Answer:
29/40
Step-by-step explanation:
A basket contains 14 white eggs, 15 brown eggs, and 11 lemons. The exact probability that Taylor picks an egg from the basket is;
(14+15)/(14+15+11) = 29/40
Answer:
The exact probability that Taylor picks an egg from the basket is 0.725
Step-by-step explanation:
A basket contains 14 white eggs, 15 brown eggs and 11 lemons.
Total number of items in the basket [tex]=14+15+11= 40[/tex]
Total number of eggs in the basket [tex]=14+15= 29[/tex]
Taylor picks one item at random from the basket.
So, the probability that Taylor picks an egg [tex]=\frac{total\ number\ of\ eggs}{total\ number\ of\ items}=\frac{29}{40}=0.725[/tex]
What is the midpoint of BC?
A.5,5
B.5,6
C.3,5
D.6,5
Answer:
(5,6)
Step-by-step explanation:
First, count how many units are between b and c, that is 10, half of that is 5 units because they want the mid point so we divided by 2 but now you are going to count 5 units from point b so the y value isn't isn't 5. So from b, count 5 units upwards which lands at 6 so that is the y value. Now you move from their to the right to touch the line (if you understand what i mean) and that would fall at the value of 5. so x is equal 5. Coordinate: (x,y)=(5,6). Hopefully that helped.
The midpoint of the line BC is (5,6).
What is midpoint of a line?The midpoint of a line segment is the point equidistant from its endpoints. It is calculated as the average of the x-coordinates and y-coordinates of the endpoints.
Midpoints are crucial in geometry for construction, line segment division, and coordinate geometry. They play roles in physics, engineering, and bisection problems, contributing to spatial reasoning and problem-solving.
The midpoint M of a line segment with endpoints B(x₁, y₁) and C(x₂, y₂) is calculated as:
M = (x₁ + x₂)/2, (y₁ + y₂)/2.
So, for points B(2, 1) and C(8, 11) the midpoint is:
M(2 + 8)2, (1 + 11)/2
= 10/2, 12/2
= (5, 6).
The midpoint of the line BC is (5,6).
learn more about midpoint here
https://brainly.com/question/24431553
#SPJ3
Movies Plus charges its customers a $10 monthly service fee plus $2 for each movie the customer rents. Movies For Less charges $3 for each movie but does not have a monthly service fee. The costs of renting movies during the same month is represented in the table below.
Which statement is true if 15 movies are rented from each company?
A)Movies For Less costs $5 more.
B)Movies Plus costs $5 more.
C)Movies Plus costs $6 more.
D)Each company charges the same amount.
↓Movie Rentals↓
Answer: A) movies for less cost $5 more
Step-by-step explanation:
10 × 3 =30
15 × 2= 30+10=40 movie plus
15 × 3= 45 movies for less
Answer:
A)Movies For Less costs $5 more.
Step-by-step explanation:
Movies Plus charges its customers a $10 monthly service fee plus $2 for each movie the customer rents.
So, 15 movies from this provider will cost = [tex]10+2(15)[/tex]
=> [tex]10+30=40[/tex] dollars.
Movies For Less charges $3 for each movie but does not have a monthly service fee.
So, 15 movies from this provider will cost = [tex]15\times3=45[/tex] dollars.
Comparing both providers, we can see that Movies For Less charges $5 more than Movies Plus.
Therefore, option A is correct.
which line is it? help asap
Answer:
q
Step-by-step explanation:
The equation of a line in the form
y = mx ( m is the slope ) passes through the origin
y = 2x is in this form
The only graph to pass through the origin is q
Louisa used a gift card to pay for 3 meals at a vegetarian restaurant. Each meat cost $7. By how much has the value of the gift card changed after the purchase of the meals?
A.-$10
B.+$10
C.$7
D.-$21
Answer:
D
Step-by-step explanation:
Answer:
D.-$21
Step-by-step explanation:
decide if the graphs of each pair will be parallel, perpendicular or neither.
a. y = -2x + 5 and y = 1/2x - 7
b. y = 3x + 9 and 3y - x = 6
c. 4y - x = 8 and y = 1/4x - 3
part b //
find the equation of the line that is:
a. parallel to y = 3x - 5 and passes through (-2, 1).
b. perpendicular to y = -2/5x + 7 and passes through (4, 6).
so parallel is just numbers with the same slope but different x value
and perdicular is the One with different signs and oppisite reciprocals
a) perpendicular because -2 is the oppisite sign and reciprocal of 1/2
b)neither
c) niether
and B)
a) 3x-2
b)y=5/2 +4
i think
The sum of two numbers 104 their difference 6 ..Find the numbers
Answer:
The numbers are 49 and 55
Step-by-step explanation:
The sum of two numbers 104
x+y = 104
their difference 6
x-y = 6
Add the two equations together to eliminate y
x+y = 104
x-y = 6
------------------
2x = 110
Divide by 2
2x/2 =110/2
x = 55
x+y = 104
55+y =104
Subtract 55 from each side
55-55+y = 104-55
y =49
Final answer:
To find the two numbers that add up to 104 and have a difference of 6, we solve a system of equations and discover that the numbers are 55 and 49.
Explanation:
The question asks us to find two numbers whose sum is 104 and whose difference is 6. To find the numbers, we can set up a system of equations. Let the two numbers be x and y.
x + y = 104 (sum of the numbers)
x - y = 6 (difference of the numbers)
We solve these equations simultaneously. Adding both equations, we get:
2x = 110
x = 55
Substitute x = 55 in the first equation to find y:
55 + y = 104
y = 104 - 55
y = 49
So, the two numbers are 55 and 49.
The factory produces 4 gallons of orange juice for every 24 gallons of apple juice but is use this ratio to answer the question what unit rate describes the rate at which the factory produces juice
Answer:
1/6 (1 gallon of orange juice for every 6 gallons of apple juice)
Step-by-step explanation:
4/24=24/4x1/36
This is because you reverse the division (or fraction) into a easier to solve equation, and the 1/36 is there to balance out that change.
Which statement is true about the letter H? It has line symmetry only. It has rotational symmetry only. It has both line and rotational symmetry. It has neither line nor rotational symmetry.
Answer:
it has both line and rotational symmetry
Answer:
youre answer is it has both line and rotational symmetry
Step-by-step explanation:
If Salvador checks his pulse for 8 minutes, what is his rate if he counts 904 beats?
Answer:
113 beats per minute.
Step-by-step explanation:
904 / 8 = 113
The pulse rate in Salvador is 113 beats per minute.
What is the pulse rate?
The pulse rate is a measurement of the number of times the heart beats per minute. As the heart pushes blood through the arteries, the arteries expand (diastole) and contract (systole) with the flow of the blood. A pulse not only measures the heart rate but also can indicate the Heart rhythm.A normal resting heart rate for adults ranges from 60 - 100 beats per minute. Generally, a lower heart rate at rest implies more efficient heart function and better cardiovascular fitness.
calculation:
⇒number pf heartbeat count = 904
⇒time of count= 8 minutes
⇒pulse rate= 904/8
=113 beats per minute.
Learn more about pulse rate here:https://brainly.com/question/11245663
#SPJ2
Match the following items.
A jar contains a mixture of 12 black marbles, 10 red marbles, and 18 white marbles, all the same size. If two marbles are drawn from the jar without being replaced, what would the probability be:
1.
of drawing two black marbles?
2.
of drawing a white, then a black marble?
3.
of drawing two white marbles?
4.
of drawing a black, then a red marble?
Options
51/260
1/13
9/65
11/130
I have to match them up
This problem can be solved using probability, the equation of the probability of an event A is P(A)= favorable outcomes/possible outcomes. The interception of two probable events is P(A∩B)= P(A)P(B).
There are 12 black marbels, 10 red marbles, and 18 white marbels, all the same size. If two marbles are drawn from the jar without being replaced.
The total of the marbles is 40.
If two marbles are drawn from the jar without being replaced, what would the probability be:
1. of drawing two black marbles?
The probability of drawing one black marble is (12/40). Then, the probability of drawing another black marble after that is (11/39) due we drawing one marble before.
P(Black∩Black) = (12/40)(11/39) = 132/1560, simplifying the fraction:
P(Black∩Black) = 11/130
2. of drawing a white, then a black marble?
The probability of drawing one white marble is (18/40). Then, the probability of drawing then a black marble after that is (12/39) due we drawed one marble before.
P(White∩Black) = (18/40)(12/39) = 216/1560, simplifying the fraction:
P(White∩Black) = 9/65
3. of drawing two white marbles?
The probability of drawing one white marble is (18/40). Then, the probability of drawing another white marble after that is (17/39) due we drawed one marble before.
P(White∩White) = (18/40)(17/39) = 306/1560, simplifying the fraction:
P(White∩White) = 51/260
4. of drawing a black marble, then a red marble?
The probability of drawing one black marble is (12/40). Then, the probability of drawing then a red marble after that is (10/39) due we drawed one marble before.
P(Black∩Red) = (12/40)(10/39) = 120/1560, simplifying the fraction:
P(Black∩Red) = 1/13
Which statement describes the graph of f(x) = 4x2 + 20x + 25?
The graph does not intersect the x-axis.
The graph touches the x-axis at (–2.5, 0).
The graph intersects the x-axis at (–0.4, 0) and (0.4, 0).
The graph intersects the x-axis at (2, 0) and (5, 0).
Answer:
2nd statement is true
Step-by-step explanation:
Please use " ^ " to denote exponentation: f(x) = 4x^2 + 20x + 25.
Take a look at the second statement. If you'll substitute -2.5 for x, to find f(-2.5), you'll find that the result is 0; Thus, this second statement is true.
Answer:
The graph touches the x-axis at (–2.5, 0).
Step-by-step explanation:
Given : f(x) = 4x² + 20x + 25.
To find : Which statement describes the graph .
Solution : We have given
f(x) = 4x² + 20x + 25.
On factoring
4x² + 10x + 10x+ 25 = 0
On taking common 2x from first two terms and 5 from last two terms.
2x ( 2x + 5 ) +5 (2x + 5 ) = 0
On grouping
(2x +5) (2x +5) = 0
For 2x +5 = 0
On subtracting 5 both side
2x = -5
On dividing by 2
x = [tex]\frac{-5}{2}[/tex] = - 2.5
x = - 2.5 .
Points (-2.5 , 0)
Therefore, The graph touches the x-axis at (–2.5, 0).
Rearrange the equation below to solve for y.
6x+6y= 24
Answer:
y = -x + 4
Step-by-step explanation:
Step 1: Use the subtraction property of equality
6y = -6x + 24
Step 2: Use the division property of equality
y = -x + 4
Answer:
y = -x +4
Step-by-step explanation:
6x+6y= 24
Subtract 6x from each side
6x-6x+6y=-6x+ 24
6y = -6x+24
Divide by 6 on each side
6y/6 = -6x/6 +24/6
y = -x +4
Determine which equations have the same solution set
WIN
+ 1 = 6x by recognizing properties, rather than
solving. Check all that apply.
4 - 6x + 1 = 36x
E-x= 6x
4- x + 1 = 6x
+x= 6x
5 = 30x
5 = 42x
The equations that have the same solution set are equations 1, 3, 5, and 6.
How to determine the equation that has the same set of equationTo determine which equations have the same solution set without solving them, we can analyze the equations and identify any properties that indicate equivalent solutions. Let's examine each equation:
1. WIN + 1 = 6x
2. 4 - 6x + 1 = 3
3. 6x - x = 6x
4. 4 - x + 1 = 6x
5. x = 6x
6. 5 = 30x
7. 5 = 42x
Equations with the same solution set:
- Equations 1 and 3 both have the term "6x" on one side and a different expression on the other side. They indicate that the solution for x is the same.
- Equations 5 and 6 both have the same equation "x = 6x", which implies the solution for x is the same.
Therefore, the equations that have the same solution set are equations 1, 3, 5, and 6.
Learn more about equations at https://brainly.com/question/29174899
#SPJ1
Answer:
The correct answers are
Step-by-step explanation:
1 2 6
At a pizza shop, 80% of the customers order a pizza, 15% of the customers
order a salad, and 10% of the customers order both a pizza and a salad.
If a customer is chosen at random, what is the probability that he or she
orders either a pizza or a salad?
90% out of 105% which would be 0.85
Answer: 0.85
Step-by-step explanation:
Let A be the event that the customer orders a pizza and B be the event that the customer orders a salad.
Then , we have [tex]P(A)=80\%=0.80[/tex]
[tex]P(B)=15\%=0.15[/tex]
[tex]P(A\cap B)=10\%=0.10[/tex]
Now, the probability that he or she orders either a pizza or a salad is given by :-
[tex]P(A\cup B)=P(A)+P(B)-P(A\cap B)\\\\\Rightarrow\ P(A\cup B)=0.80+0.15-0.10=0.85[/tex]
Hence, the required probability = 0.85
Shelley drove from New Haven, Connecticut, to New York City in 90 minutes. Which equation relates the distance she traveled to her speed?
A.
distance = speed + 90
B.
distance = speed × 90
C.
distance − speed = 90
D.
distance × 90 = speed
The correct answer is B.
Distance = speed + 90
The equation relates the distance she traveled to her speed is Speed x 90 = distance.
The speed a person travels is the total distance driven per the total time it took to travel.
Speed = total distance / total time
The time it took to drive is 90 minutes: Speed = distance / 90
In order to determine the equation that relates distance to speed, make distance the subject of the formula. In order to do this, multiply both sides of the equation by 90: Speed x 90 = distance.
To learn more about speed, please check: brainly.com/question/9834403
A store is having a sale, each customer receives either a 15% discount on purchases under 100% or a 20% discount on purchases of $100 or more. Kelly is purchasing some clothes for $96.60 before the discount. She decides to buy the fewest packs of gum that will increase her purchase to over $100. The price of each pack of gum is $0.79. After the discount, how much less will kelly pay by purchasing the clothes and the gum instead of purchasing only the clothes? (Assume there is no sales tax to consider.) please help this is almost due please help I mark brainliest!!!
A. $1.05
B. $1.67
C. $3.69
D. $3.87
Answer: b
Step-by-step explanation:
15% of the $96.6 clothes only is $14.49
in order to get over 100 dollars kelly would have to purchase 5 packages of gum
5 times .79 = $3.95
With the gum the total would be $100.55 divided by 20% = $20.11
$20.11 - $14.49 = $5.62 however you need to subtract the price of the gum also
$5.62 - $3.95 = $1.67
B....
Its right trust!
the funtions f(x) and g(x) are graphed below. If g(x)= f(x+k), what is the value of k
Answer:
k=6
Step-by-step explanation:
We are given a graph of the function f(x) and g(x) such that both the graphs are parabola and the graph of g(x) is a shift of graph of f(x) some units to the left.
The vertex of the graph of f(x) is at x=4
whereas the vertex of the graph of the function g(x) is at x= -2.
This means that the graph of g(x) is a shift of the graph of f(x) 6 units to the left.
This means that:
g(x)=f(x+6)
( Since the translation of a function f(x) k units either to the left or to the right is denoted by:
f(x+k)
when k>0 the shift is to the left and if k<0 the shift is to the right.)
This means that the value of k is 6
A printer can print 27 pages in 4.5 min. How much time does it need to print 324 pages?
Answer:
54 minutes
Step-by-step explanation:
We can write a proportion to solve this problem. Put the number of pages over the minutes
27 pages 324 pages
-------------- = ---------------
4.5 minutes x minutes
Using cross products
27 * x = 324 * 4.5
27x = 1458
Divide each side by 27
27x/27 = 1458/27
x =54
How many solutions does the equation −2y + 2y + 3 = 3 have? One Zero Infinitely many Three
Answer:
Infinitely many solutions.
Step-by-step explanation:
In the equation −2y + 2y + 3 = 3 we see only one variable, and that variable is of the first power. Ordinarily, we'd say that this equation will have 1 solution. However, if we combine like terms, we get 0 + 3 = 3, or 0 = 0, which is true for any and all y values. Infinitely many solutions.
Answer:
Infinitely
Step-by-step explanation:
we have
[tex]-2y+2y+3=3[/tex]
Group terms that contain the same variable
[tex]-2y+2y=3-3[/tex]
Combine like terms
[tex]0=0[/tex] ----> the equation is true for any value of y
therefore
The equation has infinite solutions
if f(x) = x to the 3rd power minus 2x to the 2nd power, what expression is equivalent to f(i)
[tex]
f(x)=x^3-2x^2 \\
f(i)=i^3-2i^2=\boxed{-i+2}
[/tex]
Hope this helps.
r3t40
What is the sum of the measures of the interior angles of a 15-sided polygon?
A. 3060°
B. 2340
c. 1500°
D. 27000
Answer:
B. 2340
Step-by-step explanation:
Interior angles of a polygon is given by
(n – 2)180 where n is the number of sides
(15-2) *180
13*180
2340
B. 2340
Step-by-step explanation:
Interior angles of a polygon is given by
(n – 2)180 where n is the number of sides
(15-2) *180
13*180
2340
Given that K is the centroid of EFG find GE and GI
Answer:
D) GE = 10 and GI = 12
Step-by-step explanation:
Given: KI = 4 and GH = 5
K is the centroid of EFG
So
KI = 1/3 (GI)
GI = 3 (KI) = 3(4) = 12
Because K is the centroid of EFG so GH = HE = 5
GE = GH + HE
GE = 5 + 5
GE = 10
Answer
GE = 10 and GI = 12
Answer:
D. GE = 10; GI = 12
Step-by-step explanation:
Given that K is the centroid of EFG, then GH = HE = 5, so GE = GH + HE = 5 + 5 = 10
The 2/3 rule states that the centroid is 2/3 of the way from the vertex to the opposite midpoint. This means that GK is doubled than KI, then GK = 2*4 = 8, and GI = GK + KI = 8 + 4 = 12
which of the following choices simplified the expression:
The answer is:
The correct option is the second option:
[tex]\frac{5}{2},\frac{-1}{2}[/tex]
Why?We are given the following expression:
[tex]\frac{2+-\sqrt{9}}{2}[/tex]
Now, solving we have:
First solution:
[tex]\frac{2+\sqrt{9}}{2}=\frac{2+3}{3}=\frac{5}{2}[/tex]
Second solution:
[tex]\frac{2-\sqrt{9}}{2}=\frac{2-3}{3}=\frac{-1}{2}[/tex]
Hence, we have that the correct option is the second option:
[tex]\frac{5}{2},\frac{-1}{2}[/tex]
Have a nice day!
Answer:
The correct answer is second option
5/2, -1/2
Step-by-step explanation:
From the attached figure we can see that,
(2 ± √9 )/2
To find the simplified form of (2 ± √9 )/2
(2 ± √9 )/2 = (2 + √9 )/2 or (2 - √9 )/2
(2 + √9 )/2 = (2 + 3)/2 = 5/2
(2 - √9 )/2 = (2 - 3)/2 = -1/2
Therefore simplified form of (2 ± √9 )/2 are
5/2 and -1/2
The correct answer is option 2
Q(t)=Q(0)e^pt
The above model describes the exponential decay of chemical element. t is the time in years, Q(0) is the initial amount of the chemical element, Q(t) is the amount of chemical element after t years and p is a constant. It is known that every 1600 years the amount of the chemical element drops to half ( its half-life is 1600 years). If the term e^p in the above equation can be replaced by the term x^y, where both x,y rational numbers, what is x and y?
(a) x=sqrt{frac{1}{2}}, y=frac{1}{1600}
(b) x=frac{1}{2}, y=frac{1600}{3}
The constant p is determined by the half-life of 1600 years, and since after one half-life, the amount of the element is half of its initial value, we find that x=1/2 and y=1/1600, as e^p can be expressed as (1/2)^(1/1600). Therefore, option (a) is the correct answer.
The equation Q(t) = Q(0)e^pt describes an exponential decay process, such as the decay of a chemical element over time. Given that the half-life of the chemical element is 1600 years, after this period the quantity of the element will be half of its original amount. According to the properties of exponential decay, we know that after one half-life, Q(t) = Q(0)/2.
Substituting t = 1600 into the equation and knowing that Q(1600) = Q(0)/2, we get Q(0)/2 = Q(0)e^(1600p). Simplify by dividing both sides by Q(0), resulting in 1/2 = e^(1600p). To find p, take the natural logarithm of both sides, yielding ln(1/2) = 1600p ln(e), and since ln(e) = 1, we have p = ln(1/2)/1600.
Now, to express e^p as x^y, with both x and y being rational numbers, we look for a rational base x that can represent e^ln(1/2), which simplifies to (1/2). So, x would be 1/2, and because the half-life is 1600 years, y will be proportional to the fraction of that time. Hence, y = t/1600, where t is time in years. From this, you can infer that the base x equals 1/2 and y is 1/1600 for each year surpassing the half-life. Therefore, the correct answer is (a) x = sqrt(1/2), y = 1/1600.
help please
if the first term of a sequence is 8 and the tenth term is 53 what is the common difference?
step by step please
Answer:
Common difference = 5.
Step-by-step explanation:
General term of an arithmetic sequence is a1 + (n - 1)d where a1 = first term and d = common difference.
So here the first term is 8 + (1-1)d = 8 and the 10th term = 8 + (10-1)d = 53
giving 8 + 9d = 53
9d = 45
d = 5.
To calculate the common difference in an arithmetic sequence, subtract the first term from the tenth term and divide by 9 (the number of terms subtracted by one). In this case, (53-8)/9 gives the common difference as 5.
Explanation:The student's question regards finding the common difference in an arithmetic sequence. In an arithmetic sequence, the difference between any two consecutive terms is constant. This is called the 'common difference'.
To find the common difference, you subtract the first term from the tenth term and divide by the number of terms subtracted by one. In this case, the tenth term is 53 and the first term is 8. So, you subtract 8 from 53, giving you 45. Then you divide 45 by (10-1), which is 9, giving a common difference of 5. Therefore, the common difference for this arithmetic sequence is 5.
Learn more about Arithmetic sequence here:https://brainly.com/question/35880655
#SPJ3
In a (blank),one ratio compares a part to a whole
Answer:
In a part-to-whole ratio, one ratio compares a part to a whole.
In mathematics, a fraction is an example of a ratio that compares a part to a whole. Understanding this is crucial for analyzing parts and how they conform to the whole. Another practical illustration of this concept is through a pie graph, which represents the whole and its parts.
Explanation:In a fraction, one ratio compares a part to a whole. This goes along with a concept in Mathematics where it's useful to take into consideration the parts that contribute to the totality of a whole. An example of this can be seen in numbers. If we look at the relationship between a part and a whole in a ratio, for example, the mass ratio of copper and chlorine in a certain compound, we can gain significant insights.
Another approach is to use a pie graph, which is a graphical representation showing how a whole is divided into parts. The whole circle showcases the entire group, while each slice or part shows the relative size or percentage it contributes to the whole. This visualization makes it easy to understand the relationship between parts and the whole.
Learn more about Fraction and Ratio here:https://brainly.com/question/6839921
#SPJ3
This composite shape is a rectangle with a semicircle attached on one end. The diameter of the semicircle is 6 feet.
What is the approximate area of this composite figure? Use 3.14 for pi and round to the nearest whole number.
46 ft2
74ft2
88 ft2
117ft2
As we can see on the picture we have a rectangle and half of circle.
The areas for half circle and rectangle are:
[tex]
A_{rectangle}=a\cdot b \\
A_{halfcircle}=\frac{A_{circle}}{2}=\frac{\pi r^2}{2}
[/tex]
The area of the figure is the sum of the area of half circle and rectangle. Also the height of a rectangle (6ft) is a diameter of a half circle therefore the radius of half circle is 6ft ÷ 2 = 3ft.
Now we calculate the areas.
[tex]
A_{rectangle}=10\cdot 6=\underline{60} \\
A_{halfcircle}=\frac{3.14\cdot3^2}{2}=\underline{14.13} \\
A_{total}=A_{rectangle}+A_{halfcircle} =60+14.13=\boxed{74.13\approx74}
[/tex]
The area of the figure is approximately 74ft squared.
Hope this helps.
r3t40
Answer:
B
Step-by-step explanation:
25 PTSS EAY PLZZ ANYONE KNOW THIS I WILL GIVE 5 RATED STAR THANKS AND PROMISE BRAINLIEST ASAPExplain how to write a function rule from the table below. Then write a function rule.
x 2 4 6
y 1 0 –1
Answer:
y = -1/2x +2
Step-by-step explanation:
The linear and quadratic function rules we usually study in algebra come in several forms.
For linear function rules (equations of a line), there are more than half a dozen different forms, each with its own use. A few that often come in handy are the 2-point form, the slope-intercept form, the point-slope form, and the intercept form. Here, the 2-point form can be useful, since you have several points on the line to choose from.
The 2-point form of the equation of a line is ...
y = (y2 -y1)/(x2 -x1)·(x -x1) + y1
point (x1, y1) and point (x2, y2) can be any pair of the given points, in any order. Let's use the first two for points 1 and 2.
y = (0 -1)/(4 -2)·(x -2) +1
y = -1/2(x -2) +1 . . . . . . . . this is a suitable function rule. In this simplified form, it is in point-slope form, where -1/2 is the slope and (2, 1) is the point.
If you want to simplify this a bit, you can put it into slope-intercept form by eliminating the parentheses and combining the constant terms:
y = -1/2x +2
Answer:
notice that every time x increases by 2, y decreases by 1. So, a first guess would be
y = -1/2 x
But, -1/2 (2) = -1, and y(2) = 1, so we need to add 2 at the start. So,
y = 2 - 1/2 x
how do you solve #7? the answer is d1=8 and d2=14; but how do you solve it?
Answer:
8 ft and 14 ft
Step-by-step explanation:
Let one diagonal be x then the other diagonal is 2x - 2
The area (A) of the rhombus is calculated using
A = [tex]\frac{1}{2}[/tex] product of the diagonals, that is
A = [tex]\frac{1}{2}[/tex] x(2x - 2) = 56
Multiply both sides by 2
x(2x - 2) = 112 ← distribute left side
2x² - 2x = 112 ( subtract 112 from both sides )
2x² - 2x - 112 = 0 ← in standard form ( divide through by 2 )
x² - x - 56 = 0
To factor the quadratic
Consider the factors of the constant term (- 56) which sum to give the coefficient of the x- term (- 1)
The factors are - 8 and + 7, since
- 8 × 7 = - 56 and - 8 + 7 = - 1, thus
(x - 8)(x + 7) = 0
Equate each factor to zero and solve for x
x - 8 = 0 ⇒ x = 8
x + 7 = 0 ⇒ x = - 7
However, x > 0 ⇒ x = 8
One diagonal = 8 ft and the other = 2x - 2 = (2 × 8) - 2 = 16 - 2 = 14 ft
what are the roots of the graph below
Answer is B. -4,-2,1,3
A quadratic function is graphically represented by a parabola with a vertex located at the origin, below the x-axis, or above the x-axis. .
The points at which the graph crosses or touches the x-axis, give the real roots of the function(or zeros of the function) represented by the graph.
If the graph touches the x-axis and turns back, then it would be a double root at that point. Roots are also called x-intercepts or zeros.
The roots of the graph are Option B -4, -2, 1, and 3.
Which one is a quadratic equation?The standard form of a quadratic is y = ax^2 + bx + c, where a, b, and c are numbers and a cannot be 0. Examples of quadratic equations include all of these: y = x^2 + 3x + 1. y = x^2.
what is quadratic equation?The quadratic equation in its standard form is ax2 + bx + c = 0, where a and b are the coefficients, x is the variable, and c is the constant term. The first condition for an equation to be a quadratic equation is the coefficient of x2 is a non-zero term(a ≠0)
Learn more about quadratic equations, refer to:
https://brainly.com/question/10606041
#SPJ2