column of approximately 10,466.56 mm, or about 10.47 meters tall.

How much work does it take for an external agent to move a 45.0-nC charge from a point on the +x-axis, 3.40 cm from the origin to a point halfway between the 41.0-nC and 52.0-nC charges?

Answers

Answer:

The work done on the 45.0nC charge is 2.24×10^-3J. The detailed solution can be found in the attachment below.

Explanation:

The Problem solution makes use of the potential energy relationship between the charges. This solution assumes the distance as shown in the diagram. For a different distance arrangement adjustments should be made appropriately.

Final answer:

The question in Physics pertains to the work needed by an external agent to move a charge within an electric field, and it involves applying the concept of electric potential energy. The work done is equal to the change in electric potential energy, which requires knowledge of the charges' positions and potentials.

Explanation:

The question asks: How much work does it take for an external agent to move a 45.0-nC charge from a point on the +x-axis, 3.40 cm from the origin to a point halfway between the 41.0-nC and 52.0-nC charges? To answer this question, we would use the concept of electric potential energy in the electric field created by point charges. Work is required to move a charge within an electric field against electric forces. The work done by an external force to move a charge from one point to another is equal to the change in electric potential energy, which can be calculated from the initial and final electric potentials at the points in question.

To find the required work, we need to know the initial and final positions relative to other charges, and then we apply the electric potential energy formula. However, a complete solution would require additional specifics about the configuration and distances between the charges. Without these details, we cannot provide an exact numerical answer.

A 1000 kg automobile is traveling at an initial speed of 20 m/s. It is brought to a complete stop in 5 s over a distance of 50 m. What is the work done in stopping the automobile

Answers

Answer:

W = -2*10⁵ J

Explanation:

Assuming no friction present, we can find the work done by an external force stopping the car, applying the work-energy theorem.This theorem says that the total work done on one object by an external net force, is equal to the change in the kinetic energy of the object.If the automobile is brought to a complete stop, we can find the change of the kinetic energy as follows:

        [tex]\Delta K = K_{f} - K_{0} = 0 - \frac{1}{2} * m* v_{0} ^{2} \\\\ \Delta K = -\frac{1}{2}*1000kg*(20 m/s)^{2} = -200000 J= -2e5 J[/tex]

So, the total work done in stopping the automobile, is -2*10⁵ J. The minus sign stems from the fact that the force and the displacement have opposite directions.
The work done will be "[tex]-2\times 10^5 \ J[/tex]".

Given values:

Mass, m = 1000 kgInitial speed, v = 20 m/sDistance, d = 50 mTime, t = 5 s

As we know,

→ [tex]\Delta K = K_f - K_0[/tex]

           [tex]= 0-\frac{1}{2}mv_2^2[/tex]

By substituting the values,

           [tex]= - \frac{1}{2}\times 1000\times (20)^2[/tex]

           [tex]= - 500\times 400[/tex]

           [tex]= -200000 \ J[/tex]

           [tex]= -2\times 10^5 \ J[/tex]

Thus the above answer is right.

Learn more about speed here:

https://brainly.com/question/16794794

The potential energy for a certain mass moving in one dimension is given by U(x)=(2.0J/m3)x3−(15J/m2)x2+(36J/m)x−23JU(x)=(2.0J/m3)x3−(15J/m2)x2+(36J/m)x−23JU(x) = (2.0 {\rm J/m}^{3})x^{3}- (15 {\rm J/m}^{2})x^{2}+ (36 {\rm J/m})x - 23 {\rm J}. Find the location(s) where the force on the mass is zero.

Answers

Answer:x=2 and x=3

Explanation:

Given

Potential Energy for a certain mass is

[tex]U(x)=2x^3-15x^2+36x-23[/tex]

and we know force is given by

[tex]F=-\frac{\mathrm{d} U}{\mathrm{d} x}[/tex]

[tex]F=-(2\times 3x^2-15\times 2x+36)[/tex]

For Force to be zero F=0

[tex]\Rightarrow 6x^2-30x+36=0[/tex]

[tex]\Rightarrow x^2-5x+6=0[/tex]

[tex]\Rightarrow x^2-2x-3x+6=0[/tex]

[tex]\Rightarrow (x-2)(x-3)=0[/tex]

Therefore at x=2 and x=3 Force on particle is zero.

What is the energy in the spark produced by discharging the second capacitor? 1. The same as the discharge spark of the first capacitor 2. More energetic than the discharge spark of the first capacitor 3. Less energetic than the discharge spark of the first capacitor

Answers

Complete Question

The two isolated parallel plate capacitors be-  low, one with plate separation d and the other  with D > d, have the same plate area A and

are given the same charge Q.

What is the energy in the spark produced by discharging the second capacitor?

 1. The same as the discharge spark of the first capacitor

2. More energetic than the discharge spark of the first capacitor

3. Less energetic than the discharge spark of the first capacitor

Answer:

The correct option is 2

Explanation:

The formula for the energy stored in the capacitor is

             [tex]U = \frac{Q^2}{2C}[/tex]

And generally the formula for finding the capacitance of a capacitor is

               [tex]C = \frac{\epsilon_oA}{d}[/tex]

We can denote the capacitance of the first capacitor as [tex]C_1 = \frac{\epsilon_oA}{d}[/tex]

          and   denote the capacitance of the second  capacitor as [tex]C_2 = \frac{\epsilon_oA}{D}[/tex]

Looking at this formula we can see that C varies inversely with d            

as D > d it means that [tex]C_1 > C_2[/tex]

                Since the charge is constant

                         [tex]U\ \alpha\ \frac{1}{C}[/tex] i.e U varies inversely with C

           So [tex]C_1 > C_2[/tex]   => [tex]U_2 >U_1[/tex]

This means that the energy of spark would be more for capacitor two compared to capacitor one

The correct option is 2

The energy in the spark produced by discharging a capacitor can vary between different capacitors based on their capacitance and potential difference.

When discharging a capacitor, the energy stored in the capacitor is released as a spark, which can be compared between different capacitors.

In this case, if the second capacitor discharges, the spark produced may have varying energy levels compared to the spark produced by the first capacitor, depending on the capacitance and potential difference.

The energy in the spark produced by discharging the second capacitor can be calculated using relevant formulas relating to capacitance, potential difference, and energy stored.

A charge Q is transfered from an initially uncharged plastic ball to an identical ball 12 cm away. The force of attraction is then 17 mN. How many electrons were transfered from one ball to the other

Answers

Answer:

Explanation:

The ball from which electrons are transferred will acquire Q charge and the ball receiving electrons will acquire - Q charge . force of attraction between them

= k Q² / d²

9 x 10⁹ x Q² / .12² = 17 X 10⁻³

Q² = .0272 X 10⁻¹²

Q = .1650 X 10⁻⁶ C

No of electrons = .1650 x 10⁻⁶ / 1.6 x 10⁻¹⁹

= .103125 x 10¹³

1.03125 x 10¹²

The Acorn Insurance Company charges $3.50 for each unit of coverage under a block of 1-year term life insurance policies. The annual premium amount for a $50,000 policy in this block would be equal to ____.

Answers

Answer:

$175

Explanation:

Insurance premium is expressed as a rate $1000

($3.50 per $1000)

Therefore;

Annual premium= $50000x$3.50/$1000

= $175

Final answer:

The annual premium for a $50,000 policy at the rate of $3.50 per unit of coverage from the Acorn Insurance Company would be $175.00.

Explanation:

The Acorn Insurance Company charges $3.50 for each unit of coverage under a 1-year term life insurance policy. To calculate the annual premium for a $50,000 policy, we'll need to divide the total coverage amount by the unit price and then multiply by the cost per unit. Here's the math:

Total Coverage Needed: $50,000

Cost Per Unit of Coverage: $3.50

Number of Units: $50,000 / $1,000 = 50

Annual Premium: 50 units * $3.50 = $175.00

So, the annual premium amount for a $50,000 policy in this block would be $175.00.

A basketball player throws a chall -1 kg up with an initial speed of his hand at shoulder height = 2.15 m Le gravitational potential energy ber ground level the ball leves 50% .(a) Give the total mechanical energy of the ball E in terms of maximum height Am it reaches, the mass m, and the gravitational acceleration g.(b) What is the height, hm in meters?

Answers

Complete Question:

A basketball player tosses a basketball m=1kg straight up with an initial speed of v=7.5 m/s. He releases the ball at shoulder height h= 2.15m. Let gravitational potential energy be zero at ground level

a)  Give the total mechanical energy of the ball E in terms of maximum height hn it reaches, the mass m, and the gravitational acceleration g.

b) What is the height, hn in meters?

Answer:

a) Energy = mghₙ

b) Height, hₙ = 5.02 m

Explanation:

a) Total energy in terms of maximum height

Let maximum height be hₙ

At maximum height, velocity, V=0

Total mechanical energy , E = mgh + 1/2 mV^2

Since V=0 at maximum height, the total energy in terms of maximum height becomes

Energy = mghₙ

b) Height,  hₙ in meters

mghₙ = mgh + 1/2 mV^2

mghₙ = m(gh + 1/2 V^2)

Divide both sides by mg

hₙ = h + 0.5 (V^2)/g

h = 2.15m

g = 9.8 m/s^2

V = 7.5 m/s

hₙ = 2.15 + 0.5(7.5^2)/9.8

hₙ = 2.15 + 2.87

hₙ = 5.02 m

A 2.40 kg snowball is fired from a cliff 7.69 m high. The snowball's initial velocity is 13.0 m/s, directed 49.0° above the horizontal. (a) How much work is done on the snowball by the gravitational force during its flight to the flat ground below the cliff? (b) What is the change in the gravitational potential energy of the snowball-Earth system during the flight? (c) If that gravitational potential energy is taken to be zero at the height of the cliff, what is its value when the snowball reaches the ground?

Answers

Answer:

a) W = 180.87 J , b)  ΔU = -180.87 J , c)  ΔU = -180.87 J

Explanation:

a) Work is defined as

         W = F .ds

Where bold indicates vectors, we can write the scalar product

         W = F s cos θ

Where the angle is between force and displacement.

The force of gravity is the weight of the body, which is directed downwards and the displacement thickens the tip of the cliff at the bottom, so that it is directed downwards, therefore the angle is zero degrees

        W = [tex]F_{g}[/tex] y

        W = m g y

For this problem we must fix a reference system, from the statement it is established that the system is placed at the base of the cliff, so that final height is zero and the initial height (y₀ = 7.69m)

    W = 2.40 9.8 (7.69-0)

    W = 180.87 J

b) The potential energy is

            U = mg y

The change in potential energy,

        ΔU = [tex]U_{f}[/tex]- U₀

       ΔU = mg ([tex]y_{f}[/tex]- y₀)

      ΔU = 2.4 9.8 (0 -7.69)

      ΔU = -180.87 J

 

c) in this case we change the reference system to the height of the cliffs, for this configuration

          y₀ = 0

          [tex]y_{f}[/tex] = -7.69 m

          ΔU = 2.4 9.8 (-7.69 -0)

          ΔU = -180.87 J

Ball B is suspended from a cord of length l attached to cart A, which can roll freely on a frictionless, horizontal track. The ball and the cart have the same mass m. If the cart is given an initial horizontal velocity v0 while the ball is at rest, describe the subsequent motion of the system, specifying the velocities of A and B for the following successive values of the angle θ (assume positive counterclockwise) that the cord will form with the vertical:
(a) θ = θmax
(b) θ = 0
(c) θ = θmin

Answers

Final answer:

The motion involves energy conversion between kinetic and potential energy, with ball B reaching maximum potential energy at θmax and θmin, and maximum kinetic energy at θ = 0. Cart A's velocity will be adjusted according to the change in motion of ball B, based on the conservation of momentum.

Explanation:

The question relates to the physics concept known as conservation of momentum and energy in the context of pendular motion and collisions within an isolated system. When cart A is given an initial velocity and ball B is at rest, the force that accelerates ball B will be the component of the tension in the string that acts horizontally, as there's no friction resistance on the track. During the motion, the total energy of ball B will be conserved, converting between potential energy when at its highest at θmax and θmin, and kinetic energy when passing through the lowest point at θ = 0. As the system consists of pendular motion, for a given displacement, the velocity of the pendulum and cart at various angles can be determined by using energy conservation.


 (a) At θ = θmax, ball B is momentarily at rest, as it has reached its maximum height and thus its velocity is zero. All its energy is potential.
 (b) At θ = 0, ball B passes through its lowest point, having maximum kinetic energy, and thus maximum velocity.
 (c) At θ = θmin, similar to the case at θmax, ball B is momentarily at rest at its minimum height (which should be symmetric to the maximum height if air resistance is negligible), with all its energy being potential.

Given that cart A and ball B have the same mass, the velocities can be tracked by considering the movement as a combination of the cart rolling and the pendulum swinging, respecting the conservation of angular momentum around the axis from which the ball B is suspended.

An object with total mass mtotal = 15.8 kg is sitting at rest when it explodes into three pieces. One piece with mass m1 = 4.5 kg moves up and to the left at an angle of θ1 = 18° above the –x axis with a speed of v1 = 27.5 m/s. A second piece with mass m2 = 5.4 kg moves down and to the right an angle of θ2 = 23° to the right of the -y axis at a speed of v2 = 21.4 m/s. 1)What is the magnitude of the final momentum of the system (all three pieces)?

Answers

Answer:

Explanation:

total mass, M = 15.8 kg

initial velocity, u = 0 m/s

m1 = 4.5 kg

m2 = 5.4 kg

v1 = 27.5 m/s at an angle 18°

v2 = 21.4 m/s at an angle 23°

As there is no external force acts on the system, so the moemntum of the system is conserved.

Momentum before collision = momentum after collision

as the momentum before collision is zero, so the momentum after collision is also zero.

At a carnival, you can try to ring a bell by striking a target with a 7.76-kg hammer. In response, a 0.372-kg metal piece is sent upward toward the bell, which is 4.87 m above. Suppose that 29.7 percent of the hammer's kinetic energy is used to do the work of sending the metal piece upward. How fast must the hammer be moving when it strikes the target so that the bell just barely rings?

Answers

Answer:

3.93 m/s

Explanation:

Let the kinetic energy of hammer be 'K' and speed of hitting the target be 'v'.

Given:

Mass of the hammer (M) = 7.76 kg

Mass of the metal piece (m) = 0.372 kg

Kinetic energy of the hammer used by the metal piece = 29.7% of 'K' = 0.297K

Vertical height traveled by the metal piece (h) = 4.87 m

From conservation of energy, the kinetic energy used by the metal piece is transformed to the gravitational potential energy when it reaches the height of the bell.

Gravitational potential energy of the piece is given as:

[tex]U=mgh\\\\U=0.372\times 9.8\times 4.87=17.754\ J[/tex]

Now, as per question:

[tex]0.297K=17.754\ J\\\\K=\frac{17.754}{0.297}\\\\K=59.78\ J[/tex]

Therefore, the kinetic energy of the hammer is 59.78 J.

We know that,

Kinetic energy = [tex]\frac{1}{2}mv^2[/tex]

So, [tex]K=\frac{1}{2}mv^2[/tex]

Expressing in terms of 'v', we get:

[tex]mv^2=2K\\\\v^2=\frac{2K}{m}\\\\v=\sqrt{\frac{2K}{m}}[/tex]

Plug in the given values and solve for 'v'. This gives,

[tex]v=\sqrt{\frac{2\times 59.78}{7.76}}\\\\v=3.93\ m/s[/tex]

Therefore, the hammer must move with a speed of 3.93 m/s when it strikes the target so that the bell just barely rings.

A standard door into a house rotates about a vertical axis through one side, as defined by the door's hinges. A uniform magnetic field is parallel to the ground and perpendicular to this axis. Through what angle must the door rotate so that the magnetic flux that passes through it decreases from its maximum value to 0.30 of its maximum value?

Answers

Answer:

The angle that the door must rotate is 70.5 graus

Explanation:

When the door rotates through and angel X, the magnetic flux that passes through the door decreases from its maximum value to 0.3 of its maximum value

This way,

X = 0.3 Xmax

X = B A cosX = 0.3 B A  

or

cosX = 0.3

or

X = [tex]cos^{-1}[/tex] (0.3) = 70.5

X = 70.5 graus

A conducting sphere of radius R1 carries a charge Q. Another conducting sphere has a radius R2 = 3 4 R1, but carries the same charge. The spheres are far apart. What is the ratio E2 E1 of the electric field near the surface of the sphere with radius R2 to the field near the surface of the sphere with radius R1?

Answers

Answer:

The ratio of electric field is 16:9.

Explanation:

Given that,

Radius [tex]R_{2}=\dfrac{3}{4}R_{1}[/tex]

Charge = Q

We know that,

The electric field is directly proportional to the charge and inversely proportional to the square of the distance.

In mathematically term,

[tex]E=\dfrac{kQ}{R^2}[/tex]

Here, [tex]E\propto\dfrac{1}{R^2}[/tex]

We need to calculate the ratio of electric field

Using formula of electric field

[tex]\dfrac{E_{2}}{E_{1}}=\dfrac{R_{1}^2}{R_{2}^2}[/tex]

Put the value into the formula

[tex]\dfrac{E_{2}}{E_{1}}=\dfrac{(4R_{1})^2}{(3R_{1})^2}[/tex]

[tex]\dfrac{E_{2}}{E_{1}}=\dfrac{16}{9}[/tex]

Hence, The ratio of electric field is 16:9.

Final answer:

The ratio of the electric fields E2/E1 at the surface of two conducting spheres with radii R2 = 3/4R1 carrying the same charge is 16/9.

Explanation:

The question is asking for the ratio of the electric fields near the surface of two conducting spheres carrying the same charge Q but having different radii, R1 and R2 where R2 is three-fourths of R1. To find the electric field E near the surface of a conducting sphere, we use the formula:

E = kQ/[tex]r^{2}[/tex]

where k is Coulomb's constant, Q is the charge, and R is the radius of the sphere. Since the charge Q is the same on both spheres, we can calculate the ratio of the electric fields by plugging in the radii:

E2/E1 = (kQ/[tex]r2^{2}[/tex]) / (kQ/[tex]r1^{2}[/tex])

Simplifying further, since k is a constant it cancels out, along with Q, which is the same for both spheres, we get:

E2/E1 = ([tex]r1^{2}[/tex]) / ([tex]r2^{2}[/tex])

Substituting R2 = 3/4R1:

E2/E1 = [tex]r1^{2}[/tex] / (3/4 R1)[tex]{2}[/tex]

E2/E1 = 1 / (3/4)^2

E2/E1 = 1 / (9/16) = 16/9

Therefore, the ratio E2/E1 is 16/9.

A comet orbits a star in a strongly elliptical orbit. The comet and star are far from other massive objects. As the comet travels away from the star, how does the kinetic energy and potential energy of the system change?

Answers

Answer:

the kinetic energy decreases and the potential energy Increases.

Explanation:

as the comet travels away from the star it gains an energy which it posses because of its position or state.once the comet moves away form the star the kinetic decreases until its lost all together to where the potential energy starts increasing.

Answer:

The potential energy increase and the kinetic energy decrease.

A chamber fitted with a piston can be controlled to keep the pressure in the chamber constant as the piston moves up and down to increase or decrease the chamber volume. The chamber contains an ideal gas at 296 K and 1.00 atm.What is the work done on the gas as the piston compresses it from 1.00 L to 0.633 L ?

Express your answer with the appropriate units.

W =
J

Answers

Answer:

W = 37.2J

Explanation:

See attachment below.

A Carnot engine receives 250 kJ·s−1 of heat from a heat-source reservoir at 525°C and rejects heat to a heat-sink reservoir at 50°C. What are the power developed and the heat rejected?

Answers

a. The quantity of heat rejected by the Carnot engine is equal to -101.2 kJ/s.

b. The power developed by the Carnot engine is equal to 148.8 kJ/s.

Given the following data:

Quantity of heat received = 250 kJ/sTemperature of heat-source = 525°CTemperature of heat rejected = 50°C

Conversion:

Temperature of heat-source = 525°C to Kelvin = 525 + 273 = 798K

Temperature of heat rejected = 50°C to Kelvin = 50 + 273 = 323K

To find the power developed and the heat rejected, we would use Carnot's equation:

[tex]-\frac{Q_R}{T_R} = \frac{Q_S}{T_S}[/tex]

Where:

[tex]Q_R[/tex] is the quantity of heat rejected.[tex]T_R[/tex] is the heat-sink temperature.[tex]T_S[/tex] is the heat-source temperature.[tex]Q_S[/tex] is the quantity of heat received.

Making [tex]Q_R[/tex] the subject of formula, we have:

[tex]Q_R = -( \frac{Q_S}{T_S})T_R[/tex]

Substituting the given parameters into the formula, we have;

[tex]Q_R = -( \frac{250}{798}) \times 323\\\\Q_R = -( \frac{80750}{798})[/tex]

Quantity of heat rejected = -101.2 kJ/s

Now, we can determine the power developed by the Carnot engine:

[tex]P = -Q_S - Q_R\\\\P = -250 - (-101.2)\\\\P = -250 + 101.2[/tex]

Power, P = 148.8 kJ/s.

Read more: https://brainly.com/question/13144439?referrer=searchResults

The power developed by the Carnot engine is approximately 148.8 kilowatts. The heat rejected by the Carnot engine is approximately 101.2 kilowatts.

The Carnot efficiency (η) of a heat engine is given by the formula:

η = 1 - (T₁ ÷ T₂)

Heat received (Q(in)) = 250,000 J/s

Temperature of the heat-source reservoir (T(Hot)) = 798.15 K

Temperature of the heat-sink reservoir (T(Cold) = 323.15 K

The Carnot efficiency:

η = 1 - (T₁ ÷ T₂)

η = 1 - (323.15  ÷ 798.15 )

η = 0.5952

Therefore, The Carnot efficiency is 0.5952, which means the engine converts 59.52% of the heat received into useful work.

Power Developed:

P = η × Q(in)

P = 0.5952 × 250,000

P =  148,800 = 148.8 kW

Therefore, The power developed by the Carnot engine is approximately 148.8 kilowatts.

Heat Rejected:

Q(out) = Q(in) - P

Q(out) = 250,000- 148,800 = 101,200 J/s

Q(out) = 101.2 kW

Therefore, The heat rejected by the Carnot engine is approximately 101.2 kilowatts.

To know more about the Carnot engine:

https://brainly.com/question/21126569

#SPJ3

college physics 1, final exam 2015 a closed 2.0l container holds 3.0 mol of an idea gas. if 200j of heat is added, and no work is done, what is the chanhe in internal enegery of the system

Answers

Answer: The change in internal energy of the system is 200 Joules

Explanation:

According to first law of thermodynamics:

[tex]\Delta E=q+w[/tex]

[tex]\Delta E[/tex]=Change in internal energy

q = heat absorbed or released

w = work done or by the system

w = work done by the system=[tex]-P\Delta V=0[/tex]  

q = +200J   {Heat absorbed by the system is positive}

[tex]\Delta E=+200+0=+200J[/tex]

Thus the change in internal energy of the system is 200 Joules

Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen

Answers

Answer:

Hydrogen takes 0.391s to get to distance x

Explanation:

From the chromatography table:

[tex]D_H_2=6.4\times10^{-5}m^2/s\\D_O_2=1.8\times10^{-5}m^2/s\\[/tex]

Using the equation[tex]x_m_s=\sqrt(2Dt)[/tex]. This equation relates time to distance during diffusion

[tex]x_m_s[/tex],[tex]_O_2[/tex]=[tex]\sqrt[/tex][tex]2D_o_2[/tex][tex]t_o_2[/tex]  and [tex]x_m_s[/tex],[tex]__H_2[/tex]=[tex]\sqrt[/tex][tex]2D_H__2[/tex][tex]t_H__2[/tex]

Let the distance traveled be denoted by x(same distance traveled by both gases).

Distance is same when difference between[tex]t_H__2[/tex] and [tex]t_O__2[/tex] is 1.0 seconds.

[tex]t_O__2=t_H___2[/tex][tex]+1.0s[/tex]

At equal distance=>

[tex]2D_O__2[/tex][tex]t_O__2[/tex]=[tex]2D_H__2[/tex][tex]t_H__2[/tex]

[tex]D_O_2[/tex][tex](t_H__2[/tex][tex]+1.0s)=D_H__2[/tex][tex]t_H__2[/tex]

Solving for hydrogen time:

[tex]t_H__2=(D_0__2)\div[/tex][tex](D_H__2[/tex]-[tex]D_O__2)[/tex][tex]\times1.0[/tex]

=[tex](1.8\times10^{-5}m^2/s)\div(6.4\times10^{-5}m^2/s-1.8\times10^{-5}m^2/s)\times1.0s[/tex]

=0.391s

Final answer:

To find the time before hydrogen is 1.00 s ahead of oxygen when both are diffusing through air, we use Graham's law of effusion. Hydrogen effuses four times faster than oxygen, so with calculations, we find that this time is approximately 2.33 seconds.

Explanation:

When hydrogen and oxygen are diffusing through air and are released simultaneously, we want to determine the time that passes before the hydrogen gas (H2) is 1.00 s ahead of the oxygen gas (O2). This concept involves diffusion rates in gases, which can be described using Graham's law of effusion. According to Graham's law, the rate of effusion for a gas is inversely proportional to the square root of its molar mass (M).

Given that hydrogen effuses four times as rapidly as oxygen, we can write the relationship between their rates as RH2 / RO2 = sqrt(MO2 / MH2). Knowing that the molar mass of hydrogen (MH2) is 2 g/mol and the molar mass of oxygen (MO2) is 32 g/mol, we can substitute these values into the equation to find the rate ratio.

Since hydrogen is four times faster, and we want hydrogen to be 1.00 s ahead of the oxygen, we can use the ratio to calculate how long it would take for oxygen to travel the same distance. This time can then be added to 1.00 s to find the total elapsed time. Here's a step-by-step approach to calculate this:

Calculate the square root of the ratio of the molar masses: sqrt(32/2) = sqrt(16) = 4.

The rate of hydrogen is therefore four times the rate of oxygen: RH2 = 4 × RO2.

If we let t be the time for oxygen to effuse, hydrogen will effuse in t/4 time.

To be 1.00 s ahead, we want t/4 = t - 1.00.

Solving for t gives us t = 4/3 seconds (approximately 1.33 s).

This is the time it would take for oxygen to cover the same distance that hydrogen covers in 1/3 second.

Thus, the total time before hydrogen is 1.00 s ahead of the oxygen is approximately 1.33 s (the time for oxygen) + 1.00 s = 2.33 seconds.

This concept is particularly useful in analytical chemistry, specifically in techniques like gas chromatography, where differences in the rate of diffusion of gases are used to separate and identify components in a mixture.

The particle starts from rest at t=0. What is the magnitude p of the momentum of the particle at time t? Assume that t>0. Express your answer in terms of any or all of m, F, and t.

Answers

Answer:

Ft

Explanation:

We are given that

Initial velocity=u=0

We have to find the magnitude of p of the momentum of the particle at time t.

Let mass of particle=m

Applied force=F

Acceleration, [tex]a=\frac{F}{m}[/tex]

Final velocity , [tex]v=a+ut[/tex]

Substitute the values

[tex]v=0+\frac{F}{m}t=\frac{F}{m}t[/tex]

We know that

Momentum, p=mv

Using the formula

[tex]p=m\times \frac{F}{m}t=Ft[/tex]

The magnitude of the momentum of the particle after time, t is Ft = mv.

The given parameters:

initial velocity of the particle, u = 0

The magnitude of the momentum of the particle after time, t is calculated as follows;

[tex]P =mv[/tex]

The force applied to the particle is calculated as;

[tex]F = ma = \frac{mv}{t} \\\\Ft = mv[/tex]

Thus, the magnitude of the momentum of the particle after time, t is Ft = mv.

Learn more here:https://brainly.com/question/23927723

Even though Alice visits the wishing well frequently and always tosses in a coin for good luck, none of her wishes have come true. As a result, she decides to change her strategy and make a more emphatic statement by throwing the coin downward into the well. If the water is 7.03 m below the point of release and she hears the splash 0.81 seconds later, determine the initial speed at which she threw the coin. (Take the speed of sound to be 343 m/s.)

Answers

Explanation:

The formula to calculate total time taken is as follows.

      Total time = time to fall + time for sound

So,   time for sound = [tex]\frac{distance}{velocity}[/tex]

                                 = [tex]\frac{7.03}{343}[/tex]

                                 = 0.0204  sec

Hence, time to fall is as follows.

          (0.81 - 0.0204) sec

         = 0.7896 sec

Now, we will calculate the time to fall as follows.  

            y = [tex]y_{o} + v_{o}yt + \frac{1}{2}at^{2}[/tex]

            0 = [tex]h + v \times t - \frac{1}{2}gt^{2}[/tex]

            0 = [tex]7.03 + v \times (0.81 - 0.0204) - 0.5 \times 9.81 \times(0.81 - 0.0204)^{2}[/tex]

               = [tex]7.8196 - 0.5 \times 9.81 \times 0.623[/tex]

              = 7.8196 - 3.058

              = 4.7616 m/s  

Therefore, she threw the coin at 4.76 m/s in the upward direction.

Other Questions
Which Native American tribe included insect people in their creation mythology and told naughty children that the spider women would take them to spider rock and eat them if they did not behave? On January 1, 2017, Eagle borrows $23,000 cash by signing a four-year, 9% installment note. The note requires four equal payments of $7,099, consisting of accrued interest and principal on December 31 of each year from 2017 through 2020. (Round your intermediate calculations and final answers to the nearest dollar amount.) Prepare the journal entries for Eagle to record the loan on January 1, 2017, and the four payments from December 31, 2017, through December 31, 2020. The unemployment rate in Economy X when it is growing normally is 5%. When Economy X is in a recession, the unemployment rate is 10%. Drag each word or phrase to the appropriate blank space in order to complete the paragraph correctly.Drag word(s) below to fill in the blank(s) in the passage.The _______ unemployment rate while Economy X is _______ s 0%. The 5% unemployment rate is due to structural and __________ factors. Jaime can paddle her kayak at an average rate of 6 miles per hour in still water. After 2 hours of paddling north in a river, she traveled 8 miles. What is true about the direction of the current in the river? A It is moving in the same direction as the kayak because it sped Jaime up. B It is moving in the same direction as the kayak because it slowed Jaime down. C It is moving in a different direction as the kayak because it sped Jaime up. D It is moving in a different direction as the kayak because it slowed Jaime down. 1. Normal cells and cancer cells differ in severalways. This illustration shows some examples ofvisible changes in cancer cells.MultinucleatedWhich of these accurately describes a differencebetween cancer cells and normal cells?O A. Cancer cells divide less frequently.B. Cancer cells lack the orderedarrangement of normal cells.MultipolarmitosisCancer cells have a consistent sizeand shape.ArrestemitosisOD. Cancer cell nuclei are always smalland rounded in shape. Which of the following does the author describe as a main consequence of slavery?A.Africas economy was destabilized.B.New diseases were introduced to Africa.C.Africans had to find new jobs and homes in America.D.The foundation for modern-day racism was established. x^3-10x=100Use a trial and improvement method to find this solution.Give your answer to 1 decimal place.Show working Write a program named ArrayDemo that stores an array of 10 integers. (Note that the array is created for you and does not need to be changed.) Until the user enters a sentinel value, allow the user four options: (1) to view the list in order from the first to last position in the stored array (2) to view the list in order from the last to first position (3) to choose a specific position to view (4) to quit the application. The three tasks within data harmonization, namely: data consolidation, data cleansing, and data formatting use techniques called harmonization rules that implement those tasks. True False Mrs.Kennedy has 1/4 liter of oranges she want to give 3 students in her advisory You have deposited $96,780 into an account that will earn an interest rate of 15% compounded semiannually. How much will you have in the account by the end of 14 years? How to get the answer for this? How do I do this table !!! Treating patients against their will or without their consent is: gains a client who prepays $ 450 for a package of six physical training sessions. Body Fitness collects the $ 450 in advance and will provide the training later. After four training sessions, what should Body Fitness report on its income statement assuming it uses the accrual basis accounting method? On January 1, 2020, Carter Company makes the two following acquisitions. 1. Purchases land having a fair value of $200,000 by issuing a 5-year, zero-interest-bearing promissory note in the face amount of $337,012. 2. Purchases equipment by issuing a 6%, 8-year promissory note having a maturity value of $250,000 (interest payable annually). The company has to pay 11% interest for funds from its bank. (a) Record the two journal entries that should be recorded by Carter Company for the two purchases on January 1, 2020. (b) Record the interest at the end of the first year on both notes using the effective-interest method. Howard, a salesperson for Kemco Sanitation Systems, told a purchasing agent, "Our new system can save your company $60,000 annually in energy, chemicals, and water use compared to the type of sanitation system you're using now." Howard's statement reflects _____ in this scenario. ABC has bonds outstanding that has 25 years left to maturity. The coupon rate is 9%, and coupons are paid semiannually. The bond is currently selling for $908.72 per $1,000 bond. What is the cost of debt Factor the following polynomial: "4x216" what is it ???????????????????? Steam Workshop Downloader