Answer: a) 3mm
b) 5400mm^3/min
c) 4000000chips/min
Explanation:
Wheel diameter(D) =150mm
Infeed(W)=0.06mm
Wheel speed(V)=1600m/min
Work speed(Vw)=0.3m/s
Cross feed(d)=5mm
Number of active grits per area of wheel surface =50grits/cm^2
Average length per chip(Lc)=?
Metal removal rate(Rmr)=?
Number of chips formed per unit time(nc)=?
a) Lc=(Dd)^0.5
Lc=(150*0.06)^0.5
Lc=3mm
b) Rmr=VwWd
Rmr=(0.3m/s)*(10^3mm/m)*(5mm)*(0.06mm)
Rmr=5400mm^3/min
c) nc=VWc
nc=(1600m/min)(10^3)(5mm)(50grits/cm^2)(10^-2)
nc=4,000,000chips/min.
Two capacitors with capacitances of 16 nF and 24 nF, respectively, are connected in parallel. This combination is then connected to a battery. If the charge on the 16 nF capacitor is 56 nC, what is the charge on the 24 nF capacitor
Answer:
charge on the 24 nF capacitor is 84 nC
Explanation:
given data
capacitance Q1 = 16 nF
capacitance Q2 = 24 nF
charge on the 16 nF capacitor C1 = 56 nC
solution
we get here capacitor in parallel have same voltage
V1 = V2 ...............1
here voltage V1 = [tex]\frac{Q1}{C1}[/tex]
[tex]\frac{Q1}{C1}[/tex] = [tex]\frac{Q2}{C2}[/tex] .....................2
put here value we get
[tex]\frac{56}{16} = \frac{Q2}{24}[/tex]
Q = 84 nC
so charge on the 24 nF capacitor is 84 nC
The charge on the 24 nF capacitor, when paired in parallel with a 16 nF capacitor connected to the same battery, is determined to be 84 nC.
Explanation:When two capacitors are connected in parallel and then to a battery, they both will have the same voltage across them. Given that the charge (Q) on a capacitor is equal to the product of its capacitance (C) and the voltage (V), and assuming the 16 nF capacitor has a charge of 56 nC, the charge on the 24 nF capacitor can be determined using the formula Q = CV.
First, find the voltage using the 16 nF capacitor:
V = Q/C = 56 nC / 16 nFV = 3.5 VSince the capacitors are in parallel, the voltage across the 24 nF capacitor is also 3.5 V. Therefore, the charge on the 24 nF capacitor is:
Q = CV = 24 nF × 3.5 VQ= 84 nCThe charge on the 24 nF capacitor is 84 nC.
A 75-hp (shaft output) motor that has an efficiency of 91.0 percent is worn out and is replaced by a high-efficiency 75-hp motor that has an efficiency of 96.3 percent. Determine the reduction in the heat gain of the room due to higher efficiency under full-load conditions.
Answer:
4.536hp
Explanation:
The decrease in the heat gain of the room is determined from difference in electrical inputs:
[tex]Q = W_{shaft} (\frac{1}{n_{1} } - \frac{1}{n_{2} })\\Q = (75hp)*(\frac{1}{0.91 } - \frac{1}{0.963 })\\\\Q = 4.536 hp[/tex]
Create a C language program that can be used to construct any arbitrary Deterministic Finite Automaton corresponding to the FDA definition above. a. Create structs for the: automaton, a state, and a transition. For example, the automaton should have a "states" field, which captures its set of states as a linked list.
Answer:
see the explanation
Explanation:
/* C Program to construct Deterministic Finite Automaton */
#include <stdio.h>
#include <DFA.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <stdbool.h>
struct node{
struct node *initialStateID0;
struct node *presentStateID1;
};
printf("Please enter the total number of states:");
scanf("%d",&count);
//To create the Deterministic Finite Automata
DFA* create_dfa DFA(){
q=(struct node *)malloc(sizeof(struct node)*count);
dfa->initialStateID = -1;
dfa->presentStateID = -1;
dfa->totalNumOfStates = 0;
return dfa;
}
//To make the next transition
void NextTransition(DFA* dfa, char c)
{
int tID;
for (tID = 0; tID < pPresentState->numOfTransitions; tID++){
if (pPresentState->transitions[tID].condition(c))
{
dfa->presentStateID = pPresentState->transitions[tID].toStateID;
return;
}
}
dfa->presentStateID = pPresentState->defaultToStateID;
}
//To Add the state to DFA by using number of states
void State_add (DFA* pDFA, DFAState* newState)
{
newState->ID = pDFA->numOfStates;
pDFA->states[pDFA->numOfStates] = newState;
pDFA->numOfStates++;
}
void transition_Add (DFA* dfa, int fromStateID, int(*condition)(char), int toStateID)
{
DFAState* state = dfa->states[fromStateID];
state->transitions[state->numOfTransitions].toStateID = toStateID;
state->numOfTransitions++;
}
void reset(DFA* dfa)
{
dfa->presentStateID = dfa->initialStateID;
}
Consider an aircraft traveling at high speed. At a point on its wing, the local shear stress is 312 N/m2, and the local conductive heat transfer to the wing is 450 kW/m2. Calculate the air velocity and temperature gradients normal to the surface assuming that the surface has a temperature of 330 K.
Answer:
The air velocity is 1442.3m/s
The temperature gradient is 0.00311K/m
Explanation:
Rate of heat transfer = local conductive heat transfer × area
Rate of heat transfer = force × distance/time (distance/time = velocity)
Therefore, rate of heat transfer = force × velocity
Force (F) × velocity (v) = local conductive heat transfer coefficient (k) × Area (A)
F/A × v = k
Shear stress = F/A = 312N/m^2
k = 450kW/m^2 = 450×1000W/m^2 = 450000W/m^2
312 × v = 450000
v = 450000/312 = 1442.3m/s
Air velocity (v) = 1442.3m/s
Temperature gradient = Temperature (T)/distance (s)
From equations of motion
v^2 = u^2 + 2gs
u = 0m/s, v = 1442.3m/s, g = 9.8m/s^2
1442.3^2 = 2×9.8×s
s = 2080229.29/19.6 = 106134.15m
Temperature gradient = 330K/106134.15m = 0.00311K/m
Answer:
The solution is shown in the images attached with the answer.
Explanation:
Consider a thin suspended hotplate that measures 0.25 m × 0.25 m. The isothermal plate has a mass of 3.75 kg, a specific heat of 2770 J/kg·K, and a temperature of 250°C. The ambient air temperature is 25°C and the surroundings temperature is 25°C. If the convection coefficient is 6.4 W/m2·K and the emissivity of the plate is 0.42, determine the time rate of change of the plate temperature, , when the plate temperature is 250°C. Evaluate the magnitude of the heat losses by convection and by radiation.
Answer:
Heat losses by convection, Qconv = 90W
Heat losses by radiation, Qrad = 5.814W
Explanation:
Heat transfer is defined as the transfer of heat from the heat surface to the object that needs to be heated. There are three types which are:
1. Radiation
2. Conduction
3. Convection
Convection is defined as the transfer of heat through the actual movement of the molecules.
Qconv = hA(Temp.final - Temp.surr)
Where h = 6.4KW/m2K
A, area of a square = L2
= (0.25)2
= 0.0625m2
Temp.final = 250°C
Temp.surr = 25°C
Q = 64 * 0.0625 * (250 - 25)
= 90W
Radiation is a heat transfer method that does not rely upon the contact between the initial heat source and the object to be heated, it can be called thermal radiation.
Qrad = E*S*(Temp.final4 - Temp.surr4)
Where E = emissivity of the surface
S = boltzmann constant
= 5.6703 x 10-8 W/m2K4
Qrad = 5.6703 x 10-8 * 0.42 * 0.0625 * ((250)4 - (25)4)
= 5.814 W
The time rate of change of the hotplate's temperature is 0.0062 K/s. The magnitude of the heat losses by convection and radiation is 64.23 W.
Explanation:The question is asking for the time rate of change of the plate temperature when it is at 250°C and the magnitude of the heat losses by convection and by radiation.
First, transform the initial plate temperature from Celsius to Kelvin, so 250°C = 523.15 K.
The air temperature is also given in Celsius, which is 25°C = 298.15 K.
Next, we calculate the heat loss due to convection using the formula Q_conv = h * A * (T_plate - T_air), where h is the convection coefficient, A is the surface area of the plate, and T_plate and T_air are the temperatures of the plate and the air, respectively.
Substituting the given values, we get: Q_conv = 6.4 W/m^2.k * 0.25 m * 0.25 m * (523.15 K - 298.15 K) = 1.80 W.
The heat loss due to radiation can be calculated using the Stefan-Boltzmann law: Q_rad = ε * σ * A * (T_plate^4 - T_surrounding^4), where ε is the emissivity, σ is the Stefan-Boltzmann constant (5.67 * 10^-8 W/m^2.K^4), and T_surrounding is the surrounding temperature.
Again plugging in the given values, we get the heat loss due to radiation as Q_rad = 0.42 * 5.67 * 10^-8 W/m^2.K^4 * 0.25 m * 0.25 m * (523.15 K^4 - 298.15 K^4) = 62.43 W.
So, the total heat loss Q = Q_conv + Q_rad = 1.80 W + 62.43 W = 64.23 W.
To find the time rate of change of the temperature, we use the formula: dT/dt = Q / (m*C), where dT/dt is the time rate of change of the plate temperature, m is the mass, and C is the specific heat. Substituting the values, we get: dT/dt = 64.23 W / (3.75 kg * 2770 J/kg.K) = 0.0062 K/s.
Learn more about Heat Transfer here:https://brainly.com/question/34419089
#SPJ3