Walleye is a common game fish. Adult walleye have a length with a mean of 44 cm and a standard deviation of 4 cm, and the distribution of lengths is approximately Normal. What fraction of fish are greater than 41 cm in length?
Select one O a. -0.75 O b. 0.22 ? ?.077 O d. 0.75

Answers

Answer 1

Answer:b. 0.22

Step-by-step explanation:

Since the lengths of adult walleye fishes are normally distributed, we would apply the formula for normal distribution which is expressed as

z = (x - µ)/σ

Where

x = lengths of walleye fishes.

µ = mean length

σ = standard deviation

From the information given,

µ = 44 cm

σ = 4 cm

We want to find the probability or fraction of fishes that are greater than 41 cm in length. It is expressed as

P(x > 41) = 1 - P(x ≤ 41)

For x = 41,

z = (41 - 44)/4 = - 0.75

Looking at the normal distribution table, the probability corresponding to the z score is 0.22

Answer 2
Final answer:

To find the fraction of fish that are greater than 41 cm in length, calculate the z-score with the mean and standard deviation.

Explanation:

To find the fraction of fish that are greater than 41 cm in length, we need to calculate the z-score of 41 cm using the mean and standard deviation. The z-score formula is z = (x - μ) / σ. Plugging in the values, we have z = (41 - 44) / 4 = -0.75. We can then look up the corresponding value on the z-table to find the fraction of fish with a length greater than 41 cm, which is approximately 0.7734. Therefore, the answer is option d, 0.75.

Learn more about z-score here:

https://brainly.com/question/31613365

#SPJ3


Related Questions

find the laplace transformation of g(t) = 5te^-5t Us (t) use laplace transforms theorms g

Answers

Answer:  The required laplace transform of g(t) is [tex]\dfrac{5}{(s+5)^2}.[/tex]

Step-by-step explanation:  We are given to find the laplace transform of the following function :

[tex]g(t)=5te^{-5t}.[/tex]

We know the following formulas for laplace transform :

[tex](i)~L\{t^ne^{at}\}=\dfrac{n!}{(s-a)^{n+1}},\\\\(ii)~L\{cf(t)\}=cL\{f(t)\}.[/tex]

In the given function function, we have

c = 5,  n = 1  and  a = -5.

Therefore, we get

[tex]L\{g(t)\}\\\\=L\{5te^{-5t}\}\\\\=5L\{te^{-5t}\}\\\\\\=5\times\dfrac{1!}{(s-(-5))^{1+1}}\\\\\\=\dfrac{5}{(s+5)^2}.[/tex]

Thus, the required laplace transform of g is [tex]\dfrac{5}{(s+5)^2}.[/tex]

The Laplace transform of the given function is [tex]\frac{5} { (s + 5)^2}[/tex].

The Laplace transform of a function g(t) is defined as:

[tex]L{(g(t))} = \int\limits^{\infty}_0 e^-^s^tg(t) dt[/tex]

We need to find the Laplace transform of [tex]g(t) = 5te^-^5^t[/tex]. To do this, we use the shifting theorem and known transforms.

First, recall the Laplace transform of [tex]nte^-^a^t[/tex] is:

[tex]L(nte^-^a^t)} = \frac{n! } {(s + a)^n^+^1}[/tex]

For our function [tex]g(t)[/tex] :

a = 5

n = 1

Applying the formula:

[tex]L{(5te^-^5^t)} = \frac{(5 * 1! )}{(s + 5)^2}[/tex]

After simplifying, we get:

[tex]L\leftparanthesis(\ 5te^-^5^t)\rightparanthesis\ = \frac{5 }{ (s + 5)^2}[/tex]

A class of 24 students takes and exam. Their scores are given below. 46 100 74 50 50 93 48 76 59 42 75 69 82 48 70 90 50 87 71 61 80 72 79 69 Use the 1-Var Stats calculator function to find the mean score for the class. Treat the data as population data.

Answers

Answer:

Mean = 68.375

Step-by-step explanation

The mean will be:

Mean= sum of scores / number of students

Mean=1641/24

Mean = 68.375

consider the following quadratic function f(x)= -2x^2+12x+32=0 select all the statements that are true for the function

Answers

Answer:

The answer to your question is

a) 400

b) The function has two real solutions (-2 and 8)

Step-by-step explanation:

Process

1.- Discriminant = b² - 4ac

                         = 12² -4(-2)(32)

                         = 144 + 256

                        = 400

2.- Solutions (using the general formula)

                   x = [tex]\frac{- b +/- \sqrt{b^{2}- 4ac}}{2a}[/tex]

                   x = [tex]\frac{- 12 +/- \sqrt{400}}{2(-2)}[/tex]

                   x = [tex]\frac{-12 +/- 20}{2(-2)}[/tex]

   x₁ = [tex]\frac{-12 + 20}{2(-2)} = \frac{-12 + 20}{-4} = \frac{-8}{4} = - 2[/tex]

   x₂ = [tex]\frac{- 12 - 20}{- 4} = \frac{-32}{- 4} = 8[/tex]

This function has two real solutions (-2, 8)

Answer: C- The value of the discrimination is 400.

E- The function has 2 real solutions.

Step-by-step explanation: Hope that helped!

1. Explain or show how you could find 5/ 1/3
by using the value of 5x3
Find 12/ 3/5

Answers

Answer:

20

Step-by-step explanation:

You could find 5/⅓

by using 5 × 3

Knowing that:

i. Any number multiplied by 1, gives the number itself.

ii. Dividing any number by itself gives 1.

You would agree with me that

i. (5×3)/(5×3) = 1

ii. Writing 5/⅓ as 5/⅓ × 1 doesn't change the value.

Then I can write 5/⅓ as

5/⅓ × (5×3)/(5×3) = 1

This can become

[5×(5×3)] / [(⅓) × (5×3)]

= 75/(15/3)

= 75/5

= 15

In a similar way,

12/ 3/5

= [12/ (3/5)] × [(5×3)/(5×3)]

= 12×(5×3) / (3/5)×(5×3)

= (12×5×3) / [(3×5×3)/5]

= 180 / (45/5)

= 180 / 9

= 20

An experiment consists of four outcomes with P(E1) = 0.2, P(E2) = 0.3, and P(E3) = 0.4. The probability of outcome E4 is__________.

Answers

Answer:  0.1

Step-by-step explanation:

WE know that the total probability in an experiments = 1.

i.e. Sum of the probabilities of occurring each event is 1.

i.e. If there are n outcomes in any experiment., then the total probability will be:

[tex]P(E_1)+P(E_2)+P(E_3)+...........+P(E_n)=1[/tex]

Given : An experiment consists of four outcomes ,with P(E1) = 0.2, P(E2) = 0.3, and P(E3) = 0.4.

Then , [tex]P(E_1)+P(E_2)+P(E_3)+P(E_4)=1[/tex]

Substitute corresponding values , we get

[tex]0.2+0.3+0.4+P(E_4)=1[/tex]

[tex]0.9+P(E_4)=1[/tex]

[tex]P(E_4)=1-0.9=0.1[/tex]

Hence , the probability of outcome [tex]E_4[/tex] is 0.1.

Final answer:

The probability of event E4 in the given experiment is 0.1, because the sum of probabilities of all outcomes should equal 1.

Explanation:

The problem falls under the subject of

Probability Theory

within Mathematics. In probability, the total probability of all possible outcomes is always 1. So, for the given problem where you have four events E1, E2, E3, E4, the total probability P(E1)+P(E2)+P(E3)+P(E4) should equal 1. Given that P(E1) = 0.2, P(E2) = 0.3 and P(E3) = 0.4, we can find P(E4) using the equation

1 - P(E1) - P(E2) - P(E3) = P(E4)

. By substituting the given values into this equation, we find that P(E4) = 1 - 0.2 - 0.3 - 0.4 =

0.1

. Therefore, the probability of outcome E4 is 0.1.

Learn more about Probability here:

https://brainly.com/question/22962752

#SPJ3

​A(n) _________ is a person or object that is a member of the population being studied.

Answers

Answer: individual

Step-by-step explanation:

An individual is a person or object that is a member of the population being studied. A population is defined as a group of individuals with a common characteristic living and interbreeding within a given area, in statistics, population is a collection of individuals to be studied. Individuals can also be referred to as the objects/person described by a set of data. For example: when studying the height of students in a school, the students attending that school are individuals.

Te probability is 0.5 that an artist makes a craf item with satisfactory quality. Assume the production of each craf item by this artist is independent. What is the probability that at most 3 attempts are required to produce a craf item with satisfactory quality?

Answers

Answer:

The probability that at most 3 attempts are required to produce a craft item with satisfactory quality is 0.9375

Step-by-step explanation:

Let E be a random variable denoting the event that an artist makes a craft item with satisfactory level.

Then the random variable E follows a Geometric distribution.

A Geometric distribution is defined as the number of failures (k) before the first success.

The probability function of Geometric distribution is:

[tex]P(X=k)=(1-p)^{k}p[/tex], p = Probability of success and k = 0, 1, 2, 3...

The probability of success is, p = 0.5 and the number of failures is, k = 3.

Compute the probability of at most 3 attempts before the first success is:

[tex]P(X\leq 3) =P(X=3)+P(X = 2)+P(X=1) +P(X = 0)\\=[(1-0.5)^{0}*0.5]+[(1-0.5)^{1}*0.5]+[(1-0.5)^{2}*0.5]+[(1-0.5)^{3}*0.5]\\=0.9375[/tex]

Therefore, the probability that at most 3 attempts are required to produce a craft item with satisfactory quality is 0.9375.

A large university will begin a 13-day period during which students may register for that semester’s courses. Of those 13 days, the number of elapsed days before a randomly selected student registers has a continuous distribution with density function f (t) that is symmetric about t = 6.5 and proportional to 1/(t + 1) between days 0 and 6.5.A student registers at the 60th percentile of this distribution.Calculate the number of elapsed days in the registration period for this student.(A) 4.01
(B) 7.80
(C) 8.99
(D) 10.22
(E) 10.51

Answers

Answer:

8.99 days elapsed. Option (C) is correct

Step-by-step explanation:

The distribution  has density function k/t+1 for a constant k and t between 0 and 6.5 . Since the distribution is symmetrical in 6.5, the area it forms between 0 and 6.5 should be 1/2, thus

[tex]\frac{1}{2} = \int\limits_0^{6.5} \frac{k}{t+1} \, dt = k *(ln(t+1) \, |_0^{6.5}) = k * (ln(7.5)-ln(1)) = k*ln(7.5)[/tex]

Hence k = 1/(2ln(7.5)), approx 1/4.

We need to find the percentil 0.6, since the integral of the random variable is 1/2 over the first half, we need to find t such that the integral of the random variable between o and 6.5 + t is 0.6. This is equivalent to find t such that the integral between 6.5 and 6.5+t is 0.1. Due to the  over 6.5, this t should satisfy that the integral between 6.5-t and 6.5 is also 0.1. Lets compute the integral and find t

[tex]\int\limits^{6.5}_{6.5-t} {\frac{k}{t+1}} \, dx = \frac{1}{2ln(7.5)}*(ln(t+1) \, |_{6.5-t}^{6.5} \, ) = \frac{1}{2ln(7.5)} * (ln(7.5)-ln(7.5-t)) = \\\frac{1}{2} - \frac{ln(7.5-t)}{2ln(7.5)} = 0.1[/tex]

Therefore,

[tex]\frac{ln(7.5-t)}{2ln(7.5)} = 0.4\\\\ln(7.5-t) = 0.8*ln(7.5)\\\\7.5-t = e^{0.8*ln(7.5)}\\\\t = 7.5-e^{0.8*ln(7.5)} = 2.49[/tex]

As a result, the student sould have registered 2.49 days after the day 6.5, thus it should have registeredd at day 8.99. Option (C) is correct.

Find an equation of the largest sphere with center (5,2,7)(5,2,7) and is contained in the first octant. Be sure that your formula is monic.

Answers

x² + y² + z² - 10x - 4y - 14z + 74 = 0

Step-by-step explanation:

The general equation of a sphere is (x-a)² + (y-b)² + (z-c)² = r²

Where x, y, and z are the coordinates of points on the surface of the sphere.

a, b, and c represents the center of the sphere

r is the radius of the sphere. Note that the radius is always the same for all points on the sphere,

In this equation, the radius r is the largest radius that stays in the octant.

In the given question, (5,2,7) is the center of the sphere.

Therefore, substitute this into the general equation to get:

(x-5)²+(y-2)²+(z-7)² = r² ---------------------------------------------(i)

To find the radius r, we have to look at the distance from the center coordinate to each bounding planes xy-plane, xz-plane, and yz-plane.

The distance from the center to the xy-plane is the center of the z coordinate which is 7. The distance from the center to the xz-plane is the center of the y coordinate which is 2. The distance from the center to the yz-plane is the center of the x coordinate which is 5.

Therefore, to determine the radius contained in the first octant, we need to choose the smallest distance so as not to cross into a second octant. That will also be the largest possible radius for it not to cross into a different octant.

The smallest distance therefore is 2. So we substitute r = 2 into equation (i) above to get:

(x-5)²+(y-2)²+(z-7)² = 2²

(x-5)²+(y-2)²+(z-7)² = 4

Therefore (x-5)²+(y-2)²+(z-7)²-4 = 0  ----------------------------------------(ii)

A monic formula is a formula where the highest power of its single variable has a coefficient of 1.

Therefore, we expand equation (ii) in form of a monic formula to get

x² + y² + z² - 10x - 4y - 14z + 74 = 0

The highest power of x², y², and z² is 1

Solve the following equation with the initial conditions. x¨ + 4 ˙x + 53x = 15 , x(0) = 8, x˙ = −19

Answers

[tex]x''+4x'+53x=15[/tex]

has characteristic equation

[tex]r^2+4r+53=0[/tex]

with roots at [tex]r=-2\pm7i[/tex]. Then the characteristic solution is

[tex]x_c=C_1e^{(-2+7i)t}+C_2e^{(-2-7i)t}=e^{-2t}\left(C_1\cos(7t)+C_2\sin(7t)\right)[/tex]

For the particular solution, consider the ansatz [tex]x_p=a_0[/tex], whose first and second derivatives vanish. Substitute [tex]x_p[/tex] and its derivatives into the equation:

[tex]53a_0=15\implies a_0=\dfrac{15}{53}[/tex]

Then the general solution to the equation is

[tex]x=e^{-2t}\left(C_1\cos(7t)+C_2\sin(7t)\right)+\dfrac{15}{53}[/tex]

With [tex]x(0)=8[/tex], we have

[tex]8=C_1+\dfrac{15}{53}\implies C_1=\dfrac{409}{53}[/tex]

and with [tex]x'(0)=-19[/tex],

[tex]-19=-2C_1+7C_2\implies C_2=-\dfrac{27}{53}[/tex]

Then the particular solution to the equation is

[tex]\boxed{x(t)=\dfrac1{53}e^{-2t}(409cos(7t)-27\sin(7t)+15)}[/tex]

Final answer:

The given equation is a second order linear differential equation. However, there seems to be an inconsistency with the constant right-hand side. In a well-formulated equation, one would solve this by using characteristic roots and trivial solutions, finding the general solution, then applying initial conditions.

Explanation:

The given equation is a second order linear differential equation. Given the initial conditions, including the fact that x(0) = 8 and x˙ = −19, one must adjust for these when solving the differential equation. By utilizing the characteristic equation for determining the roots, the solution and consequent constants are then determined.

However, please note that without some form of driving force (right-hand side function), this is a simple harmonic oscillator equation. Since the right hand side function (15 in this case) is constant, there's an inconsistency in the problem. In this context, for a correct form, it should have a time-dependent function on the right side. If we assume that an inconsistency has occurred and the right side is zero, a full solution could be given.

In a correct equation scenario, one would be able to solve the initial value problem with characteristic roots and trivial solutions, find the particular solution, then a general solution and apply initial value conditions to find specific constants.

Learn more about Differential Equation here:

https://brainly.com/question/33433874

#SPJ2

Determine whether the data set could represent a linear function.

Answers

Answer:

yes

Step-by-step explanation:

the rate of change is constant

Find the tangent line approximation for 10+x−−−−−√ near x=0. Do not approximate any of the values in your formula when entering your answer below.

Answers

Final answer:

The tangent line approximation near x=0 for the function f(x) = \\sqrt{10 + x} is found by first calculating its derivative, then using that derivative to construct the equation of the tangent line at x=0, resulting in the linear approximation y = (1/2)(10)^{-1/2}x + \\sqrt{10}.

Explanation:

Finding the tangent line approximation for a function near a point involves using the function's derivative at that point. For the function f(x) = \\sqrt{10 + x}, the derivative at x = 0, denoted as f'(0), will provide the slope of the tangent. To find this, let's differentiate f(x) using the chain rule. The derivative of f(x) with respect to x is (1/2)(10 + x)^{-1/2}. At x = 0, this simplifies to 1/2(\\sqrt{10}), which is the slope of the tangent line at that point. Hence, the tangent line equation is y - f(0) = f'(0)(x - 0), which simplifies to y = (1/2)(10)^{-1/2}x + \\sqrt{10}. This form equation is the linear approximation of f(x) near x = 0.

y = c_1e^x + c_2e^-x is a two-parameter family of solutions of the second-order DE y'' - y = 0. Find a solution of the second-order IVP consisting of this differential equation and the given initial conditions. 11. y(0) = 1, y'(0) = 2 12. y(1) = 0, y'(1) = e 13. y(-1) = 5, y'(-1) = -5 14. y(0) = 0, y'(0) = 0

Answers

Answer:

11)y = [tex]\frac{3}{2} e^{x} - \frac{1}{2} e^{-x}[/tex]

12)y = [tex]\frac{e^{2} }{1+e^{2} } (e^{x} - e^{-x} )[/tex]

13)y = [tex]5e^{-(x+1)}[/tex]

14)y = 0

Step-by-step explanation:

Given data:

[tex]y=c_{1} e^{x} +c_{2} e^{-x}[/tex]

y''-y=0

The equation is

[tex]m^{r}[/tex]-1 = 0

(m-1)(m+1) = 0

if  above equation is zero then either

m - 1 = 0 or  m + 1 = 0

m = 1        ,    m  = - 1

11)

y(0) = 1 , y'(0) = 2

[tex]y'=c_{1} e^{x} -c_{2} e^{-x}[/tex]

[tex]c_{1}[/tex] +  [tex]c_{2}[/tex] = 1   (y(0) = 1) (1)

[tex]c_{1}[/tex] -  [tex]c_{2}[/tex] = 2   (y'(0) = 2)  (2)

adding 1 & 2

2[tex]c_{1}[/tex] = 3

[tex]c_{1}[/tex] = 3/2

3/2 +  [tex]c_{2}[/tex] = 1

[tex]c_{2}[/tex]  = 1 -  3/2

[tex]c_{2}[/tex] = - 1/2

y = [tex]\frac{3}{2} e^{x} - \frac{1}{2} e^{-x}[/tex]

12)

y(0) = 1 , y'(0) = e

[tex]c_{1}[/tex] +  [tex]c_{2}[/tex] = 0 (y(0) = 1) (3)

[tex]c_{1}[/tex] = - [tex]c_{2}[/tex]

[tex]e=c_{1} e -c_{2} e^{-1}[/tex]   (y'(0) = 2)  (4)

[tex]e=c_{1} e -\frac{c_{2} }{e} }[/tex]

[tex]e =\frac{c_{1} e^{2} -c_{2} }{e} }[/tex]

[tex]e^{2} ={c_{1} e^{2} -c_{2} }[/tex]

replace [tex]c_{2}[/tex] = [tex]c_{1}[/tex] by equation 3

[tex]e^{2} ={c_{1} e^{2} -c_{1} }[/tex]

taking common [tex]c_{1}[/tex]

[tex]e^{2} =c_{1} ({e^{2} -1 })[/tex]

[tex]\frac{e^{2} }{({e^{2} -1 })} =c_{1}[/tex]

[tex]-\frac{e^{2} }{({e^{2} -1 })} =c_{2}[/tex]

y = [tex]\frac{e^{2} }{1+e^{2} } (e^{x} - e^{-x} )[/tex]

13)

y(-1) = 5 , y'(-1) = -5

[tex]c_{1}[/tex][tex]e^{-1}[/tex] +  [tex]c_{2}[/tex][tex]e^{1}[/tex] = 5   (y(-1) = 5 ) (5)

[tex]c_{1}[/tex][tex]e^{-1}[/tex] -  [tex]c_{2}[/tex][tex]e^{1}[/tex] = -5    (y'(-1) = -5)  (6)

Adding 5&6

2[tex]c_{1}[/tex] [tex]e^{-1}[/tex] = 0

[tex]c_{1}[/tex] = 0

[tex]c_{2}[/tex][tex]e^{1}[/tex] = 5 - [tex]c_{1}[/tex][tex]e^{-1}[/tex]

[tex]c_{2}[/tex][tex]e^{1}[/tex] = 5 - 0

[tex]c_{2}[/tex]= 5/e

y = [tex]5e^{-1} e^{-x}[/tex]

y = [tex]5e^{-(x+1)}[/tex]

14)

y(0) = 0 , y'(0) = 0

[tex]c_{1}[/tex] +  [tex]c_{2}[/tex] =  0 (y(0) = 0) (7)

[tex]c_{1}[/tex] -  [tex]c_{2}[/tex] = 0   (y'(0) = 0)  (8)

Adding 7 & 8

2[tex]c_{1}[/tex] = 0

[tex]c_{2}[/tex] =

y = 0

Use the given information to find the length of a circular arc. Round to two decimal places.the arc of a circle of radius 11 inches subtended by the central angle of pie/4
Answer is in inches(in)

Answers

Answer:

The length of the circular arc is 8.64 inches

Step-by-step explanation:

Length of circular arc (L) = central angle/360° × 2πr

central angle = pie/4 = 45°, r (radius) = 11 inches

L = 45°/360° × 2 × 3.142 × 11 = 8.64 inches (to two decimal places)

Answer:

Step-by-step explanation:

The formula for determining the length of an arc is expressed as

Length of arc = θ/360 × 2πr

Where

θ represents the central angle.

r represents the radius of the circle.

π is a constant whose value is 3.14

From the information given,

Radius, r = 11 inches

θ = pi/4

2π = 360 degrees

π = 360/2 = 180

Therefore,

θ = 180/4 = 45 degrees

Therefore,

Length of arc = 45/360 × 2 × 3.14 × 11

Length of arc = 8.64 inches rounded up to 2 decimal places

Claim: High School teachers have incomes with a standard deviation that is more than $22,500. A recent study of 126 high school teacher incomes shower a standard deviation of $24,500.

A. Express the original claim in symbolic form.

B. Identify the null and the alternative hypotheses that should be used to arrive at the conclusion that supports the claim.

Answers

Answer:

A.

sigma > 22500

B.

Null hypothesis:sigma = 22500

Alternative hypothesis:sigma > 22500

Step-by-step explanation:

A.

The claim states that the standard deviation of high school teachers income  is more than 22,500. This can be represented in the symbolic form as sigma > 22500.

B.

The null hypothesis and alternative hypothesis for the given scenario can be written as

Null hypothesis: Standard deviation of income of high school teachers is 22,500.

The standard deviation is represented as sigma.Symbolically it can be written as

Null hypothesis: sigma = 22500

Alternative hypothesis: Standard deviation of income of high school teachers is more than 22,500.

Symbolically it can be written as

Alternative hypothesis: sigma > 22500

Using the laws of logic to prove tautologies.Use the laws of propositional logic to prove that each statement is a tautology.a. ¬r ∨ (¬r → p)b. ¬(p → q) → ¬q

Answers

Answer:  The proofs are given below.

Step-by-step explanation:  We are given to prove that the following statements are tautologies using truth table :

(a) ¬r ∨ (¬r → p)                              b. ¬(p → q) → ¬q

We know that a statement is a TAUTOLOGY is its value is always TRUE.

(a) The truth table is as follows :

r                 p                 ¬r                       ¬r→p                     ¬r ∨ (¬r → p)

T                T                   F                         T                                T

T                F                   F                         T                                T

F                T                   T                         T                                T

F                F                   T                         F                                T  

So, the statement (a) is a  tautology.

(b) The truth table is as follows :

p                 q                 ¬q                       p→q             ¬(p→q)          ¬(p→q)→q

T                T                   F                         T                      F                    T

T                F                   T                         F                      T                    T

F                T                   F                         T                      F                    T

F                F                   T                         T                       F                   T

So, the statement (B) is a  tautology.              

Hence proved.

Final answer:

To prove that a statement is a tautology using propositional logic, we need to show that the statement is true under all possible truth values of its variables. By applying the laws of implication, disjunction, and contradiction, we can prove that the given statements are tautologies.

Explanation:

To prove that a statement is a tautology using the laws of propositional logic, we need to show that the statement is true under all possible truth value assignments of its variables. Let's consider each statement:

a. ¬r ∨ (¬r → p)

We can use the law of implication, which states that ¬p ∨ q is equivalent to p → q, to rewrite the statement as ¬r ∨ (r → p). By applying the law of disjunction, which states that p ∨ (q ∧ r) is equivalent to (p ∨ q) ∧ (p ∨ r), we can further rewrite the statement as (¬r ∧ r) ∨ (r ∨ p). Using the law of contradiction, which states that p ∧ ¬p is always false, we can simplify the statement to r ∨ p, which is a tautology.

b. ¬(p → q) → ¬q

We can use the law of implication to rewrite the statement as ¬(¬p ∨ q) → ¬q. By applying De Morgan's law, which states that ¬(p ∨ q) is equivalent to ¬p ∧ ¬q, we can simplify the statement to (p ∧ ¬q) → ¬q. Using the law of contradiction, we know that p ∧ ¬p is always false, so the statement simplifies to false → ¬q, which is always true. Therefore, it is a tautology.

The campus bookstore has estimated that it's profit (in dollars) from selling x hundred basketball conference championship t-shirts is given by the equation shown below.
p=-40x^2+581x-520

The demand is currently 500 t-shirts, but euphoria over the championship is subsiding so the demand is dropping by 100 t-shirts per day. how is the profit changing with respect to time?
$____per day

Answers

Answer:

-$80

Step-by-step explanation:

Assuming that the variation in the number of shirts per day is -1 hundred shirs, the variation in profit with respect to time is given by the derivate of the profit equation:

[tex]p=-40x^2+581x-520\\\frac{dp}{dx}=-80x+581[/tex]

Let x be the number of shirts sold in a day, then x-1 is the number of shirts sold in the following day, the change in profit is:

[tex]p'(x) - p'(x-1)=-80x+581 - (-80(x-1)+581)\\p'(x) - p'(x-1)=-80(x-x+1) = -80[/tex]

The profit is changing by -$80 per day.

How many four-letter code words are possible using the letters in IOWA if (a) The letters may not be repeated? (b) The letters may be repeated

Answers

Answer:

a. 24ways

b.256ways

Step-by-step explanation:

the letters IOWA contains for letters, since we are to arrange without repeating any letter, we permutate the letters.

For permutation of n object in r ways is expressed as

P(n,r)=n!/(n-r)!

hence for n=4 and r=4, we have P(4,4)=4!/(4-4)!

P(4,4)=4!/(0)!

P(4,4)=4*3*2*1=24ways

b. To arrange the letters such that each letter can be repeated, we can arrange the letter I in four ways, letter O can be arrange in four ways, letter W can be arranged in four ways and letter A can be arranged in four ways ..

Hence we arrive at

4*4*4*4=256ways

A federal report finds that lie detector tests given to truthful persons have probability about 0.2 of suggesting that the person is deceptive.A company asks 12 job applicants about theft from previous employers, using lie detector to assess their truthfulness. Suppose that all 12 answer truthfully. What is the probability that the lie detector says all 12 are truthful? What is the probability that lie detector says at least 1 is deceptive?a. What is the mean number among 12 truthful persons who will be classified as deceptive? What is the standard deviation of this number?b. What is the probability that the number classified as deceptive is less than the mean?c. If the company asks 200 employees to take the lie detector test, what is the probability that at most 10 will be classifies as deceptive?

Answers

Answer:

a) [tex]P(X=12)=(12C12)(0.2)^{12} (1-0.2)^{12-12}=4.096x10^{-9}[/tex]

b) [tex]P(X \geq 1) =1-P(X<1)= 1-P(X=0)=1-0.0687=0.9313 [/tex]

c) [tex] E(X) = np = 12*0.2= 2.4[/tex]

d) [tex] Sd(X) = \sqrt{np(1-p)}=\sqrt{12*0.2*(1-0.2)}=1.386[/tex]

e) [tex] P(X<2.4) =P(X\leq2) =P(X=0) +P(X=1)+P(X=2)= 0.558[/tex]

f)  [tex] P(X\leq 10) =1.1x10^{-9}[/tex]

Step-by-step explanation:

Previous concepts

The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".

Solution to the problem

Let X the random variable of interest, on this case we now that:

[tex]X \sim Binom(n=12, p=0.2)[/tex]

The probability mass function for the Binomial distribution is given as:

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]

Where (nCx) means combinatory and it's given by this formula:

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]

Part a

For this case we want to find this probability:

[tex]P(X=12)=(12C12)(0.2)^{12} (1-0.2)^{12-12}=4.096x10^{-9}[/tex]

Part b

[tex]P(X \geq 1) =1-P(X<1)= 1-P(X=0) [/tex]

[tex]P(X=0)=(12C0)(0.2)^{0} (1-0.2)^{12-0}=0.0687[/tex]

[tex]P(X \geq 1) =1-P(X<1)= 1-P(X=0)=1-0.0687=0.9313 [/tex]

Part c

The expected value is given by:

[tex] E(X) = np = 12*0.2= 2.4[/tex]

Part d

The standard deviation is given by:

[tex] Sd(X) = \sqrt{np(1-p)}=\sqrt{12*0.2*(1-0.2)}=1.386[/tex]

Part e

If we want the probability that the number classified as deceptive would be lower than the mean we want:

[tex] P(X<2.4) =P(X\leq2) =P(X=0) +P(X=1)+P(X=2)[/tex]

[tex]P(X=0)=(12C0)(0.2)^{0} (1-0.2)^{12-0}=0.0687[/tex]

[tex]P(X=1)=(12C1)(0.2)^{1} (1-0.2)^{12-1}=0.2062[/tex]

[tex]P(X=2)=(12C2)(0.2)^{2} (1-0.2)^{12-2}=0.2835[/tex]

[tex] P(X<2.4) =P(X\leq2) =P(X=0) +P(X=1)+P(X=2)= 0.558[/tex]

Part f

For this case our random variable would be:

[tex]X \sim Binom(n=200, p=0.2)[/tex]

And we want this probability:

[tex] P(X\leq 10) = P(X=0)+P(X=1)+ .......+P(X=10)[/tex]

And we can use the following excel code to find the answer:

"=BINOM.DIST(10;200;0.2;TRUE)"

And we got: [tex] P(X\leq 10) =1.1x10^{-9}[/tex]

Mariel thinks the tens digit goes up by 1 in these numbers. Do you agree? Explain. 864,865,866,867,868,869

Answers

Answer:

No, because it is not the tens digit that goes up by 1 in these numbers, it is the unit digit.

Step-by-step explanation:

It is important to know the concepts of units, tenths and cents.

For example

1 = 1 unit

10 = 1*10 + 0 = The tens digit is one the unit digit is 0

21 = 2*10 + 1 = The tens digit is two and the unit digit is 1.

120 = 1*100 + 2*10 + 0 = The cents digit is 1, the tens digit is two and the unit digit is 0.

So

Adding 1 is the same as the unit digit going up by 1.

Adding 10 is the same as the tens digit going up by 1.

Adding 100 is the same as the cents digit going up by 1.

In this problem, we have that:

864,865,866,867,868,869

Each value is the 1 added to the previous value, that is, the unit digit goes up by 1.

Mariel thinks the tens digit goes up by 1 in these numbers. Do you agree?

No, because it is not the tens digit that goes up by 1 in these numbers, it is the unit digit.

Answer:

disagree, its the unit number that goes up by 1

Step-by-step explanation:

Solve the system of equations by row-reduction. At each step, show clearly the symbol of the linear combinations that allow you to clear the entries below each pivot or of the operations that allow you to swap two rows or to scale a row.

1) 3x₂ - 5x₃ = 89
6x₁ + x₃ = 17
x₁ - x₂ + 8x₃ = -107
2) 4x₁ - x₂ + 3x₃ = 12
2x₁ + 9x₃ = -5
x₁ + 4x₂ + 6x₃ = -32

Answers

Answer:

1) The solution of the system is

[tex]\left\begin{array}{ccc}x_1&=&5\\x_2&=&8\\x_3&=&-13\end{array}\right[/tex]

2) The solution of the system is

[tex]\left\begin{array}{ccc}x_1&=&2\\x_2&=&-7\\x_3&=&-1\end{array}\right[/tex]

Step-by-step explanation:

1) To solve the system of equations

[tex]\left\begin{array}{ccccccc}&3x_2&-5x_3&=&89\\6x_1&&+x_3&=&17\\x_1&-x_2&+8x_3&=&-107\end{array}\right[/tex]

using the row reduction method you must:

Step 1: Write the augmented matrix of the system

[tex]\left[ \begin{array}{ccc|c} 0 & 3 & -5 & 89 \\\\ 6 & 0 & 1 & 17 \\\\ 1 & -1 & 8 & -107 \end{array} \right][/tex]

Step 2: Swap rows 1 and 2

[tex]\left[ \begin{array}{ccc|c} 6 & 0 & 1 & 17 \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right][/tex]

Step 3:  [tex]\left(R_1=\frac{R_1}{6}\right)[/tex]

[tex]\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right][/tex]

Step 4: [tex]\left(R_3=R_3-R_1\right)[/tex]

[tex]\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 3 & -5 & 89 \\\\ 0 & -1 & \frac{47}{6} & - \frac{659}{6} \end{array} \right][/tex]

Step 5: [tex]\left(R_2=\frac{R_2}{3}\right)[/tex]

[tex]\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & -1 & \frac{47}{6} & - \frac{659}{6} \end{array} \right][/tex]

Step 6: [tex]\left(R_3=R_3+R_2\right)[/tex]

[tex]\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & \frac{37}{6} & - \frac{481}{6} \end{array} \right][/tex]

Step 7: [tex]\left(R_3=\left(\frac{6}{37}\right)R_3\right)[/tex]

[tex]\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & 1 & -13 \end{array} \right][/tex]

Step 8: [tex]\left(R_1=R_1-\left(\frac{1}{6}\right)R_3\right)[/tex]

[tex]\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & 1 & -13 \end{array} \right][/tex]

Step 9: [tex]\left(R_2=R_2+\left(\frac{5}{3}\right)R_3\right)[/tex]

[tex]\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right][/tex]

Step 10: Rewrite the system using the row reduced matrix:

[tex]\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right] \rightarrow \left\begin{array}{ccc}x_1&=&5\\x_2&=&8\\x_3&=&-13\end{array}\right[/tex]

2) To solve the system of equations

[tex]\left\begin{array}{ccccccc}4x_1&-x_2&+3x_3&=&12\\2x_1&&+9x_3&=&-5\\x_1&+4x_2&+6x_3&=&-32\end{array}\right[/tex]

using the row reduction method you must:

Step 1:

[tex]\left[ \begin{array}{ccc|c} 4 & -1 & 3 & 12 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right][/tex]

Step 2: [tex]\left(R_1=\frac{R_1}{4}\right)[/tex]

[tex]\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right][/tex]

Step 3: [tex]\left(R_2=R_2-\left(2\right)R_1\right)[/tex]

[tex]\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & \frac{1}{2} & \frac{15}{2} & -11 \\\\ 1 & 4 & 6 & -32 \end{array} \right][/tex]

Step 4: [tex]\left(R_3=R_3-R_1\right)[/tex]

[tex]\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & \frac{1}{2} & \frac{15}{2} & -11 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right][/tex]

Step 5: [tex]\left(R_2=\left(2\right)R_2\right)[/tex]

[tex]\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right][/tex]

Step 6: [tex]\left(R_1=R_1+\left(\frac{1}{4}\right)R_2\right)[/tex]

[tex]\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right][/tex]

Step 7: [tex]\left(R_3=R_3-\left(\frac{17}{4}\right)R_2\right)[/tex]

[tex]\left[ \begin{array}{ccc|c} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & - \frac{117}{2} & \frac{117}{2} \end{array} \right][/tex]

Step 8: [tex]\left(R_3=\left(- \frac{2}{117}\right)R_3\right)[/tex]

[tex]\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right][/tex]

Step 9: [tex]\left(R_1=R_1-\left(\frac{9}{2}\right)R_3\right)[/tex]

[tex]\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right][/tex]

Step 10: [tex]\left(R_2=R_2-\left(15\right)R_3\right)[/tex]

[tex]\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right][/tex]

Step 11:

[tex]\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right]\rightarrow \left\begin{array}{ccc}x_1&=&2\\x_2&=&-7\\x_3&=&-1\end{array}\right[/tex]

Fireworks on July4th.A local news outlet reported that 56% of 600 randomly sampled Kansasresidents planned to set off fireworks on July 4th. Determine the margin of error for the 56% point estimateusing a 95% confidence level.1

Answers

Answer:

The margin of error is 3.97 percentage points.

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence interval [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

For this problem, we have that:

[tex]n = 600, p = 0.56[/tex]

95% confidence interval

So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].

The lower limit of this interval is:

[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.56 - 1.96\sqrt{\frac{0.56*0.44}{600}} = 0.5203[/tex]

The upper limit of this interval is:

[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.56 + 1.96\sqrt{\frac{0.56*0.44}{600}} = 0.5997[/tex]

The margin of error is the upper limit subtracted by the proportion, or the proportion subtracted by the lower limit. They are the same values.

So the margin of error is 0.5997 - 0.56 = 0.56 - 0.5203 = 0.0397 = 3.97 percentage points.

Let x and y be any numbers at all with x ≤ y. Show that the number of integers between x and y is [y] - [x] +1.That is show that the number of integers between x and y is = (the floor of y) - (the ceiling of x) +1

Answers

Answer:

the explanation is given below.

Step-by-step explanation:

Here what is applied is assumption of range of values of number from say 1 - 100In total, i stopped at 100 on the dot.

from this, the lowest number is 1 and the highest number is 100

hence the range of the numbers = Difference between Highest and Lowestrange = 100 - 1 = 99, the 99 gotten as the range is indicative that a number has been missing.

In order to make up the 100, an integer is added to the difference = 99, i.e 99 is added to 1 to make up the 100.

Furthermore, if 0 is exclusively out when numbers are counted up 100 with 0 inclusive, in such case, the first and last number are excluded from the counting. as such the integers will be {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20.........., 99} since both 0 and 100 are not included.

Here, if we try to get the range = highest - lowest = 99 - 1 = 98, it implies that to make up the 99, an integer is added to the result of the difference = 98+1 = 99

As such, the number of integers between two numbers is the difference between the highest and the lowest number plus 1 i.e highest - lowest + 1 = y - x +1 = (the floor of y) - ( the ceiling of x) + 1

The function below is defined for all x except one value of x. If possible, define f(x) at the exceptional point in a way continuous for all x. F(x) = x^2 - 13x + 22/x-11, x notequalto 11

Answers

Answer:

F(x=11)= (-31)

Step-by-step explanation:

for the function

F(x) = x² - 13*x + 22/x-11 , for x ≠ 11

then in order to define F(x=11) so  F is continuous (see Note below) . By definition of continuity of a function:

F(x) is continuous in x=11 if lim F(x)=F(a) when x→a

then

when x→a , lim x² - 13x + 22/x-11 = lim 11² - 13*11 + 22/11 -11 = -3*11 + 2 = -31 = F(x=11)

then

F(x=11)= (-31)

Note:

F is not continuous in all x since

when x→0⁺ ,  lim (0⁺) ² - 13*0⁺  + 22/0⁺ -11 = (+∞)

when x→0⁻,  lim (0⁻) ² - 13*0⁻  + 22/0⁻ -11 = (-∞)

then

limit F(x) , when x→0 does not exist since the limit from the left and from the right do not converge → since the limit does not exist , the function is not continuous  in x=0

Business Weekly conducted a survey of graduates from 30 top MBA programs. On the basis of the survey, assume the mean annual salary for graduates 10 years after graduation is 133000 dollars. Assume the population standard deviation is 31000 dollars. Suppose you take a simple random sample of 87 graduates.
1. Find the probability that a single randomly selected salary is at least 134000 dollars.

Answers

The probability that a single randomly selected salary is at least $134,000 is approximately 0.5120 or 51.20%.

To find the probability that a single randomly selected salary is at least $134,000, we need to calculate the z-score and use the standard normal distribution.

1. Calculate the z-score:

z = (x - μ) / σ

where x is the value we want to find the probability for, μ is the mean, and σ is the standard deviation.

In this case, x = $134,000, μ = $133,000, and σ = $31,000.

z = (134000 - 133000) / 31000

z = 1 / 31000

z ≈ 0.0323

2. Find the probability associated with the z-score:

We can use a z-table or a calculator to find the probability.

From the z-table, we find that the probability corresponding to a z-score of 0.0323 is approximately 0.5120.

Therefore, the probability that a single randomly selected salary is at least $134,000 is 0.5120 or 51.20%.

evaluate the expression 6÷3+17=​

Answers

Answer:

=19

Step-by-step explanation:

=6÷3+17

=2+17

=19

If 2 is a factor of n and 3 is a factor of n, then
6 is a factor of n. 2 is not a factor of n or 3 is not a factor of n or 6 is a factor of n.

Answers

Answer:

6 is a factor of n

Step-by-step explanation:

2 is a factor of n and 3 is a factor of n means

n = 2×3×k

  = 6×k

then  n = 6×k

then 6 is a factor of n

Final answer:

If both 2 and 3 are factors of a number n, then 6 must also be a factor of n, because the product of unique prime factors is always a factor of that number.

Explanation:

The product of unique prime factors of a number will be a factor of that number. Since 2 and 3 are prime factors and both are factors of n, their product (which is 6) must also be a factor of n.

For example, consider the number 12. 12 is divisible by 2 and 12 is divisible by 3, and indeed, 12 is divisible by 6 as well. This holds true for any number n that has 2 and 3 as factors. Thus, we can conclude that 6 is a factor of n if both 2 and 3 are factors of n.

Prove that among 502 positive integers, there are always two integers so that either their sum or their difference is divisible by 1000.

Answers

Final answer:

Using the pigeonhole principle, we can prove that among 502 positive integers, at least two will have the same remainder when divided by 1000, implying their difference is divisible by 1000.

Explanation:

The question asks to prove that among 502 positive integers, there are always two integers so that either their sum or their difference is divisible by 1000. This statement can be understood through the pigeonhole principle, which in basic terms means if you have more pigeons than pigeonholes, at least one pigeonhole must contain more than one pigeon.

In this case, consider the remainders when these integers are divided by 1000. Since there are only 1000 possible remainders (from 0 to 999), and we have 502 numbers, at least two of them must have the same remainder when divided by 1000, according to the pigeonhole principle.

Let these two numbers be a and b, where without loss of generality, a ≥ b. If a and b have the same remainder when divided by 1000, then a - b is divisible by 1000. Alternatively, if we had a case where the sum is considered, assuming complementary pairs mod 1000, a similar argument involving the pigeonhole principle can conclude that there must be at least one pair whose sum or difference gives a number divisible by 1000, satisfying the initial claim.

Consider a square whose size varies. Let s s represent the side length of the square (in cm) and let P P represent the perimeter of the square (in cm).
Write a formula that expresses P in terms of s.

Answers

Answer:

P = 4s

Step-by-step explanation:

The perimeter of a geometric shape is simply the sum of all its sides length. Since the shape in question is a square, which means that all of the four sides have the same length 's', the perimeter can be expressed by:

[tex]P = s+s+s+s\\P=4s[/tex]

For any value of 's', the formula above expresses the perimeter 'P' as a function of 's'

What is the probability that a randomly chosen number between 1 and 100 is divisible by 3, given that the number has at least one digit equal to 5

Answers

Answer:

Step-by-step explanation:

The probability that a randomly chosen number between 1 and 100 is divisible by 3, given that the number has at least one digit equal to 5 is 6/19,

What is probability?

It is defined as the ratio of the number of favorable outcomes to the total number of outcomes, in other words, the probability is the number that shows the happening of the event.

It is given that:

The randomly chosen number between 1 and 100 is divisible by 3

Applying conditional probability:

Let A is the event: the numbers divisible by 3

Let B is the event: At least one digit equal to 5

P(A|B) = n(A∩B)/n(B)

P(A|B) = 6/19

Thus, the probability that a randomly chosen number between 1 and 100 is divisible by 3, given that the number has at least one digit equal to 5 is 6/19.

Learn more about the probability here:

brainly.com/question/11234923

#SPJ2

Other Questions
What is the abbreviation that refers to a wear and tear disease caused by the breakdown and eventual destruction of cartilage in a joint, such as osteoarthritis? Beth exerts 14 N force to propel a 4.5 kg bowling ball down the lane PLEASE PLEASE PLEASE HELP!!!! WILL MARK BRAINILIEST!!!!!!!!!!!Why are politics and political science important? Pfizer Inc., a pharmaceutical company, reported net income for fiscal 2016 of $7,215 million, retained earnings at the start of the year of $71,993 million and dividends of $7,448 million, and other transactions with shareholders that increased retained earnings during the year by $14 million.If there were no additional transactions during the year that affected retained earnings, what was the balance of retained earnings at the end of the year? Rachel is given the topic of global conflict. Because she has an uncle in the Armed Forces, she thinks that she may want to write about American diplomacy in the Middle East. Rachel is a. finding credible research sources. b. personalizing an assigned topic. c. organizing information within paragraphs. Three point charges are located on the positive x-axis of a coordinate system. Charge q = 1.5 nC is 2.0 cm from the origin, charge q2 = -3.0 nC is 4.0 cm from the origin and charge 93 = 4.5 nC located at the origin. a. What is the magnitude of the net force exerted by the other two charges on charge q1q1q1 = 1.5 nCnC?b. What is the direction of the net force exerted by the other two charges on charge q1q1q1 = 1.5 nCnC? Which of the following is considered an extent decision? A business manager is considering________ diversifying into a new line of business. 1. shutting down operations. 2. selling an under-performing line of business. 3. trying to assess how many workers to hire for a new line of business. Record three to five examples where the darkness motif is used. Include the quotation from the text, if possible. Explain the meaning the idea of darkness gives in each situation. 1. 2. 3. Do you know what is Sinkopa and Apokopa in Music???Please help... Give an example of a solution that can be seperated by simple distilation. Sheffield borrowed $701000 on October 1, 2017 and is required to pay $721000 on March 1, 2018. What amount is the note payable recorded at on October 1, 2017 and how much interest is recognized from October 1 to December 31, 2017? Give PQ=24,PS=19,PR=42,TQ=10 mPQR=106,mQRS=49 and PRS=35 In ABC, mA=35, a=12, and b=14. Find c to the nearest tenth. Early in 2017, Sheryl Crow Equipment Company sold 500 Rollomatics during 2017 at $6,000 each. During 2017, Crow spent $20,000 servicing the 2-year assurance warranties that accompany the Rollomatic. All applicable transactions are on a cash basis.Prepare 2017 entries for Crow assuming that the warranties are not an integral part of the sale (a service-type warranty). Assume that of the sales total, $56,000 relates to sales of warranty contracts. Crow estimates the total cost of servicing the warranties will be $55,000 for 2 years. Estimate revenues to be recognized on a straight-line basis. (If no entry is required, select "No Entry" for the account titles and enter 0 for the amounts. Credit account titles are automatically indented when amount is entered. Do not indent manually. Round intermediate calculations to 5 decimal places, e.g. 1.54657 answers to 0 decimal places, e.g. 5,125.) Minority groups in the United States have, on average, significantly lower net worth than White Americans, even when the two have similar education, income, and occupations. Sociologists attribute the wealth gap largely to housing policies that exclude minority individuals from home ownership. This is an example of _________ discrimination.A. IllegalB. IntentionalC. Past-in-presentD. Mean-spirited 5) Each element is unique and different from other elements because of the number of protons in the nuclei of its atoms. Which of the following indicates the number of protons in an atom's nucleus? A) atomic mass B) atomic weight C) atomic number D) mass weight E) mass number One contributor to the easy with which young entrepreneurs can have success is low-cost distribution to massive markets worldwide. This is enabled by? Find the exact value of the side of a square whosearea is 48 in. ________ allows multiple users to use the same computing devices, but determines the individual's privileges based on previously determined permissions, ultimately limiting what users can access. Interest-rate increases have a __________ impact on the residential home construction industry and a __________ effect on industries that produce consumer necessities such as prescription drugs or basic grocery items. A. positive; negligibleB. negative; negligibleC. negative; positiveD. positive; negative Steam Workshop Downloader