Final answer:
The period of time in London known for cold temperatures is referred to as the Little Ice Age, which spanned from 1550 AD to 1850 AD, and included the Maunder Minimum with exceptionally low temperatures in Europe.
Explanation:
The period of time in London known for its cold temperatures was the Little Ice Age, which occurred between 1550 AD and 1850 AD. The Maunder Minimum, part of the Little Ice Age, was a time of exceptionally low temperatures in Europe, specifically during the seventeenth century. Europe experienced harsh winters with the River Thames freezing and low summer temperatures led to poor harvests. The impact of the Sun's activity on Earth's climate during this period remains a topic of debate among scientists.
The notable climatic anomalies during the Maunder Minimum underscore the intricate interplay between solar activity and Earth's climate, prompting ongoing scientific discourse and investigation into the complex mechanisms influencing historical temperature variations.
The initial temperature of a bomb calorimeter is 28.50°C. When a chemist carries out a reaction in this calorimeter, its temperature decreases to 27.45°C. If the calorimeter has a mass of 1.400 kg and a specific heat of 3.52 J/(gi°C), how much heat is absorbed by the reaction? Use . 140 J 418 J 1,470 J 5,170 J
Answer:
5,170 J.
Explanation:
The amount of heat absorbed by the reaction = the amount of heat released from the calorimeter.the amount of heat released from the calorimeter (Q) can be calculated from the relation:Q = m.c.ΔT.
where, Q is the amount of heat released from the calorimeter (Q = ??? J),
m is the mass of the calorimeter (m = 1.4 kg = 1400.0 g),
c is the specific heat capacity of the calorimeter (c = 3.52 J/g °C),
ΔT is the temperature difference (final T - initial T) (ΔT = 27.45 - 28.50 = - 1.05°C).
∵ Q = m.c.ΔT.
∴ Q = m.c.ΔT = (1400.0 g)(3.52 J/g °C)(- 1.05°C) = - 5174.0 J ≅ - 5,170 J.
∴ The amount of heat absorbed by the reaction = 5,170 J.
Answer:
When 40.0 mL of 1.00 M H2SO4 is added to 80.0 mL of 1.00 M NaOH at 20.00°C in a coffee cup calorimeter, the temperature of the aqueous solution increases to 29.20°C. If the mass of the solution is 120.0 g and the specific heat of the calorimeter and solution is 4.184 J/g • °C, how much heat is given off in the reaction? (Ignore the mass of the calorimeter in the calculation.)
Use q equals m C subscript p Delta T..
4.62 kJ
10.0 kJ
14.7 kJ
38.5 kJExplanation:
14C → 14N
Describe the type of radioactive emission produced from the decay of carbon-14 to nitrogen-14 and predict its reaction to an electric field.
A) Radioactive gamma decay is produced by the reaction. This neutral electromagnetic radiation are not attracted to the electric field.
B) Beta particles are released during the radioactive decay. These negative particles are attracted to the positive plate in the electric field.
C) During the radioactive decay, alpha particles are released. These positive particles are attracted to the negative plate in the electric field.
D) Both types of radioactive emissions, particles and electromagnetic radiation, are produced during this decay. None of these are attracted to the electric field.
Answer:
B.).Beta particles are released during the radioactive decay. These negative particles are attracted to the positive plate in the electric field.
Explanation:
The radioactive decay of C-14 yields a N-14 atom via the emission of Beta particles.
The Beta particles are negatively charged and would be attracted towards the positive plate in the electric field because like charges repel but unlike charges attracts one another.
Answer:
C
Explanation:
The answer is C if you're on USA test prep.
The pH of a solution is 4.36. What is the pOH?
Answer:
9.64
Explanation:
pH + pOH = 14
Since pOH = 4.36, pH would be:
pH = 14 - pOH
pH = 14 - 4.36
pH = 9.64
The answer is 9.46
9.46 pOH
4. How is photosynthesis a carbon storing process?
Carbon dioxide (CO2) in the atmosphere is necessary for plants and trees to grow. Forests play a specific and important role in the global carbon cycle by absorbingcarbon dioxide duringphotosynthesis, storing carbonabove- and belowground, and producing oxygen as a by-product of photosynthesis.
Photosynthesis is the process by which plants use sunlight to convert carbon dioxide and water into energy-storing carbohydrates and oxygen. This allows plants to store carbon in the form of glucose for growth and energy reserves, effectively removing carbon dioxide from the atmosphere.
Photosynthesis is a carbon storing process because it converts carbon dioxide from the atmosphere into energy-storing carbohydrates, such as glucose, which plants can then store for later use. The general equation for photosynthesis is:
6CO₂ + 6H₂O + light energy \rightarrow C₆H₁₂O₆ + 6O₂
During this process, solar energy is harnessed through the chloroplasts in the leaves of plants, initiating a series of reactions known as the Calvin cycle. These reactions convert atmospheric carbon dioxide and water in the presence of sunlight into glucose, which plants use to grow and thrive, or store for later energy needs. For example, sweet potatoes store carbohydrates in their roots, while aloe plants store them in their leaves, making these biological reserves an important aspect for both the plants and the ecosystems they support.
Mitochondria _
Plant
Answer:
??????
Explanation:
I believe this question is asking what a mitochondria does for a plant cell?
The mitochondria is the digestive system in a plant cell. It’s job is to take in nutrients, break it down, and then create energy from it. The mitochondria is a crucial part of cellular respiration.
The molecular mass of the compound is 137.32 g/mol. What is the molecular formula of the compound?
barium , atomic number 56
Although given the molecular mass of a compound, additional information, most notably the empirical formula, is needed to determine the molecular formula.
Explanation:To determine the molecular formula of a compound with a molecular mass of 137.32 g/mol, we need additional information, specifically the empirical formula of the compound. The molecular formula is a multiple of the empirical formula, and the multiple is determined by the ratio of the molecular mass to the empirical formula mass.
For example, suppose the empirical formula is CH (which has an empirical formula mass of about 13 g/mol for C and 1 g/mol for H). If the molecular mass is 137.32 g/mol, we would divide the molecular mass by the empirical formula mass (137.32/14), which is about 9.8. This isn't a whole number, so we'd need to adjust the empirical formula. But if the empirical formula is C2H2 (with empirical formula mass of 26 g/mol), then the divisor would be 5.3, again not a whole number. Without knowing the empirical formula, we can't determine the molecular formula.
Learn more about Molecular Formula here:https://brainly.com/question/28647690
#SPJ12
These test tubes contain solutions of various colors, since they have been mixed with broth from red cabbage. The approximate pH values are noted.
How would you best describe the red or pink solutions labeled “2-4”?
How would you best describe the purple to blue solution labeled “7”?
How would you best describe the yellow-green solution labeled “11”?
Answer:
acidic
neutral
basic
Explanation:
Answer:
The answer and the explanation given below:
Explanation:
The pH is a scale which is used to identify a solution whether it is acidic, basic or neutral. The pH scale ranges from 0 to 14. A pH 7.0 is neutral which is of pure water. The range from 0.0 to 6.9 is acidic due to presence of a high concentration of hydrogen ions (H⁺) in the solution as compared to pure water. The range 7.1 to 14.0 is basic due to presence of a low concentration of hydrogen ions (H⁺) in the solution as compared to pure water.
The red or pink solutions labeled “2-4” will be acidic as per pH scale. The purple to blue solution labeled “7” will be neutral as per pH scale. The yellow-green solution labeled “11” will be basic or alkaline as per pH scale.which statement is true of covalent bonds?
they form when atoms lose electrons.
they form when atoms gain electrons.
the form when electrons are shared.
they form when ions are attracted to each other.
They form when electrons are shared.
Covalent bonds form when atoms share their electrons mutually and equally or unequally depending on their electronegativity. This sharing allows atoms to stabilize and often achieve a noble gas electron configuration. Lewis electron dot diagrams help illustrate such bonds.
Explanation:Covalent bonds occur when electrons are shared between atoms, creating a mutual stabilization. Unlike ionic bonds which involve the exchange of electrons to form charged ions, covalent bonding is characterized by the sharing of one or more electron pairs. Each atom contributes an electron to the shared pair, resulting in a bond that is typically stronger than an ionic bond. This sharing of electrons allows each atom to attain a more stable electronic configuration, often resembling that of the nearest noble gas.
There are different types of covalent bonds, such as polar covalent bonds where the sharing of electrons is unequal due to differences in electronegativity between the bonded atoms. Conversely, nonpolar or pure covalent bonds involve equal sharing of electrons because of identical or very similar electronegativity values.
For visualization, Lewis electron dot diagrams are often used to illustrate how atoms bond covalently, with shared electron pairs represented by dashes connecting the symbols for the atoms.
Use the drop-down menus to identify the definition of radiation and the different types of radioactive emissions.
______is the process of emitting radiant energy in the form of waves or particles.
______is two protons and two neutrons bound together into a particle identical to a helium nucleus. is a negatively charged electron emitted by the nucleus.
______is the radioactive decay of an atom that releases a photon, which results from a redistribution of electric charge within a nucleus.
Alpha particle
Beta particle
Gamma ray
Radiation
Help me quickly please! I don't get it! T.T
Explanation:
Radiation is defined as an electromagnetic energy which travels in space in the form of waves or particles.
An alpha particles is basically a helium nucleus and it contains 2 protons and 2 neutrons.
Symbol of an alpha particle is [tex]^{4}_{2}\alpha[/tex].
A beta particle is a particle with a negatively charged electron. Symbol of a beta particle is [tex]^{0}_{-1}\beta[/tex].
A gamma particle is basically a photon of electromagnetic radiation with a short wavelength.
Symbol of a gamma particle is [tex]^{0}_{0}\gamma[/tex].
Therefore, we can conclude that the definition of radiation and the different types of radioactive emissions are as follows.
Radiation is the process of emitting radiant energy in the form of waves or particles.Alpha particle is two protons and two neutrons bound together into a particle identical to a helium nucleus.Beta particle is a negatively charged electron emitted by the nucleus.Gamma ray is the radioactive decay of an atom that releases a photon, which results from a redistribution of electric charge within a nucleus." Radiation is the process of emitting radiant energy in the form of waves or particles. An alpha particle is two protons and two neutrons bound together into a particle identical to a helium nucleus. A beta particle is a negatively charged electron emitted by the nucleus. A gamma ray is the radioactive decay of an atom that releases a photon, which results from a redistribution of electric charge within a nucleus.
Radiation is a broad term that refers to the emission of energy in the form of electromagnetic waves or subatomic particles. This energy is released by atoms that are unstable, known as radioactive atoms. The process of radiation can take several forms, each with its own characteristics:
- Alpha particle: This is a type of radioactive emission that consists of two protons and two neutrons. It is the largest and most energetic of the common emissions, but because of its size, it can be stopped by a few centimeters of air or a piece of paper. Alpha particles are essentially the nucleus of a helium atom, hence why they are identical to a helium nucleus.
- Beta particle: This emission is a high-energy electron that is ejected from the nucleus of an atom during certain types of radioactive decay. Beta particles are more penetrating than alpha particles and can travel through several meters of air or a few millimeters of aluminum.
- Gamma ray: Gamma rays are high-energy photons, which are packets of electromagnetic energy. They are emitted from a nucleus during radioactive decay and are the most penetrating of the common radioactive emissions. Gamma rays can travel through several centimeters of lead or several meters of concrete, making them difficult to shield against.
Each of these types of emissions is a form of ionizing radiation, meaning they have enough energy to remove tightly bound electrons from atoms, creating ions. This can lead to damage in living tissue, which is why radiation can be harmful to biological organisms. The definitions provided in the question help to distinguish between the different types of radioactive emissions and their properties."
What are the concentrations of hydroxide and hydronium ions in a solution with a pH of 4.6?
Answer: 2.5 × 10⁻⁵ M H₃O⁺ and 4.0 × 10⁻¹⁰ M OH⁻
Explanation:
∵ pH = - log[H₃O⁺]
∴ 4.6 = - log[H₃O⁺].
∴ log[H₃O⁺] = - 4.6.
∴ [H₃O⁺] = 2.51 x 10⁻⁵.
∵ [H₃O⁺][OH⁻] = 10⁻¹⁴.
[H₃O⁺] = 2.51 x 10⁻⁵ M.
∴ [OH⁻] = 10⁻¹⁴/[H₃O⁺] = 10⁻¹⁴/(2.51 x 10⁻⁵ M) = 3.98 × 10⁻¹⁰ M ≅ 4.0 × 10⁻¹⁰ M.
Answer : The concentration of hydroxide and hydronium ion is, [tex]3.9\times 10^{-10}M[/tex] and [tex]2.5\times 10^{-5}M[/tex]
Explanation: Given,
pH = 4.6
pH : It is defined as the negative logarithm of hydrogen ion and hydronium ion concentration.
[tex]pH=-\log [H_3O^+][/tex]
First we have to calculate the [tex]H^+[/tex] concentration.
[tex]pH=-\log [H_3O^+][/tex]
[tex]4.6=-\log [H_3O^+][/tex]
[tex][H_3O^+]=2.5\times 10^{-5}M[/tex]
Now we have to calculate the pOH.
[tex]pH+pOH=14\\\\pOH=14-pH\\\\pOH=14-4.6=9.4[/tex]
Now we have to calculate the [tex]OH^-[/tex] concentration.
[tex]pOH=-\log [OH^-][/tex]
[tex]9.4=-\log [OH^-][/tex]
[tex][OH^-]=3.9\times 10^{-10}M[/tex]
Therefore, the concentration of hydroxide and hydronium ion is, [tex]3.9\times 10^{-10}M[/tex] and [tex]2.5\times 10^{-5}M[/tex]
You and your sister both have a small camping tent set up in the backyard. You each have two strings of lights to hang inside the tent. You power your lights with a 9-volt battery and your sister uses an extension cord and powers her lights from an electrical outlet on the deck.
What is the BEST conclusion the you can make about this situation?
A
Your lights shine the brightest because your battery produces less power.
B
Your lights shine the brightest because your battery produces more power.
C
Your sister's lights shine the brightest because the electrical outlet has less power.
D
Your sister's lights shine the brightest because the electrical outlet has more power.
Answer:
D
Your sister's lights shine the brightest because the electrical outlet has more power.
Explanation:
Your sister's lights shine the brightest because the electrical outlet has more power. Thus, option D is correct.
What is power?Power is the amount of energy transferred or converted per unit of time.
The intensity of lights depends on the power that is provided by the current flowing over it, therefore the intensity would increase if we raise the current.
When current is increased in a light bulb, the light bulb shines brighter and the power increases.
Thus, option D is correct.
Learn more about power here:
https://brainly.com/question/2288858
#SPJ2
a solution has a pH of 5.4. write the formula you will use to calculate the (H+)
Answer:
3.981 x 10⁻⁶.
Explanation:
∵ pH = - log[H⁺]
∴ 5.4 = - log[H⁺]
∴ log[H⁺] = - 5.4
∴ [H⁺] = 3.981 x 10⁻⁶.
Answer:
pH = - log[H⁺]
=> 3.981 x 10⁻⁶
Explanation:
Which of the following can a cell contain?
1:) A number
2:) A word
3:) A function
4:) All of these
(my first guess was #3, just to be sure)
Answer: D. All of these
A cell contains of the options listed therefore it is D
Definitely 3 because a cell can contain many functions
SUBJECT SCIENCE...... photosynthesis changes _(chemical, light, electrical) energy into _ (chemical, potential, kinetic) energy.
Answer:
light to chemical
Explanation:
When electrons are removed from an atom, the atom becomes positively charged and is referred to as a(n) _____.
anion
anode
cation
cathode
Answer:
cation.
Explanation:
A cation is an ionic species with a positive charge. The word "cation" comes from the Greek word "kato," which means "down." A cation has more protons than electrons, giving it a net positive charge.So, when electrons are removed from an atom, the atom becomes positively charged and is referred to as a cation.Which unit of measurement should be used for the vertical axis?
A. millimeters
B. centimeters
C. kilometers
D. decimeters
Answer:
b
Explanation:
PLEASE HELP ASAP!!!!!!
In your own words, describe the connection between the heat from earth’s core and the movement of tectonic plates.
The immensely strong heat creates conviction cells to create movement as it follows the currents.
Final answer:
Heat from Earth's core causes convection currents in the mantle, driving the movement of tectonic plates. This movement can create divergent and convergent plate boundaries, leading to the formation of new lithosphere, mountain ranges, earthquakes, and volcanic activity.
Explanation:
The core of the Earth is extremely hot, and this heat plays a crucial role in the movement of tectonic plates that make up the planet's crust and upper mantle. The process of heat transfer from the core to the mantle is known as convection. In this process, warmer material rises due to being less dense, and cooler material sinks because it is denser. This continuous cycle of rising and sinking material creates convection currents in the mantle.
These convection currents are the primary driving force behind the movement of tectonic plates. At divergent boundaries, where two plates are moving apart, new lithosphere forms at ocean ridges due to upwelling currents. Conversely, at convergent boundaries, where plates move toward each other, one plate can be forced under another in a process called subduction, which can lead to the formation of mountains, earthquakes, and volcanic activity. Therefore, the heat from Earth's core is essential in driving the dynamic processes that shape the planet's surface.
Sound waves with a large distance between A and B would be sound waves that have a large ________ and produce loud sounds.
A) amplitude
B) frequency
C) pitch
D) resonance
Answer:
Amplitude
Explanation:
Answer:
a. amplitude
Explanation:
A large C would indicate a large amplitude and a loud sound. When the amplitude increases in a compression wave, there is an increase in the density of the medium, and in the pressure exerted by the particles.
How many grams of antifreeze C2H4(OH)2 would be required per 500 g of water to prevent the water from freezing at a temperature of -20.0 C
Answer:
333.7 g.
Explanation:
The depression in freezing point of water (ΔTf) due to adding a solute to it is given by: ΔTf = Kf.m.Where, ΔTf is the depression in water freezing point (ΔTf = 20.0°C).
Kf is the molal freezing point depression constant of the solvent (Kf = 1.86 °C/m).
m is the molality of the solution.
∴ m = ΔTf/Kf = (20.0°C)/(1.86 °C/m) = 10.75 m.
molaity (m) is the no. of moles of solute per kg of the solvent.
∵ m = (no. of moles of antifreeze C₂H₄(OH)₂)/(mass of water (kg))
∴ no. of moles of antifreeze C₂H₄(OH)₂ = (m)(mass of water (kg)) = (10.75 m)(0.5 kg) = 5.376 mol.
∵ no. of moles = mass/molar mass.
∴ mass of antifreeze C₂H₄(OH)₂ = no. of moles x molar mass = (5.376 mol)(62.07 g/mol) = 333.7 g.
To prevent 500 g of water from freezing at -20.0°C, 333.86 grams of antifreeze [tex](C_2H_4(OH)_2)[/tex] are required. The calculation involves using the freezing point depression formula and converting the molality to grams. Ethylene glycol is the active component in this antifreeze scenario.
To determine how many grams of antifreeze[tex](C_2H_4(OH)_2)[/tex] are required to prevent 500 g of water from freezing at -20.0°C, we can use the freezing point depression formula [tex]\triangle T_f = i mK_f .[/tex]
Here, Δ[tex]T_f[/tex] is the freezing point depression, [tex]K_f[/tex] is the cryoscopic constant for water, and m is the molality of the solution. The constant i is the van 't Hoff factor, which is 1 for ethylene glycol because it does not dissociate in water.
Step-by-Step Explanation:Calculate the required freezing point depression:
Δ[tex]T_f[/tex] = [tex]T_f[/tex] (pure solvent) - [tex]T_f[/tex](solution) = 0°C - (-20.0°C) = 20.0°C
Use the freezing point depression formula to calculate molality:
[tex]\triangle T_f = i mK_f .[/tex]
20.0°C = 1.86°C/m * m
m = 20.0°C / 1.86°C/m = 10.75 m
Calculate the moles of antifreeze required:
molality (m) = moles of solute / kg of solvent
10.75 m = moles of [tex](C_2H_4(OH)_2)[/tex] / 0.5 kg
moles of [tex](C_2H_4(OH)_2)[/tex] = 10.75 m * 0.5 kg = 5.375 moles
Convert moles to grams using the molar mass of [tex](C_2H_4(OH)_2)[/tex] (62.07 g/mol):
grams of [tex](C_2H_4(OH)_2)[/tex] = moles * molar mass = 5.375 moles * 62.07 g/mol = 333.86 g
Therefore, 333.86 grams of antifreeze [tex](C_2H_4(OH)_2)[/tex] are needed for 500 g of water to prevent it from freezing at -20.0°C.
All of the following are examples of synthesizing extept
Answer:
There are no examples provided here, but synthesis is when two substances combine to form one! This could be shown in an chemical equation.
Explanation:
Answer:
rephrasing and rewriting to create a term paper
Explanation:
Caffeine has the following percent composition: carbon 49.48%, hydrogen 5.19%, oxygen 16.48% and nitrogen 28.85%. Its molecular weight is 194.19 g/mol. What is its molecular formula?
Here is the solution hope u understand
The empirical formula mass of the compound is calculated to be 97 g. Thus, molecular formula of compound is C₈H₁₀O₂N₄.
What is empirical formula?Empirical formula of a compound is derived from the mole ratio of each element in the compound. The molecular formula of the compound can be obtained by multiplying the empirical formula with the integer calculated by dividing the molecular mass by formula mass.
Given 49.48 % of C means 49.48 g in 100 g = 49.48/12= 4.12 moles
mass of oxygen = 16 g/mol
moles in 16.48 g = 16.48.=/ 16 = 1.03 moles.
mass of H = 1 g/mol, moles in 5.19 = 5.19 moles.
mass of nitrogen = 14 g/mol, moles in 28.85 g = 28.85/14 = 2.06 moles.
Divide each numbers with the least number among them that is by 1.03, we get the ratios 4: 5: 1: 2. for C, H, O and N respectively.
The empirical formula mass = (4 × 12) + 5 + 16 +( 14×2 ) = 97 g
divide the molecular mass by 97: 194.19 /97 = 2.
Now, multiply the empirical molar ratio by 2 we get 8: 10 : 2:4.
Therefore, the molecular formula of the compound is C₈H₁₀O₂N₄.
To find more on molecular formula, refer here:
https://brainly.com/question/28647690
#SPJ2
Does it make a difference if the jar is square or round? What about the size of the jar or glass?
It’s talking about refraction*
no it doesn't make differance at all ...only the material used make difference
A visual illustration used to show mathematical relationships is called a .
answer:
a visual illustration used to show mathematical relationships is a theory.
Answer:
Its a graph
Explanation:
Water’s molar mass is 18.01 g/mol. The molar mass of glycerol is 92.09 g/mol. At 25°C, glycerol is more viscous than water. Which substance has the stronger intermolecular attraction?
Answer:
glycerol because it is more viscous and has a larger molar mass than water.
Explanation:
Viscosity depends on inter-molecular interactions.
The predominant inter-molecular force in water and glycerol is hydrogen bonding.
Hydrogen bond is an electrostatic attraction between two polar groups in which one group has hydrogen atom (H) and another group has highly electronegative atom such as nitrogen (like in this molecule), oxygen (O) or fluorine (F).
Final answer:
Water has stronger intermolecular attraction compared to glycerol because water has extensive hydrogen bonding. Hydrogen bonding is a strong intermolecular force that occurs when a hydrogen atom is bonded to a highly electronegative atom like oxygen or nitrogen. Glycerol, on the other hand, does not have hydrogen bonding.
Explanation:
The intermolecular attractions or forces between molecules determine the strength of the attractive forces in a substance. In this case, water has stronger intermolecular attraction compared to glycerol because water has extensive hydrogen bonding. Hydrogen bonding is a strong intermolecular force that occurs when a hydrogen atom is bonded to a highly electronegative atom like oxygen or nitrogen. Glycerol, on the other hand, does not have hydrogen bonding.
Water's molar mass is 18.01 g/mol and it can form hydrogen bonds, which makes it highly cohesive and viscous. Glycerol's molar mass is 92.09 g/mol and it does not have the ability to form hydrogen bonds. Therefore, water has stronger intermolecular attractions due to hydrogen bonding, resulting in its higher viscosity compared to glycerol.
Which best describes the error in data collection
Answer:
Error (statistical error) describes the difference between a value obtained from a data collection process and the 'true' value for the population. The greater the error, the less representative the data are of the population. Data can be affected by two types of error: sampling error and non-sampling error
Explanation:.
Answer:
The correct answer is the standard deviation of the sample distribution.
Explanation:
The standard error is the standard deviation of the sample distribution of a sample statistic. The term also refers to an estimate of the standard deviation, derived from a particular sample used to compute the estimate. The larger the error, the less representative the population data. Data can be affected by two types of error: sampling error and non-sampling error.
Have a nice day!
How many moles do 10.0 mg of CO represent?
0.28
0.036
0.000357
0.0036
For this case we have that, according to the periodic table, the atomic mass of the Carbon is [tex]12 \frac {g} {mol}[/tex] and that of the Oxygen is[tex]16 \frac {g} {mol}.[/tex]
By definition, the number of moles is given by:
[tex]n = \frac {M} {MM}[/tex]
Where:
M: It's the mass
MM: It's the molar mass
n: It is the number of moles
10 milligrams equals to 0.01 grams
[tex]n = \frac {0.01} {12 + 16} = \frac {0.01} {28} = 0.000357[/tex]
ANswer:
Option C
Answer:
0.000357 shows how many moles 10.0 of CO represent
How do you determine the number of protons in an element
Answer:
You determine the number of protons by its atomic number, just like electrons.
I am joyous to assist you anytime.
74. Which two temperatures are identical for the same substance?
(A) melting point, freezing point
B) melting point, boiling point
C) freezing point, boiling point
D) freezing point, condensation point
Answer:
(A) melting point, freezing point.
Explanation:
For the same substance: when matter is transitioning from solid to liquid (melting) or liquid to solid (freezing), its temperature is fixed at the melting/freezing point, which is the same temperature.
Answer:melting,freezing
Explanation:
What is the pOH of 5.92x10 -2
Answer: 1.23
Explanation: Given that there is no reaction, I will assume that the molarity corresponds to that of a base.
Therefore,
All you have to do is take the negative logarithm of that molarity
Indeed, pOH = -log(5.92x10^-2) = 1.2277 = 1.23
Note:
We could also do this for the pH.
If we were finding the pH, and that we are given the molarity (also known as [OH-]), then, we would also use the negative logarithm (-log (molarity)).
If we wanted to do the opposite, we could find the molarity with the pOH using the inverse logarithm.
10^(-1.2277) = 5.92 x 10^-2
What SI unit is used to measure the number of representative particles in a substance?
Answer:
SI unit for number of representative particle is MOLE.
Explanation:
The SI unit used to measure the number of representative particles in a substance is the mole. One mole of a substance contains Avogadro's number, or 6.02×10²³ particles. This concept is critical in chemistry calculations.
Explanation:The SI (International System) unit used to measure the number of representative particles in a substance is the mole (abbreviated mol). A mole is a convenient amount unit for expressing very large numbers of atoms or molecules. Experimental measurements have determined the number of entities composing 1 mole of a substance to be 6.022 x 10²³ , a quantity called Avogadro's number.
The mole is a versatile unit that conveniently uses scientific notation to represent large values. One mole always contains 6.02×10²³ particles, independent of the element substance. This number is also known as Avogadro’s number (NA).
A mole of any substance has a mass in grams equal to its molecular mass, which can be calculated from the atomic masses given in the periodic table of elements. These concepts help scientists do computations ranging from simple unit conversions to more complex, multi-step calculations.
Learn more about Mole here:https://brainly.com/question/34260877
#SPJ12