At room temperature, vinegar is an example of a liquid solution, as acetic acid is in a liquid state when dissolved in water. The empirical and molecular formulas of acetic acid can be found using its percentage composition and molar mass.
Explanation:Vinegar is a solution of acetic acid (melting point 16.5 °C) in water. At room temperature (25 °C), vinegar is an example of a liquid solution. This is because at room temperature, acetic acid is above its melting point and thus exists in the liquid state, dissolving in water to form a solution.
To determine the empirical formula of acetic acid with the given percentage composition of 39.9% carbon, 6.7% hydrogen, and 53.4% oxygen, one would start by assuming 100 grams of substance to convert percentages to grams directly. Then, for each element, the number of moles is found by dividing by the atomic mass (C:12.01 g/mol, H:1.008 g/mol, O:16.00 g/mol), followed by dividing by the smallest number of moles to get the ratio.
The scattering of light by a colloidal suspension is called the
Answer: The correct answer is Tyndall effect.
Explanation:
Colloids are defined as the mixtures where the size of the particle is within the range of 2nm to 1000 nm. In these mixtures, physical boundary is seen between the dispersed phase and dispersed medium.
Tyndall effect is defined as the effect in which scattering of light takes place by the particles present in a colloid or in very fine suspension.
For Example: Scattering of sunlight by clouds
Thus, the correct answer is Tyndall effect.
The scattering of light by a colloidal suspension is known as the Tyndall effect.
What does this mean?When a beam of light passes through a colloidal solution or a suspension, the suspended particles disperse and scatter the light.
This scattering is more pronounced when the suspended particles are larger in size compared to the wavelength of the light. The scattered light becomes visible, creating a cone or beam of light that is observable in the direction of the incident light. The Tyndall effect is often used to study and characterize colloidal systems, as it provides valuable information about particle size, concentration, and overall dispersion.
Read more about Tyndall effect. here:
https://brainly.com/question/23487849
#SPJ6
What is the density (g/mL) of an object that has a mass of 0.03 kg and occupies a volume of 25 mL?
Answer : The density of an object is 1.2 g/mL
Explanation :
Density : It is defined as the mass contained per unit volume.
Formula used :
[tex]Density=\frac{Mass}{Volume}[/tex]
Given :
Mass of object = 0.03 kg = 30 g
conversion used : (1 kg = 1000 g)
Volume occupied by object = 25 mL
Now put all the given values in the above formula, we get :
[tex]Density=\frac{30g}{25mL}=1.2g/mL[/tex]
Therefore, the density of an object is 1.2 g/mL
What is the most common type of climate/ecosystem found in the Congo River basin?
The acceleration due to gravity on the surface of Mars is about one third the acceleration due to gravity on Earth’s surface. The weight of a space probe on the surface of Mars is about
Final answer:
On Mars, the acceleration due to gravity is about one-third of that on Earth, which means an object weighs significantly less on Mars compared to its weight on Earth.
Explanation:
The question pertains to the acceleration due to gravity on the surface of Mars compared to Earth. On Mars, the acceleration due to gravity is about one-third of that on Earth. Specifically, the gravitational acceleration on Mars is approximately 3.71 m/s², while on Earth, it is about 9.81 m/s². Thus, an object on Mars weighs significantly less than it does on Earth. For example, if a space probe weighs 100 pounds on Earth, on Mars, it would weigh roughly 38 pounds because the acceleration due to gravity on Mars is 0.38 that of Earth's gravity. This difference significantly impacts how objects move and respond to forces on Mars compared to Earth.
How many calcium ions are in 0.3 mol of cacl2?
A sample of pure water has a hydronium concentration of 1.0 × 10-7 M. What is the pH of the water?
Answer:The pH of the water is 7.
Explanation;
The pH of the solution is defined as negative logarithm of [tex]H^+[/tex] or hydronium ions ions in the solution.
[tex]pH=-\log[H^+][/tex]
So, [tex]H^+[/tex] concentration of water = [tex]1.0\times 10^{-7} m[/tex]
[tex]pH=-\log[1.0\times 10^{-7}]=7[/tex]
The pH of the water is 7.
11. Which of the following accurately describes properties of valence? A. Nonmetallic elements tend to have a positive valence and tend to be electron borrowers. B. The smaller the number of electrons an atom has to borrow or to lend, the greater the activity of the atom. C. Metals tend to have a negative valence and tend to be electron borrowers. D. The greater the number of electrons an atom has to borrow or to lend, the greater the activity of the atom.
Consider the resonance structures of formate. the first lewis structure of formate has a central carbon atom. a hydrogen atom and two osygen atoms are bonded to the carbon atom. the bond between carbon and hydrogen is a single bond. one of the bonds between carbon and oxygen is a single bond and the other bond is a double bond. the single bonded oxygen has three lone pairs of electrons and a negative one charge. the double bonded oxygen has two lone pairs of electrons. the second lewis structure of formate has all of the same atom connectivities, but the double and single bonds between oxygen and carbon are switched from the first strucutre. select the true statements about the resonance structures. the actual structure of formate switches back and forth between the two resonance forms. each carbon–oxygen bond is somewhere between a single and double bond. each oxygen atom has a double bond 50% of the time. the actual structure of formate is an average of the two resonance forms.
The statement "each carbon-oxygen bond is somewhere between a single and double bond" and "the actual structure of formate is an average of the two resonance forms" are correct. The resonance structures represent an average distribution of electrons across all valid structures, not constant flipping between these structures.
Explanation:In regards to the resonance structures of formate, the statements "each carbon–oxygen bond is somewhere between a single and double bond" and "the actual structure of formate is an average of the two resonance forms" are both true.
Resonance describes the situation where more than one valid Lewis structure can be drawn for a particular molecule. The resonance structure is not a rapid equilibrium between the structures but rather an average of the different possible structures, called resonance forms.
In the case of formate, which has two resonance forms, the molecule doesn't constantly flip between these two structures. Instead, the electrons are distributed in a way that is an average of these two resonance forms. This is why each carbon-oxygen bond in formate is described as being somewhere between a single and a double bond, as the characteristics of the bond are shared across both resonance forms.
Learn more about Resonance Structures in Chemistry here:https://brainly.com/question/25204120
#SPJ11
How many chloride ions are present in 0.100 mol of MgCl2
To identify the amount of chloride ions present in 0.1 mol of MgCl2, first know the amount of mols of Chloride. The answer is 0.2 mol since you just need to multiply 0.1 to 2 because there are 2 chloride in the compound. Then, multiply the mols to 6.02x10^23. The answer would be 1.204x10^23 chloride ions.
Answer : The number of chloride ions present in 0.100 mole of [tex]MgCl_2[/tex] are, [tex]1.2044\times 10^{23}[/tex]
Explanation : Given,
Moles of [tex]MgCl_2[/tex] = 0.100 mole
As we know that, 1 mole contains [tex]6.022\times 10^{23}[/tex] number of ions.
In [tex]MgCl_2[/tex], there are one magnesium ion and two chloride ions.
As, 1 mole [tex]MgCl_2[/tex] contains [tex]2\times (6.022\times 10^{23})[/tex] number of chloride ions.
So, 0.100 mole [tex]MgCl_2[/tex] contains [tex]0.100\times 2\times (6.022\times 10^{23})=1.2044\times 10^{23}[/tex] number of chloride ions.
Therefore, the number of chloride ions present in 0.100 mole of [tex]MgCl_2[/tex] are, [tex]1.2044\times 10^{23}[/tex]
A 31.1 g wafer of pure gold, initially at 69.3 _c, is submerged into 64.2 g of water at 27.8 _c in an insulated container. what is the final temperature of both substances at thermal equilibrium?
The final temperature at thermal equilibrium can be calculated using the concept of conservation of energy and the specific heat capacities of gold and water.
Explanation:To find the final temperature of the gold and water system when they reach thermal equilibrium, we need to apply the concept of conservation of energy. This concept suggests that in an isolated system, the heat lost by the hot object (the gold) will be equal to the heat gained by the cold object (the water). Since the system is at equilibrium, the heat lost is equal to the heat gained, hence the formula: Cgold × mgold × (Tinitial, gold - Tfinal) = -Cwater × mwater × (Tfinal - Tinitial, water), where Cgold and Cwater are the specific heat capacities of gold and water, T is the temperature and m is the mass.
We also need to know the specific heat capacities of gold and water. The specific heat capacity of gold is 0.129 J/g °C and for water, it's 4.18 J/g °C. Substituting those values along with the original temperatures and masses, we can solve for the final temperature, Tfinal.
Learn more about Thermal Equilibrium here:https://brainly.com/question/29419074
#SPJ11
The pH of a vinegar solution is 4.15. What is the H+ concentration of the solution
The [tex]{{\text{H}}^+}[/tex] concentration of vinegar solution is [tex]\boxed{{\text{0}}{\text{.0000708 M}}}[/tex]
Further Explanation:
An acid is a substance that has the ability to donate [tex]{{\mathbf{H}}^{\mathbf{+}}}[/tex]ions or can accept electrons from the electron-rich species. The general dissociation reaction of acid is as follows:
[tex]{\text{HA}}\to{{\text{H}}^+}+{{\text{A}}^-}[/tex]
Here, HA is an acid.
The acidic strength of an acid can be determined by pH value. The negative logarithm of hydronium ion concentration is defined as pH of the solution. Lower the pH value of an acid, the stronger will be the acid. Acidic solutions are likely to have pH less than 7. Basic or alkaline solutions have pH more than 7. Neutral solutions have pH equal to 7.
Vinegar contains acetic acid [tex]\left({{\text{C}}{{\text{H}}_3}{\text{COOH}}}\right)[/tex], water and some traces of other chemicals and flavors.
The formula to calculate pH is as follows:
[tex]{\text{pH}}=-{\text{log}}\left[{{{\text{H}}^+}}\right][/tex] …… (1)
Here,
[tex]\left[{{{\text{H}}^+}}\right][/tex] is hydrogen ion concentration.
On rearranging equation (1), we get:
[tex]\left[{{{\text{H}}^+}}\right]={10^{-{\text{pH}}}}[/tex] …… (2)
The pH of vinegar is 4.15.
Substitute 4.15 for pH in equation (2)
[tex]\begin{gathered}\left[{{{\text{H}}^+}}\right]={10^{-4.15}}\\=0.0000707946\\\approx0.0000708\;{\text{M}}\\\end{gathered}[/tex]
So the concentration of [tex]{{\mathbf{H}}^{\mathbf{+}}}[/tex] ion in vinegar is 0.0000708 M.
Learn more:
1. The reason for the acidity of water https://brainly.com/question/1550328
2. Reason for the acidic and basic nature of amino acid. https://brainly.com/question/5050077
Answer details:
Grade: High School
Subject: Chemistry
Chapter: Acid, base and salts.
Keywords: pH, neutral, acidic, basic, alkaline, 4.15, vinegar, acetic acid, water, chemicals, negative logarithm, H+, 0.0000708 M, pH more than 7, pH less than 7, pH equal to 7.
Calculate the number of Li atoms in 5.1 moles of Li
The number of Li atoms in 5.1 moles of Li is 3.07 x 10²⁴ atoms.
What are atoms?Atoms are defined as the smallest piece of matter that can be separated without sending electrically charged particles flying.
It can also be defined as the smallest piece that carries an element's characteristics. Subatomic particles, which make up an atom, are uncreatable.
There are various types of atoms.
DescriptionStableIsotopesRadioactive IonsAntimatterIn a chemical reaction, atoms cannot be formed or destroyed since they are indivisible units. The mass and chemical characteristics of each atom of a specific element are the same. Different elements' atoms have varying weight and chemical characteristics. Compounds are created when atoms combine in ratios of small whole numbers.
Moles of Li = 5.1 x 6.022 x 10²³
= 3.07 x 10²⁴ atoms.
Thus, the number of Li atoms in 5.1 moles of Li is 3.07 x 10²⁴ atoms.
To learn more about atoms, refer to the link below:
https://brainly.com/question/1566330
#SPJ2
88.5 mol of P4O10 contains how many moles of P?
Answer : The number of moles of phosphorous are 354 moles.
Explanation :
The formula of given compound is, [tex]P_4O_{10}[/tex]
In [tex]P_4O_{10}[/tex] compound, there 4 moles of phosphorus and 10 moles of oxygen.
As we are given that the moles of [tex]P_4O_{10}[/tex] is 88.5 mole. Now we have to determine the number of moles of phosphorous (P).
As, 1 mole of [tex]P_4O_{10}[/tex] has 4 moles of phosphorous
So, 88.5 mole of [tex]P_4O_{10}[/tex] has [tex]4\times 88.5=354moles[/tex] of phosphorous
Therefore, the number of moles of phosphorous are 354 moles.
88.5 mol of [tex]P_4O_{10}[/tex] contains 354 moles of P. A mole is a unit of measurement used in chemistry to represent how much of a substance is present.
In chemistry, a mole is a unit of measurement that is used to express how much a material is present. It is described as the quantity of a substance that has exactly the same number of atoms, molecules, or ions as there are in exactly 12 grammes of pure carbon-12. The mole idea is essential to chemistry because it enables researchers to connect a substance's mass to its particle count. The idea of molar mass, or the mass of one mole of a substance, is used to describe this relationship. The unit of molecular mass is grammes per mole (g/mol).
88.5 mol [tex]P_4O_{10}[/tex] × (4 mol P / 1 mol P4O10) = 354 mol P
88.5 mol of [tex]P_4O_{10}[/tex] contains 354 moles of P
To know more about mole, here:
https://brainly.com/question/29724957
#SPJ6
A student makes observations when water is added to a blue solution of copper sulfate. The student makes only 1 observation: the solution changes to a lighter shade of blue. Is this an example of a chemical reaction? Explain your reasoning.
No, I believe this is not an example of a chemical reaction. What we actually see here is a physical change of the solution. Since we are adding more water to an aqueous solution which is also made up mostly of water, what we are simply basically doing is dilution. Since the solution is being diluted, so definitely the color turned lighter.
Explain how the determination of the rate law equation significantly differs from the determination of the equilibrium constant keq expression.
Which of the following is a heterogeneous mixture?
A) vinegar and water
B) milk
C) Oil and vinegar
D) Air
Caffeine (c8h10n4o2) is a weak base with a pkb of 10.4. part a calculate the ph of a solution containing a caffeine concentration of 430 mg/l .
Concentration of caffeine
is 430 mg/L = 0.43g/L
The molar mass of caffeine is 194.19 g/mol
Therefore the molarity is:
Molarity = (0.43/194.19)
mol/L
Molarity = 0.002214 mol/L
Molarity = 0.002214 M
Given pKb = 10.4:
Kb = 10^-pKb = 10^ -10.4 = 3.981 x 10^ -11
Kb is equivalent to:
Kb = [caffeine H+][OH-] / [caffeine]
3.981 x 10^ -11 = [caffeine H+][OH-] / (0.002214)
[caffeineH+][OH-] = 8.815 x 10^ -14
But since:
[caffeineH+] = [OH-]
Hence,
[OH-]^2 = 8.815 x 10^ -14
[OH-] = 2.969 x 10^ -7
The formula for pH is:
pH = 14 + log [OH-]
pH = 7.47The pH of a solution containing a caffeine concentration of 430 mg/L is 4.75.
Explanation:To calculate the pH of a caffeine solution, we can first use the provided pKb (10.4) to find the Kb, using the equation Kb = 10^(-pKb). We can then use the Kb to find the concentration of OH-, represented by the equilibrium C8H10N4O₂ (aq) + H₂O(1) ⇒ C8H10N4O₂H+ (aq) + OH¯ (aq). By inserting the equilibrium concentrations into the Kb expression and solving, we can find the OH- concentration.
The pH of a solution containing a caffeine concentration of 430 mg/L can be calculated using the equilibrium constant expression for caffeine. The equilibrium equation is: C8H10N4O2(aq) + H2O(l) ⇌ C8H10N4O2H+(aq) + OH-(aq). By substituting the given concentrations into the expression, the pH can be determined. The equation gives a pH of 4.75 for the solution.
Learn more about pH of a solution containing caffeine here:https://brainly.com/question/6125764
#SPJ3
The term sink refers to _____.
The process that makes ice cubes shrink as they sit in a freezer is called:
A- Sublimation
B- Condensation
C- Freezing
D- Boiling
WILL MARK BRAINLIEST FOR THE BEST ANSWER~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the caffeine concentration in a particular brand of soda is 4.05 mg/oz, drinking how many cans of soda would be lethal? Assume 10.0 grams of caffeine is a lethal dose, and there are 12 oz in a can.
Please explain the steps you used.
In Part A, you found the amount of product (1.80 mol P2O5 ) formed from the given amount of phosphorus and excess oxygen. In Part B, you found the amount of product (1.40 mol P2O5 ) formed from the given amount of oxygen and excess phosphorus. Now, determine how many moles of P2O5 are produced from the given amounts of phosphorus and oxygen.
The number of moles of P2O5 produced from the given amounts of phosphorus and oxygen is equal to the number of moles of phosphorus or oxygen used.
Explanation:To determine the number of moles of P2O5 produced from the given amounts of phosphorus and oxygen, you need to compare the amounts of each reactant used in Part A and Part B. Based on the given information, it is stated that in Part A, 1.80 mol of P2O5 is formed from a given amount of phosphorus and excess oxygen. In Part B, 1.40 mol of P2O5 is formed from a given amount of oxygen and excess phosphorus. Since the stoichiometry of the reaction is a 1:1 ratio between P2O5 and phosphorus, we can conclude that 1.80 mol of phosphorus is required to produce 1.80 mol of P2O5. Similarly, 1.40 mol of oxygen is required to produce 1.40 mol of P2O5. Therefore, the number of moles of P2O5 produced from the given amounts of phosphorus and oxygen is equal to the number of moles of phosphorus or oxygen used, which is 1.80 mol and 1.40 mol respectively.
Learn more about mole calculations here:https://brainly.com/question/33652783
#SPJ1
Considering light at the two ends of the visible light spectrum, violet light has a _____ wavelength and a _____ photon energy than red light.
Final answer:
Violet light has a shorter wavelength and higher photon energy compared to red light, with violet having the shortest wavelengths and red the longest within the visible spectrum.
Explanation:
Considering light at the two ends of the visible light spectrum, violet light has a shorter wavelength and a higher photon energy than red light. In the visible light spectrum, violet light has the shortest wavelengths (approximately 400 nm) and thus carries the most energy. Conversely, red light has the longest wavelengths (approximately 700 nm) and carries the least amount of energy.
Sunlight, for example, which is blackbody radiation, peaks in the visible spectrum and has more intensity in the red than in the violet, giving the sun a yellowish appearance. The high energy of violet photons is why dyes that absorb violet light fade more quickly, and when you observe faded posters, the blues and violets are the last to fade.
Why would gamma radiation be used in diagnostic imaging rather than alpha or beta radiation?
how does the structure of covalent bonds affects their structure.
Combustion of 25.0 g of a hydrocarbon produces 86.5 g of co2. what is the empirical formula of the compound?
The empirical formula of the hydrocarbon is [tex]\boxed{{{\text{C}}_7}{{\text{H}}_5}}[/tex].
Further explanation:
Empirical formula:
It is atom’s simplest positive integer ratio in the compound. It may or may not be same as that of molecular formula. For example, empirical formula of sulfur dioxide is SO.
Combustion reactions:
These are the reactions that take place when hydrocarbons are burnt in the presence of oxygen to form carbon dioxide and water. These are also referred to as burning.
Example of combustion reactions are as follows:
(a) [tex]{\text{C}}{{\text{H}}_4}+{{\text{O}}_2}\to{\text{C}}{{\text{O}}_2}+{{\text{H}}_2}{\text{O}}[/tex]
(b) [tex]{{\text{C}}_{10}}{{\text{H}}_{14}}+12{{\text{O}}_2}\to10{\text{C}}{{\text{O}}_2}+ 4{{\text{H}}_2}{\text{O}}[/tex]
[tex]{\text{C}}{{\text{O}}_2}[/tex] is formed as a product during combustion reactions.
Step 1: [tex]{\text{C}}{{\text{O}}_2}[/tex] is formed as a product during combustion reactions. Initially, we have to calculate the moles of [tex]{\text{C}}{{\text{O}}_2}[/tex] . The formula to calculate moles of [tex]{\text{C}}{{\text{O}}_2}[/tex] is as follows:
[tex]{\text{Moles of C}}{{\text{O}}_2}=\dfrac{{{\text{Given mass of C}}{{\text{O}}_2}}}{{{\text{Molar mass of C}}{{\text{O}}_2}}}[/tex] ...... (1)
The given mass of [tex]{\text{C}}{{\text{O}}_2}[/tex] is 86.5 g.
The molar mass of [tex]{\text{C}}{{\text{O}}_2}[/tex] is 44 g/mol.
Substitute these values in equation (1).
[tex]\begin{aligned}{\text{Moles of C}}{{\text{O}}_2}&=\left( {{\text{86}}{\text{.5 g}}} \right)\left( {\frac{{{\text{1 mol}}}}{{{\text{44 g}}}}} \right)\\&={\text{1}}{\text{.9659 mol}}\\ &\approx{\text{1}}{\text{.966 mol}}\\\end{aligned}[/tex]
Step 2: During combustion, one mole of carbon reacts to form one mole of [tex]{\text{C}}{{\text{O}}_2}[/tex] .So the mass of C in the hydrocarbon is calculated as follows:
[tex]{\text{Mass of C}}=\left( {{\text{Moles of C}}{{\text{O}}_{\text{2}}}}\right)\left( {\dfrac{{{\text{Moles of C}}}}{{{\text{Moles of C}{{\text{O}}_{\text{2}}}}}}\right)\left( {{\text{Molar mass of C}}}\right)[/tex] ...... (2)
The moles of [tex]{\text{C}}{{\text{O}}_2}[/tex] is 1.966 mol.
The molar mass of C is 12 g/mol.
The mole of C is 1 mol.
The moles of [tex]{\text{C}}{{\text{O}}_2}[/tex] is 1 mol.
Substitute these values in equation (2).
[tex]\begin{aligned}{\text{Mass of C}}&=\left( {{\text{1}}{\text{.966 mol}}} \right)\left( {\frac{{{\text{1 mol of C}}}}{{{\text{1 mol of C}}{{\text{O}}_{\text{2}}}}}} \right)\left( {\frac{{{\text{12 g}}}}{{{\text{1 mol}}}}} \right)\\&= {\text{23}}{\text{.592 g}}\\&\approx{\text{23}}{\text{.59 g}}\\\end{aligned}\\[/tex]
Step 3: Since the hydrocarbon consists of only carbon and hydrogen. The mass of hydrogen is calculated as follows:
[tex]{\text{Mass of H}}={\text{Mass of hydrocarbon}}-{\text{Mass of C}}[/tex] ...... (3)
The mass of hydrocarbon is 25 g.
The mass of carbon is 23.59 g.
Substitute these values in equation (3).
[tex]\begin{aligned}{\text{Mass of H}}&={\text{25 g}}-{\text{23}}{\text{.59 g}}\\&= {\text{1}}{\text{.41 g}}\\\end{aligned}[/tex]
The formula to calculate moles of H is as follows:[tex]{\text{Moles of H}}=\dfrac{{{\text{Given mass of H}}}}{{{\text{Molar mass of H}}}}[/tex] ...... (4)
The given mass of H is 1.41 g.
The molar mass of H is 1.01 g/mol.
Substitute these values in equation (4).
[tex]\begin{aligned}{\text{Moles of H}}&=\left({{\text{1}}{\text{.41 g}}}\right)\left( {\frac{{{\text{1 mol}}}}{{{\text{1}}{\text{.01 g}}}}}\right)\\&={\text{1}}{\text{.396 mol}}\\ \end{aligned}[/tex]
The moles of carbon and hydrogen present in hydrocarbon are to be written with their corresponding subscripts. So the preliminary formula becomes,
[tex]{\text{Preliminary formula of hydrocarbon}}={{\text{C}}_{1.966}}{{\text{H}}_{1.396}}[/tex]
Step 4: Each of the subscripts is divided by the smallest subscript to get the empirical formula. In this case, the smallest one is 1.39. So the empirical formula of hydrocarbon is written as follows:
[tex]\begin{aligned}{\text{Empirical formula of hydrocarbon}}&={{\text{C}}_{\dfrac{{1.966}}{{1.396}}}}{{\text{H}}_{\dfrac{{1.396}}{{1.396}}}}\\&= {{\text{C}}_{1.408}}{{\text{H}}_1}\\\end{aligned}[/tex]
Step 5: Multiply each subscript of the empirical formula by 5, we get the final empirical formula as follows:
[tex]\begin{aligned}{\text{Empirical formula of hydrocarbon}}&={{\text{C}}_{5\left( {1.408} \right)}}{{\text{H}}_{5\left( 1 \right)}}\\&={{\text{C}}_7}{{\text{H}}_5}\\\end{aligned}[/tex]
Therefore, the empirical formula of hydrocarbon is [tex]{{\mathbf{C}}_{\mathbf{7}}}{{\mathbf{H}}_{\mathbf{5}}}[/tex] .
Learn more:
1. Calculate the moles of ions in the solution: https://brainly.com/question/5950133
2. Calculate the moles of chlorine in 8 moles of carbon tetrachloride: https://brainly.com/question/3064603
Answer details:
Grade: Senior School
Subject: Chemistry
Chapter: Stoichiometry of formulas and equations
Keywords: empirical formula, C, H, C7H5, moles of CO2, C, H, 5, preliminary formula, whole number.
Which carboxylic acid has the lowest boiling point?
According to the forces of attraction, the carboxylic acid with lowest boiling point is methanoic acid.
What are forces of attraction?Forces of attraction is a force by which atoms in a molecule combine. it is basically an attractive force in nature. It can act between an ion and an atom as well.It varies for different states of matter that is solids, liquids and gases.
The forces of attraction are maximum in solids as the molecules present in solid are tightly held while it is minimum in gases as the molecules are far apart . The forces of attraction in liquids is intermediate of solids and gases.
The physical properties such as melting point, boiling point, density are all dependent on forces of attraction which exists in the substances.
Learn more about forces of attraction,here:
https://brainly.com/question/2122941
#SPJ6
Could you please help
Name all of the alkene isomers, c6h12, that contain a methylene group.
Actually, a methylene group is simply any compound which contains a C=C double bond group and the rest are single bonded carbon groups. Some example of the isomers of C6H12 which contains methylene group is:
1-hexene
2,3-dimethyl-2-butene
2,3-dimethyl-1-butene
2-methyl-2-pentene
trans-2-hexene
4-methyl-1-pentene
cis-2-hexene
trans-3-hexene
2-ethyl-1-butene
2-methyl-1-pentene
3,3-dimethyl-1-butene
4-methyl-cis-2-pentene
cis-3-methyl-2-pentene
trans-3-methyl-2-pentene
How many milliliters of 0.150 m h2so4 are required to react with 2.05 g of sodium hydrogen cabronate?
If 8.800 g of c6h6 is burned and the heat produced from the burning is added to 5691 g of water at 21 °c, what is the final temperature of the water?
the final temperature of the water is approximately [tex]\(4.009 C\)[/tex].
To find the final temperature of the water after adding the heat produced from burning 8.800 g of [tex]\(C_6H_6\)[/tex] (benzene), we'll use the concept of heat transfer and the specific heat capacity of water.
The heat released from the combustion of [tex]\(C_6H_6\)[/tex] will be transferred to the water, causing its temperature to increase. We'll use the equation:
Q = mcΔT
Where:
- Q is the heat transferred (in Joules)
- m is the mass of the water (in grams)
- c is the specific heat capacity of water (4.18 J/g°C)
- ΔT is the change in temperature of the water (in °C)
First, we need to calculate the heat released from burning [tex]\(C_6H_6\)[/tex].
Given:
- Mass of [tex]\(C_6H_6\)[/tex] burned, [tex]\(m_{C_6H_6} = 8.800 \, g\)[/tex]
- Heat of combustion of [tex]\(C_6H_6\)[/tex], [tex]\(ΔH_{comb} = -3263 \, kJ/mol\)[/tex]
Using the molar mass of [tex]\(C_6H_6\) (\(M_{C_6H_6} = 78.11 \, g/mol\))[/tex], we can find the number of moles of [tex]\(C_6H_6\)[/tex] burned and then calculate the heat released.
Next, we'll use the equation for heat transfer to find the change in temperature of the water, and then add this change to the initial temperature of the water to get the final temperature.
Let's calculate step by step.
Step 1: Calculate the heat released from burning [tex]\(C_6H_6\)[/tex].
1. Find the number of moles of [tex]\(C_6H_6\)[/tex]:
[tex]\[n_{C_6H_6} = \frac{m_{C_6H_6}}{M_{C_6H_6}} = \frac{8.800 \, g}{78.11 \, g/mol} \approx 0.1128 \, mol\][/tex]
2. Calculate the heat released from burning [tex]\(C_6H_6\)[/tex] using its molar enthalpy of combustion:
[tex]\[Q_{comb} = n_{C_6H_6} \times ΔH_{comb} = 0.1128 \, mol \times (-3263 \, kJ/mol)\][/tex]
[tex]\[Q_{comb} = -368.112 \, kJ\][/tex]
Step 2: Calculate the change in temperature of the water.
1. Use the equation for heat transfer:
[tex]\[Q_{water} = mcΔT\][/tex]
Where [tex]\(Q_{water}\)[/tex] is the heat absorbed by water, \(m\) is the mass of water, c is the specific heat capacity of water, and \(ΔT\) is the change in temperature of water.
2. Rearrange the equation to solve for [tex]\(ΔT\)[/tex]:
[tex]\[ΔT = \frac{Q_{comb}}{mc}\][/tex]
Given:
- [tex]\(m_{water} = 5691 \, g\)[/tex]
- [tex]\(c_{water} = 4.18 \, J/g°C\)[/tex]
3. Substitute the values and calculate \(ΔT\):
[tex]\[ΔT = \frac{-368.112 \times 10^3 \, J}{(5691 \, g) \times (4.18 \, J/g°C)}\][/tex]
[tex]\[ΔT \approx -16.991°C\][/tex]
Step 3: Find the final temperature of the water.
Given:
- Initial temperature of water, [tex]\(T_{initial} = 21°C\)[/tex]
The final temperature [tex](\(T_{final}\))[/tex] of the water can be found by adding the change in temperature [tex](\(ΔT\))[/tex] to the initial temperature [tex](\(T_{initial}\))[/tex]:
[tex]\[T_{final} = T_{initial} + ΔT\][/tex]
[tex]\[T_{final} = 21°C - 16.991°C\][/tex]
[tex]\[T_{final} \approx 4.009°C\][/tex]
Therefore, the final temperature of the water is approximately [tex]\(4.009 C\)[/tex].