The mass of 187 liters of CO2 gas is 0.36 g.
Explanation:
The molecular weight of CO2 is 44 g / mol.
1 kg of CO2 = 1000 g [tex]\times[/tex] ( 1 mole / 44 g) = 22.7 mole of CO2.
By using the ideal gas equation,
PV = nRT
V = nRT / P
where P represents the pressure,
V represents the volume,
T represents the temperature,
R represents the ideal gas constant,
n represents the amount of substance.
V = (22.7)[tex]\times[/tex](0.0821)[tex]\times[/tex](273.15) / 1
V = 509.6 L of CO2 at STP
Mass = (187 L of CO2 gas) / (509.6 L of CO2 at STP)
= 187 / 509.6
mass = 0.36 g
To find the mass of 187 liters of CO2 gas at STP, we calculate the number of moles using the molar volume of 22.4 L/mol and then multiply by the molar mass of CO2 (44.01 g/mol) to get a mass of approximately 367.34 grams.
The mass of 187 liters of CO2 gas at STP (standard temperature and pressure) can be calculated by first determining the number of moles of CO2. The molar volume of an ideal gas at STP is 22.4 liters, so by dividing the volume of the gas by the molar volume, we can get the numbers of moles.
Here's the calculation:
Number of moles of CO2 = Volume of CO2 / Molar Volume at STP = 187 L / 22.4 L mol-1
Number of moles = 8.348 moles (rounded to three decimal places)
The molar mass of CO2 is 44.01 g/mol, so now we can calculate the mass:
Mass of CO2 = Number of moles× Molar Mass = 8.348 moles ×44.01 g/mol
Mass = 367.34 g (rounded to two decimal places)
The mass of 187 liters of CO2 gas at STP is approximately 367.34 grams.
Which are made of matter?
living things only
both living and nonliving things
nonliving things only
some living and all nonliving things
Yo sup??
The correct answer is option B ie
both living and non living things.
Hope this helps
The correct answer is that both living and nonliving things are made of matter. The correct option is: both living and nonliving things.
Living organisms and inanimate objects alike are composed of matter. Essentially, matter is the "stuff" that constitutes everything in existence. Anything that occupies space and has mass qualifies as matter, which consists of various chemical substances.
Therefore, the accurate answer to the question "What is made of matter?" encompasses both living and nonliving entities. This includes everything from the air we breathe to the earth beneath our feet, the food we consume, and our own bodies.
For example, the chair you're sitting on and the meal you had for lunch are both made of matter. Matter, defined as anything that has mass and takes up space, includes all tangible objects in the universe, whether living or nonliving.
Given this equation: 3 MgCl2 + 2 AL - 3 Mg + 2 AlCl3, if 278 grams of magnesium chloride
reacted how many grams of aluminum chloride are produced?
O mass to mass
moles to mass
mass to moles
moles to moles
D
Question 3
5 pts
Answer: m= 1.02x10² g AlCl3 or 1091.3 g AlCl3
Explanation: solution attached.
Convert mass of Mg to moles
Do the mole ratio between Mg and AlCl3 based from the balanced equation.
Convert moles of AlCl3 to mass using its molar mass.
An Apple iPhone has a mass of 112 g. What is its weight in ounces? (Given: 1 lb = 454 g; 1 lb = 16 oz)
Answer:
3.95 oz
General Formulas and Concepts:
Chemistry - Stoichiometry
Using Dimensional AnalysisExplanation:
Step 1: Define
Apple iPhone = 112 g
Step 2: Identify Conversions
1 lb = 454 g
1 lb = 16 oz
Step 3: Convert
[tex]112 \ g(\frac{1 \ lb}{454 \ g} )(\frac{16 \ oz}{1 \ lb} )[/tex] = 3.94714 oz
Step 4: Check
We are given 3 sig figs. Follow sig fig rules and round.
3.94714 oz ≈ 3.95 oz
Final answer:
The weight of an Apple iPhone can be calculated by converting the mass from grams to pounds and then from pounds to ounces which results in approximately 3.94 ounces.
Explanation:
To find the weight of an Apple iPhone in ounces, we can use the conversion factors provided. Given that 1 pound (lb) is equal to 16 ounces (oz) and 1 pound (lb) is equivalent to 454 grams (g), we can convert the mass of the iPhone from grams to pounds and then from pounds to ounces.
First, convert the mass of the iPhone from grams to pounds:
112 g ÷ 454 g/lb = 0.246 lb
Next, convert the mass in pounds to ounces:
0.246 lb × 16 oz/lb = 3.9376 oz
Therefore, the weight of the Apple iPhone is approximately 3.94 ounces.
Na3PO4+KOH—->NaOH + K3PO4
Explanation:
This given reaction is a chemical reaction that is : Double decomposition reaction .
In this reaction , there is a reaction between two compounds in which they mutually interchange their ions .
That is :
AB +CD ---> AC +BD
Similarly in this we have :
Na3PO4+KOH—->NaOH + K3PO4
The double decomposition reaction is either :
Precipitation reaction : resulst in the formation of ppt .
Neutralization reaction : results in the formation of neutral substance
The wavelength of light emitted from an LED lightbulb that has a frequency of 60 Hz is _____ nm.
The wavelength of the light emitted is 5 x [tex]10^{-3}[/tex] nm
Explanation:
Frequency is defined as the number of rotations per second. Wavelength is defined as the distance between two successive crests of a wave.Hence, the relationship between the wavelength and frequency is established through the velocity of the wave. whereas velocity of the wave is defined as the speed of the wave at its peak position. So, the equation is [tex]wavelength= \frac{c}{f}[/tex] where c is the velocity of light and f is the frequency of the wave. C is given as 3 x [tex]10^{8}[/tex] and f is 60 Hz. Substitute these values in the equation and multiply the answer with [tex]10^{9}[/tex] to get the units in nm( nano meter).The wavelength of light from an LED with a frequency of 60 Hz is not in the visible spectrum and would be extremely long, measuring 5 x 10^15 nm, which falls within the range of radio waves.
Explanation:To determine the wavelength of light emitted by an LED lightbulb with a frequency of 60 Hz, we must use the relationship between the speed of light, frequency, and wavelength. The equation we use is c = λν, where c is the speed of light in vacuum (approximately 3 × 108 m/s), λ is the wavelength, and ν is the frequency. However, a frequency of 60 Hz would result in a wave that is not within the visible light spectrum but rather in the range of radio waves, and its wavelength would be extremely long compared to visible light wavelengths measured in nanometers.
To calculate the wavelength in meters, we divide the speed of light by the frequency:
λ = c / ν
λ = (3 × 108 m/s) / (60 Hz)
λ = 5 × 106 m
To convert this to nanometers (nm), knowing that 1 m = 109 nm, we multiply by 109:
λ = 5 × 106 m × 109 nm/m
λ = 5 × 1015 nm
This wavelength is much larger than the wavelengths for light in the visible spectrum, which are typically between 380 nm and 750 nm. Consequently, the wavelength of 60 Hz frequency light cannot be represented in nanometers as it falls outside the visible range.
If 5.50 mol of HCl and 3.00 mol of O2 react according to the following equation, how many grams of water will form?
Answer:
49.52 g of H₂O
Explanation:
The balance chemical equation for given reaction is as follow;
4 HCl + O₂ → 2 H₂O + 2 Cl₂
Step 1: Find out Limiting reagent as;
According to balance equation,
4 moles of HCl reacted with = 1 mole of O₂
So,
5.50 moles of HCl will react with = X moles of O₂
Solving for X,
X = 5.50 mol × 1 mol / 4 mol
X = 1.375 moles of O₂
This means to completely consume 5.5 moles of HCl we will need 1.375 moles of O₂ while, we are provided with 3.0 moles of O₂ which is in excess hence, the limiting reagent in this problem is HCl and it will control the yield of products.
Step 2: Calculate Moles of H₂O produced;
According to balance equation,
4 moles of HCl produced = 2 moles of H₂O
So,
5.50 moles of HCl will react with = X moles of H₂O
Solving for X,
X = 5.50 mol × 2 mol / 4 mol
X = 2.75 moles of H₂O
Step 3: Calculate Mass of H₂O as;
Mass = Moles × M.Mass
Mass = 2.75 mol × 18.01 g/mol
Mass = 49.52 g of H₂O
How is human use of coal connected to water and air quality?
The human use of coal impacts air and water quality significantly. The burning of coal results in air pollution, contributing to global health and environmental issues. Additionally, processes related to coal use also contaminate local water bodies, damaging aquatic ecosystems and affecting the safety of drinking water.
Explanation:The human use of coal has significant impacts on both air and water quality. When coal is burned for energy, it releases pollutants, including sulfur dioxide and nitrogen oxides into the atmosphere. These substances can lead to air pollution, contributing to issues like acid rain, smog, respiratory diseases, and global warming.
Coal mining and combustion also affect water quality. Acid mine drainage, where water in coal mines becomes acidic and leaks out, can contaminate local water bodies, harming aquatic life and making the water unsafe for human consumption. Moreover, coal-fired power plants often discharge waste materials containing heavy metals like mercury into water bodies, further deteriorating water quality.
Learn more about the Impact of coal on air and water quality here:https://brainly.com/question/32849086
#SPJ2
How can you determine if a chemical change has occured
Answer:
There are several ways to know if a chemical change has occurred. The following is an indication that a chemical change has occurred
1. Change of composition - wood turning to ash when burned.
2. Change of color - For example, during titration, we know that the reaction has occurred by a change in colour from orange to pink when we used methyl orange as indicator., rusting of iron.
3. Change in temperature or energy, such as the production (exothermic or loss endothermic) of heat.
4. The decomposition of organic matter for example, the decay of dead plant or animal
5. Light and/or heat given off: For example, potassium react explosively with water releasing a large amount of heat
6. When the change is difficult to reverse. For example, after burning wood to produce ash, we can not get back the wood again.
How many particles are there in 3 moles of Fe
Answer:
n=N/Na
----. N=nxNa=3x6.023x10^23=1.8069e+24
Name two kinds of rocks formed by conduction of energy.
Answer:
pumice and gneiss
Explanation:
both are formed by conduction of energy
A permanent magnet can affect:
O
A. both permanent magnets and electromagnets.
O B. both non-magnets and electromagnets.
O
c. only permanent magnets.
O
D. only electromagnets and charged particles.
SUBMIT
Answer: A
both permanent magnet and electromagnets.
i hope that helps
Final answer:
A permanent magnet can affect both other permanent magnets and electromagnets, as well as metals such as iron and nickel. It cannot attract non-metals like plastic or wood and can also exert a force on charged particles when they are in motion.
Explanation:
The question concerns the effects a permanent magnet can have on various objects and fields, particularly addressing what a permanent magnet can affect. A permanent magnet can affect both other permanent magnets and electromagnets by exerting a magnetic force on them. Magnets can also affect objects made of materials that are attracted to magnets, such as iron and nickel. These materials are typically metals, not non-metals like plastic or wood, which do not respond to magnetic fields.
Furthermore, a magnetic field can exert a force on charged particles, such as electrons, when they are in motion. This is a fundamental principle of electromagnetism, a branch of physics that studies the interaction between electricity and magnetism. Consequently, the correct answer to the question is that a permanent magnet can affect both permanent magnets and electromagnets.
Calculate the mass of 15.73 L of krypton gas at STP.
Answer: m= 58.8 g Kr
Explanation: solution attached:
Find first the number of moles for Kr.
Use Ideal gas law formula PV= nRT and derive for n.
Convert moles to mass using the molar mass of Kr.
an advertisement for a commercial hand warmer claims that the hand warmer works because a chemical reaction in the hand warmer draws out the body’s own natural heat causing a warming effect
"An advertisement for a commercial hand warmer claims that the hand warmer works because a chemical reaction in the hand warmer draws out the body’s own natural heat causing a warming effect"
Explanation:
Hand warmer
Hand warmers are the pockets which produce heat, that you hold on the hands to warm your fingers. Niichi Matoba, the Japanese inventor created the first commercially manufactured hand warmer. Two types of hand warmersA) Crystalline type
B) Air activated
C) Lighter
D) Battery
E) Charcoal
The chemicals produce heat from oxidizing iron into rust or iron oxide in the pockets. Each packet contains cellulose, iron, vermiculite activated carbon, water and salt. Hand warmer produces heat for 1 to 10 hrs. Releases heat in the crystallization process. Exothermic reaction to release heat in the chemical hand warmer. The hand warmer lasts only for 20 minutes to 2 hrs.it Is reusable. Supersaturated solution of sodium acetate in water is the common chemical used in this product. These temperature reach up to 163 degrees Fahrenheit.Answer:
false
Explanation:
Charles's law is an experimental gas law that shows the relationship between the temperature of a gas and its corresponding volume. Based on the picture above, which model below correctly represents Charles's law?
Answer:
B. (Linear graph with positive slope)
Explanation:
The picture above showing that
1. T2 is higher than T1
2. V2 is higher than V2
From this, we can conclude that the relationship for temperature (T) and volume(V) is positive. That means a higher temperature will result in a higher volume.
Since the relationship positive, the graph will have a positive slope. We can't prove if the graph should be linear or exponential since we don't have the exact number of the experiment.
Answer:
B.
Explanation:
what is the chemical symbol for lead
Answer:
Lead (/ˈlɛd/) is a chemical element with the symbol Pb
Laboratory preparation of ethyne
Ethyne is prepared by using water and calcium carbide in the laboratory.
Explanation:
Acetylene is conveniently prepared in the laboratory by the action of water(H₂O) on calcium carbide (CaC₂). Calcium carbide in turn is obtained by heating the mixture of coke and lime stone in an electric furnace.
CaC₂ + 2H₂O → Ca(OH)₂ + C₂H₂
Ethyne gas prepared in the lab using the above method may contain impurities like H₂S, PH₃, AsH₃, NH₃etc. The gas is purified by bubbling it through acidified copper sulfate solution.
A box is initially at the top of a slide, storing 80 J of gravitational energy. The isolated system includes the box, slide and earth.
As the box slides down the frictionless slide, what happens to the total energy of the system?
1-the isolates system stores slightly less than 80 J of total energy, and it is converted to a different form of energy
2- The isolated system stores 80 J of total energy, but it is converted to a different foe of energy
3- The total energy of the system increases to more than 80 J as it gains other forms of energy
4- The total energy of isolated system decreases to 0 once the box reaches the bottom of the slide
Answer:
It stays àt 80j
Explanation:
The total energy of the isolated system remains 80 J as the gravitational potential energy is converted into kinetic energy in a frictionless environment, maintaining conservation of energy.
As the box slides down the frictionless slide, the total energy of the system remains constant due to the conservation of energy principle. The initial 80 J of gravitational potential energy is progressively converted into kinetic energy as the box moves down the slide. Since the slide is frictionless, there are no dissipative forces like friction to convert mechanical energy into heat. Hence, the isolated system, which includes the box, slide, and earth, will still store 80 J of total energy, but in different forms (mostly kinetic energy when the box is at the bottom of the slide).
Determine the shape around the atoms in ethambutol
Answer:
The structure of Ethambutol is attached below. As it can be seen in structure that there are three different atoms which can act as a central atom and hence, can make a geometrical shape. These three atoms are;
(i) Carbon (Tetrahedral):
Each carbon atom in this compound is Sp³ hybridized because there is no double or triple bond in this compound. So, according to VSEPR theory the four bonded atoms will keep a maximum distance from each other to experience less repulsion. Therefore, the bond angle about carbon atom will be 109.5° and the shape will be Tetrahedral.
(ii) Nitrogen (Trigonal Pyramidal):
There are two atoms of Nitrogen in this compound. These Nitrogen atoms are bonded to three atoms. Also, it has one lone pair of electron. This pair of electron will cause the the bond between the atoms to decrease due to more repulsion hence making the bond angle less than 109.5° and giving a Trigonal Pyramidal shape.
(iii) Oxygen (Bent / Angular):
The two oxygen atoms are bonded to two atoms and contain two lone pair of electrons, hence, more repulsion and more small angle i.e. 104° giving a bent or angular shape.
What is the poH of a 0.0235 M HCl solution?
Answer:
12.371
Explanation:
pH of a 0.0235 M HCl solution is;
pH = -log[H+ ] = -log(0.0235) = 1.629
pOH = 14.000 – pH = 14.000 – 1.629 = 12.371
Taking into account the definition of pH and pOH, the pOH of a 0.0235 M HCl solution is 12.37.
In first place, pH is a measure of acidity or alkalinity that indicates the amount of hydrogen ions present in a solution or substance. Mathematically, pH is expressed as the negative base 10 logarithm of the hydrogen ion concentration:
pH= - log [H⁺]= -log [H₃O⁺]
A strong acid is an acid that ionizes almost completely in aqueous solution, so the concentration of protons equals the concentration of the acid.
Being HCl a strong acid, then
[HCl]= [H⁺]= [H₂O⁺]= 0.0235 M
Then, the pH of the solution is:
pH= -log (0.0235 M)
pH= 1.63
On the other hand, pOH is a measure of the concentration of hydroxyl ions in a solution. The following relationship can be established between pH and pOH:
pH+ pOH= 14
In this case:
1.63 + pOH= 14
Solving:
pOH= 14 - 1.63
pOH= 12.37
Finally, the pOH of a 0.0235 M HCl solution is 12.37.
Learn more about:
pH: https://brainly.com/question/3992824?referrer=searchResultspH and pOH: https://brainly.com/question/13423425?referrer=searchResultsthe number of moles of H2O produced from 339 grams of SnO2
Answer:
moles of H2O = 4.5 mol
Explanation:
balanced equation:
SnO2 + 2H2 → Sn + 2H20∴ mass SnO2 = 339 g
∴ molar mass SnO2 = 150.71 g/mol
⇒ moles SnO2 = (339 g)(mol/150.71 g) = 2.25 mol SnO2
⇒ moles H2O = (2.25 mol SnO2)(2 mol H2O/mol SnO2)
⇒ moles H2O = 4.5 mol H2O
to what temperature must a sample of nitrogen at 27 degrees C and 0.625atm be taken so that its preassure becomes 1.125atm at constant volume?
Answer:
The sample of nitrogen must be taken to 267 C
Question 1 of 10
2 Points
According to Le Châtelier's principle, how will a pressure increase affect a
system that includes matter in the gas phase and another phase?
O
A. The total number of gas molecules will increase.
O
B. The equilibrium reactions will slow down.
C. The system will remain unchanged.
ooo
D. The total number of gas molecules will decrease.
The increase in pressure will result in the decrease of the total number of gas molecules due to the shift in equilibrium toward the side with fewer moles of gas, following Le Châtelier's principle.
Explanation:According to Le Châtelier's principle, how will a pressure increase affect a system that includes matter in the gas phase and another phase? The correct answer is D. The total number of gas molecules will decrease. This is because Le Châtelier's principle states that a pressure increase will shift an equilibrium toward the side of the reaction with the fewer number of moles of gas, as this helps to counteract the change by reducing the pressure within the system. This principle is particularly useful when predicting how a change in pressure will affect the position of equilibrium in a chemical reaction involving gases.
Final answer:
Le Châtelier's principle indicates that increased pressure in a gaseous reaction shifts equilibrium toward the side with fewer gas molecules to reduce the stress caused by the pressure increase.
Explanation:
According to Le Châtelier's principle, a pressure increase in a system involving gases will cause a shift in equilibrium towards the phase with the fewer number of gas molecules. In the case of a reaction with different numbers of gas molecules on each side of the reaction, such as 2NO(g) + O₂(g) ⇒ 2NO₂(g), an increase in pressure would shift the equilibrium towards the formation of NO₂, since it has fewer gas molecules (2) compared to the reactants (3). This phenomenon occurs because the system responds to reduce the pressure by favoring the production of fewer molecules that would occupy less volume.
How many atoms are contained in 0.633 moles of Ni? ( show work)
Answer:
1.0511458x10^22
Explanation:
0.633 mol/ 1 x 6.022x10^23/1 mol
what is the appearance of H2o?
Answer:
Water
Explanation:
one molecule of water has two hydrogen atoms covalently bonded to a single oxygen atom. Water is a tasteless, odorless liquid at ambient temperature and pressure. Which is known to be crystal blue.
Answer:
well I t could be in liquid form or in air form
Explanation:
Elements that typically give up electrons _______
Answer:
metals? I'm not 100% sure, sorry if I'm wrong.
Which of the following statements describes a problem associated with
chemicals made by chemists?
O
A. They are in medicines,
O
B. They can be released into the environment,
C. They can be found in food,
O
O
D. They can be in cleaning products.
Answer:
option a is answer
Explanation:
suppose we take an example of sodium chloride is always used in medicines
Answer:it’s b
Explanation: trust meh Brodie
How many atoms are in 5.4 mol Zn?
Answer: 3.25x10²⁴ atoms Zn
Explanation: Convert moles of Zn to atoms using Avogadro's number
5.4 moles Zn x 6.022x10²³ atoms Zn/ 1 mole Zn
= 3.25x10²⁴ atoms Zn
How many orbitals are in the n = 3 level?
Part A
Determine the number of protons in each of the following isotopes of chr
Enter your answers numerically separated by commas.
DVI Aed
2
?
Cr – 50, Cr – 52, Cr – 53 Cr – 54 =
Submit
Request Answer
The number of protons in an isotope of an element is determined by its atomic number. The element Chromium (Cr) has an atomic number of 24, so all its isotopes, including Cr-50, Cr-52, Cr-53, and Cr-54, contain 24 protons.
Explanation:The element symbol Cr represents the element Chromium. The number of protons in any isotope of an element is determined by the atomic number, not the isotope number. Chromium has an atomic number of 24, so all isotopes of Chromium, including Cr-50, Cr-52, Cr-53, and Cr-54, contain 24 protons.
The number of protons in an isotope of an element is determined by its atomic number. The element Chromium (Cr) has an atomic number of 24, so all its isotopes, including Cr-50, Cr-52, Cr-53, and Cr-54, contain 24 protons.
Learn more about Protons in isotopes here:https://brainly.com/question/16149687
#SPJ3
When hydrochloric acid reacts with sodium sulfide, hydrogen sulfide gas and sodium chloride are produced. How many moles of H2S will be generated by 2.56 moles of HCl?
2HCl + Na2S → H2S + 2NaCl
Answer:
mol H2S = 1.28 mol
Explanation:
balanced reaction:
2HCl + Na2S → H2S + 2NaCl∴ moles HCl = 2.56 mol
⇒ moles H2S = ?
⇒ moles H2S = (2.56 mol HCl)*(mol H2S/2 moles HCl)
⇒ moles H2S = 1.28 mol