When Dr. Hewitt immerses an object in water the second time and catches the water that is displaced by the object, how does the weight lost by the object compare to the weight of the water displaced?

Answers

Answer 1

Answer:

Explanation:

- The volume of water displaced by immersing the object is equal the amount of water spilled and caught by Dr. Hewitt.

- The amount of water is proportional to the volume of object of fraction of object immersed in water will lead to the same fraction of water displaced and caught by Dr. Hewitt.  

- When the object is immersed the force of Buoyancy acts against the weight and reducing the scale weight.

- The amount of Buoyancy Force is proportional to the fraction of Volume of object immersed in water; hence, the same amount is spilled/lost.


Related Questions

Assume that a planet just like Earth orbits the bright star named Sirius. If this Earth-like planet orbits with a semimajor axis of 1 AU and an orbital period of 7 months, what is the mass of Sirius?

Answers

Answer:

5.9x10³⁰ kg = 2.97 solar mass.

Explanation:

The mass of Sirius can be calculated using Kepler's Third Law:

[tex]P^{2} = \frac{4 \pi^{2}}{G (M_{1} + M_{2})} \cdot a^{3}[/tex]

where P: is the period, G: is the gravitational constant = 6.67x10⁻¹¹ m³kg⁻¹s⁻², a: is the size of the orbit, M₁: is the mass of the Earth-like planet =  5.97x10²⁴ kg, and M₂: is the mass of Sirius.  

Firts, we need to convert the units:

P = 7 months = 1.84x10⁷ s

a = 1 AU = 1.5x10¹¹ m

Now, from equation (1), we can find the mass of Sirius:

[tex] M_{2} = \frac{4 \pi^{2} a^{3}}{P^{2} G} - M_{1} [/tex]

[tex] M_{2} = \frac{4 \pi^{2} (1.5 \cdot 10^{11} m)^{3}}{(1.84\cdot 10^{7} s)^{2} \cdot 6.67 \cdot 10{-11} m^{3} kg ^{-1} s^{-2}} - 5.97 \cdot 10^{24} kg = 5.9 \cdot 10^{30} kg = 2.97 solar mass [/tex]  

Therefore, the mass of Sirius is 5.9x10³⁰ kg = 2.97 solar mass.

I hope it helps you!

Answer: 2.94kg

Explanation: Using Kepler's law of planetary motion which states that, the square of the orbital period of a planet is proportional to the cube of the semi major axis of it's orbit.

Sirius is the name given to the brightest star in the sky

It could be literally interpreted as;

1/mass of planet = (orbital period in years^2 ÷ semi major axis in AU^3)

Orbital period = 7months is equivalent to 7/12 = 0.5833 years

Semi major axis = 1AU

Therefore, mass of Sirius is given by:

1/Mass = (orbital period^2 ÷ semi major axis^3)

1/Mass = (0.5833^2 ÷ 1^3)

1/Mass = 0.3402 ÷ 1

1/Mass = 0.3402

Therefore,

Mass = 1/0.3402 = 2.94kg

4 The time to failure of an electrical component has a Weibull distribution with parameters λ = 0.056 and a = 2.5. A random collection of 500 components is obtained. Estimate the probability that at least 125 of the 500 components will have failure times larger than 20.

Answers

Answer:

the probability that at least 125 of the 500 components will have failure times larger than 20 is 0.7939

Explanation:

see the attached file

The Nichrome wire is replaced by a wire of the same length and diameter, and same mobile electron density but with electron mobility 4 times as large as that of Nichrome. Now what is the electric field inside the wire?

Answers

Answer:

The electric field inside the wire will remain the same or constant, while the drift velocity will by a factor of four.

Explanation:

Electron mobility, μ = [tex]\frac{v_d}{E}[/tex]

where

[tex]v_d[/tex] = Drift velocity

E = Electric field

Given that the electric field strength = 1.48 V/m,

Therefore since the electric potential depends on the length of the wire and the attached potential difference, then when the electron mobility is increased 4 times the Electric field E will be the same but the drift velocity will increase four times. That is

4·μ = [tex]\frac{4*v_d}{E}[/tex]

Answer:

Explanation:

Usually, the electron drift velocity in a material is directly proportional to the electric field, which means that the electron mobility is a constant (independent of electric field).

μ × E = Vd

Where,

D = electric field

Vd = drift velocity

μ = electron mobility

μ2 = μ × 4

μ/Vd1 = 4 × μ/Vd2

Vd2 = 4 × Vd1

The electric field is the same but drift velocity increases.

How fast (in rpm) must a centrifuge rotate if a particle 7.50 cm from the axis of rotation is to experience an acceleration of 119000 g's? If the answer has 4 digits or more, enter it without commas, e.g. 13500.

Answers

Explanation:

Below is an attachment containing the solution.

The drag is proportional to the square of the speed of the boat, in the form Fd=bv2 where b= 0.5 N⋅ s2/m2. What is the acceleration of the boat just after the rain starts? Take the positive x axis along the direction of motion.

Answers

The first part of the question is missing and it is:

A boat of mass 250 kg is coasting, with its engine in neutral, through the water at speed 3.00 m/s when it starts to rain. The rain is falling vertically, and it accumulates in the boat at the rate of 10.0 kg/hr.

Answer:

a(o) = 18.03 x 10^(-3) m/s^(-2)

Explanation:

First of all, if we make a momentum balance in the direction of motion (the x-direction), we'll discover that the change of the momentum will be equal to the forces acting on the boat.

Hence, there is only the drag force, which acts against the direction of motion as:

d(m·v)/dt = - k·v² (since f_d = - k·v²)

where k = 0.5 Ns²/m²

Now let's simplify the time derivative on the Left, by applying product rule of differentiation and we obtain:

v·dm/dt + m·dv/dt = - k·v²

where dm/dt = 10kg/hr (this is the change of the mass of the boat)

Furthermore, acceleration is the time derivative of time velocity, Thus;

a = dv/dt = - (k·v² + v·dm/dt) / m

Now, for the moment,when the rain starts; since we know all the values on the right hand side, let's solve for the acceleration ;

a(o) = - (ko·vo² + vo·dm/dt) / mo

= -[ (0.5(3)²) + (3x10/3600)/250

(dt = 3600secs because 1hr = 3600 secs)

So a(o) = 18.03 x 10^(-3) m/s^(-2)

(Problem 9.15) If you are rounding a corner on a bicycle, by twisting the handlebars of your bicycle to the right, which direction does the bicycle wheel precess? Why? Should you lean inward (to the right) or outward (to the left) to counteract this?

Answers

Answer:

towards right,

lean inward to avoid tripping

Explanation:

The frictional force becomes centripetal force while turinig and presses on the wheel to maintain the grip of wheel on the road. Otherwise the bicycle will slip. So the press on the wheel is inward or towards the right when turning a corner to right

The rider has to lean inward ( to the right) to avoid tripping. Leaning inward, changes the direction of normal force on the wheels from vertical to slant. This helps to counter the torque produced by the frictional force

Suppose you move along a wire at the same speed as the drift speed of the electrons in the wire. Do you now measure a magnetic field of zero?

Answers

Answer:

False. Field is non-zero

Explanation:

If you were moving along with the electrons, they would appear stationary to you. You would measure a current of zero. However, the fixed positive charges in the wire seem to move backwards relative to you, creating the equivalent current as if you weren't moving. You would measure the same field, but the field would be caused by the 'backward' motion of positive particles.

Final answer:

Moving at the same speed as the drift speed of electrons does not result in a zero magnetic field. The movement of electrons in a wire creates a magnetic field, and this field would still be present even if you were moving at the same speed as the electrons.

Explanation:

When moving along a wire at the same speed as the drift speed of the electrons, you will not measure a magnetic field of zero. The drift speed of electrons refers to the average velocity at which the electrons move in a conductor when an electric field is applied. This speed is generally very slow, but it does not mean that there is no magnetic field.

The movement of electrons in a wire creates a magnetic field around the wire, even if the drift speed is small. This is because the electric current generated by the movement of electrons is what produces the magnetic field.

So, even if you were to move at the same speed as the drift speed of the electrons in the wire, you would still measure a non-zero magnetic field because the movement of electrons in the wire is what generates the magnetic field.

Learn more about Magnetic Field here:

https://brainly.com/question/36936308

#SPJ3

A block sliding along a horizontal frictionless surface with speed v collides with a spring and compresses it by 2.0 cm. What will be the compression if the same block collides with the spring at a speed of 2v?

Answers

Answer:

4.0 cm

Explanation:

For the compression of the spring, the kinetic energy of the mass equals the elastic potential energy of the spring.

So, 1/2mv² = 1/2kx² ⇒ x = (√m/k)v

Since m and k are constant since its the same spring x ∝ v

If our speed is now v₁ = 2v, our compression is x₁

x₁ = (√m/k)v₁ = (√m/k)2v = 2(√m/k)v = 2x

x₁ = 2x

Since x = 2.0 cm, our compression for speed = 2v is

x₁ = 2(2.0) = 4.0 cm

If the same block collides with the spring at a speed of 2v, the compression will be 4.0cm.

Given the data in the question;

Compression; [tex]x_1 = 2.0cm[/tex]Velocity 1; [tex]v_1 = v[/tex]Velocity 2; [tex]v_2 = 2v[/tex]

Using conservation of energy:

Kinetic energy of the mass = Elastic potential energy of the spring

We have:

[tex]\frac{1}{2}kx^2 = \frac{1}{2}mv^2\\\\kx^2 = mv^2[/tex]

"v" is directly proportional to "x"

Hence,

[tex]\frac{x_1}{x_2} = \frac{v_1}{v_2}[/tex]

We substitute in our given values

[tex]\frac{2.0cm}{x_2} = \frac{v}{2v}\\\\x_2 = \frac{v(2.0cm*2)}{v} \\\\x_2 = (2.0cm*2)\\\\x_2 = 4.0cm[/tex]

Therefore, if the same block collides with the spring at a speed of 2v, the compression will be 4.0cm.

Learn more; https://brainly.com/question/18723512

A car is rounding a circular curve of radius r on a banked turn. As the drawing indicates, there are two forces acting on the car, its weight mg and the normal force FN exerted on it by the road. Which force, or force component, provides the centripetal force that keeps the car moving on the circular path?
1. The vertical component, FNcosθ of the normal force.
2. The horizontal component, FNsinθ of the normal force.
3. Both the normal force, FN, and the weight, mg, of the car.
4. The normal force, FN.
5. The weight, mg, of the car.
6. The horizontal component, FNsinθ of the norma.l

Answers

Answer:

Check attachment for the body diagram

Explanation:

Centripetal force is a net force that acts on an object to keep it moving along a circular path.

It is given as

F=ma

Where a =v²/r

F=mv²/r

The centripetal force is directed towards the center i.e inward.

Then, analysing the free body diagram, we notice that the horizontal component of the Normal force (FNsinθ) is directed towards the centre. Then, we can say the last option 6 is correct.

From the following statements about mechanical waves, identify those that are true for transverse mechanical waves only, those that are true for longitudinal mechanical waves only, and those that are true for both types of waves.A. In longitudinal waves, the particles of the medium move parallel to the direction of the flow of energy.B. Many wave motions in nature are a combination of longitudinal and transverse motion.C. In transverse waves, the particles of the medium move perpendicular to the direction of the flow of energy.D. All of the above

Answers

'In transverse waves, the particles of the medium move perpendicular to the direction of the flow of energy' is true for transverse waves only.

'In longitudinal waves, the particles of the medium move parallel to the direction of the flow of energy' is true for longitudinal waves only.

'Many wave motions in nature are a combination of longitudinal and transverse motion' is true for both longitudinal and transverse waves.

Explanation:

Longitudinal waves are those where the direction of propagation of particles are parallel to the medium' particles. While transverse waves propagate perpendicular to the medium' particles.

As wave motions are assumed to be of standing waves which comprises of particles moving parallel as well as perpendicular to the medium, most of the wave motions are composed of longitudinal and transverse motion.

So the option stating the medium' particle moves perpendicular to the direction of the energy flow is true for transverse waves. Similarly, the option stating the medium' particle moves parallel to the direction of flow of energy is true for longitudinal waves only.

And the option stating that wave motions comprises of combination of longitudinal and transverse motion is true for both of them.

Final answer:

The statements A, B, and C are true for both transverse and longitudinal waves.

Explanation:

A. In longitudinal waves, the particles of the medium move parallel to the direction of the flow of energy.
B. Many wave motions in nature are a combination of longitudinal and transverse motion.
C. In transverse waves, the particles of the medium move perpendicular to the direction of the flow of energy.

All of the above statements are true for both transverse and longitudinal waves.

Explanation An is valid for longitudinal waves as it were. In longitudinal waves, for example, sound waves, the particles of the medium vibrate lined up with the bearing of the energy move. This can be pictured as pressure and rarefaction of the particles in the medium.

Only transverse waves are covered by statement C. In cross over waves, for example, light waves, the particles of the medium vibrate opposite to the course of the energy move. The particles can be seen moving side to side or up and down, respectively.

B holds true for both kinds of waves. Many wave movements in nature, for example, water waves and seismic waves, include a mix of longitudinal and cross over movement. Water particles, for instance, move in circular orbits as waves pass by, which is a combination of transverse and longitudinal motion.

Explain the differences between the geocentric theory of the universe and the heliocentric theory

Answers

Geocentric Theory

In astronomy, the geocentric model is a superseded description of the Universe with Earth at the center. Under the geocentric model, the Sun, Moon, stars, and planets all orbited Earth

Heliocentric Theory

Heliocentrism is the astronomical model in which the Earth and planets revolve around the Sun at the center of the Solar System. Historically, heliocentrism was opposed to geocentrism, which placed the Earth at the center

G-Theory is the earth is the center of the universe.

H-Theory is the sun is the center of the universe.

A student with a mass of 80.0 kg runs up three flights of stairs in 12.0 sec. The student has gone a vertical distance of 8.0 m. Determine the amount of work done by the student to elevate his body to this height. Determine the power consumed by the student. Assume that his speed is constant.

Answers

The amount of work done by the student to elevate his body to this height is 6278.4 JPower is 523.2 Watts

Explanation:

Work = Force x Displacement

Force = Weight of student

Weight = Mass x Acceleration due to gravity

Mass, m = 80 kg

Acceleration due to gravity, g = 9.81 m/s²

Weight = 80 x 9.81 = 784.8 N

Displacement = 8 m

Work = 784.8 x 8 = 6278.4 J

The amount of work done by the student to elevate his body to this height is 6278.4 J

Power is the ratio of work to time taken

         [tex]P=\frac{W}{t}\\\\P=\frac{6278.4}{12}\\\\P=523.2W[/tex]

Power is 523.2 Watts

The power consumed by the student is 523.2 watts.

The calculation is as follows:

[tex]Work = Force \times Displacement[/tex]

Force = Weight of student  

[tex]Weight = Mass \times Acceleration\ due\ to\ gravity[/tex]

Mass, m = 80 kg

Acceleration due to gravity, g = 9.81 m/s²

[tex]Weight = 80 \times 9.81 = 784.8 N[/tex]  

Displacement = 8 m

[tex]Work = 784.8 \times 8 = 6278.4 J[/tex]

So,

Power consumed should be

[tex]= 6278.4 \div 12[/tex]

= 523.2

Learn more: https://brainly.com/question/24908711?referrer=searchResults

What is the minimum diameter mirror on a telescope that would allow you to see details as small as 5.20 km on the moon some 384000 km away? Assume an average wavelength of 550 nm for the light received.
cm

Answers

Answer:

4.96cm

Explanation:

distance  = 5.20km = 5.2 × 10³ m

Wavelength , λ = 550nm = 5.50 × 10⁻⁷m

distance of moon, L = 384000 km = 3.84 × 10⁸m

formula for resolving power of two objects

d = (1.22 × λ ×L) / D

D = (1.22 × λ ×L) / d

    = (1.22 × 5.50 × 10⁻⁷ ×3.84 × 10⁸) / 5.2 × 10³

D = 4.96cm

An elevator cab that weighs 27.8 kN moves upward. What is the tension in the cable if the cab's speed is (a) increasing at a rate of 2 1.22 / msand (b) decreasing at a rate of 2 1.22 / ms?

Answers

Answer:

a)T = 8.63  × 10 ⁴ N, b)T = -3.239 × 10 ⁴ N

Explanation:

Given:

W = 27.8 KN = 27.8 × 10 ³ N,

For upward motion: Fnet is upward, Tension T is upward and weight W is downward so

a) a=21.22 m/s² ( not written clearly the unit. if it is acceleration?) then

Fnet = T - W

⇒ T = F + W = ma + W

T = (W/g)a + W                           (W=mg ⇒m=W/g)

T = (27.8 × 10 ³ N / 9.8 ) 21.22 m/s² + 27.8 × 10 ³ N

T = 86,263.265 N

T = 8.63  × 10 ⁴ N

b) For Declaration in upward direction a = -21.22 m/s²

Fnet = T - W

⇒ T = F + W = ma + W

T = (W/g)a + W                        

T = (27.8 × 10 ³ N / 9.8 ) (-21.22 m/s²) + 27.8 × 10 ³ N

T = -32395.5 N

T = -3.239 × 10 ⁴ N

as Tension can not be negative I hope the value of acceleration and deceleration is correct.

1. At the synaptic terminal, voltage-gated ______________ channels open, thereby stimulating the synaptic vesicles to release their neurotransmitters by exocytosis.

Answers

Ion

Explanation:

At the synaptic terminal, voltage-gated ion channels open, thereby stimulating the synaptic vesicles to release the neurotransmitters by exocytosis.

These ion channels are the signaling molecules in neurons. They are the transmembrane proteins that form ion channels. The membrane potential changes the conformation of the channel proteins that regulates their opening and closing. These channels play an important role in neurotransmitter release in presynaptic nerve endings.

For example - Ca²⁺ gated ion channel.

Kirchhoff’s loop rule for circuit analysis is an expression of__________?

Answers

Answer:

Conservation of energy

Explanation:

Gustav Kirchhoff, a German physicist proposed a rule called Kirchhoff's loop rule also known as Kirchhoff's second rule which states that for any closed loop, the potential difference including the voltage supply is zero. That means energy supplied by a voltage source must absorbed for balance by other components in the loop

This fulfils the law of conservation of energy

The New England Merchants Bank Building in Boston is 152 mm high. On windy days it sways with a frequency of 0.20 HzHz , and the acceleration of the top of the building can reach 2.5 %% of the free-fall acceleration, enough to cause discomfort for occupants.What is the total distance, side to side, that the top of the building moves during such an oscillation?

Answers

Answer:

The total distance, side to side, that the top of the building moves during such an oscillation = 31 cm

Explanation:

Let the total side to side motion be 2A. Where A is maximum acceleration.

Now, we know know that equation for maximum acceleration is;

A = α(max) / [(2πf)^(2)]

So 2A = 2[α(max) / [(2πf)^(2)] ]

α(max) = (0.025 x 9.81) while frequency(f) from the question is 0.2Hz.

Therefore 2A = 2 [(0.025 x 9.81) / [((2π(0.2)) ^(2)] ] = 2( 0.245 / 1.58) = 0.31m or 31cm

A steel ball is whirled on the end of a chain in a horizontal circle of radius R with a constant period T. If the radius of the circle is then reduced to 0.75R, while the period remains T, what happens to the centripetal acceleration of the ball?

Answers

Final answer:

When the radius of the circle is reduced while the period remains constant, the centripetal acceleration of the ball increases.

Explanation:

When the radius of the circle is reduced to 0.75R while the period remains T, the centripetal acceleration of the ball increases.

Centripetal acceleration is given by the formula ac = v^2 / r, where v is the tangential velocity and r is the radius of the circle. Since the period T remains constant and the radius is reduced, the velocity of the ball must increase in order to cover the smaller circumference in the same amount of time, resulting in an increase in centripetal acceleration.

. A 10-ft ladder is leaning against a wall. If the top of the ladder slides down the wall at a rate of 2 ft/sec, how fast is the bottom moving along the ground when the bottom of the ladder is 5 ft from the wall

Answers

Explanation:

Below is an attachment containing the solution.

A bugle can be thought of as an open pipe. If a bugle were straightened out, it would be 2.65 mlong.a.) If the speed of sound is 343m/????, find the lowest frequency that is resonant for a bugle (ignoring end corrections)b.) Find the next two resonant frequencies for the bugle.

Answers

Answer:

(a). The lowest frequency is 64.7 Hz.

(b). The next two resonant frequencies for the bugle are 129.4 Hz and 194.2 hz.

Explanation:

Given that,

Length = 2.65 m

Speed of sound = 343 m

We need to calculate the wavelength

Using formula of wavelength

[tex]\lambda=2l[/tex]

Put the value into the formula

[tex]\lambda=2\times2.65[/tex]

[tex]\lambda=5.3\ m[/tex]

(a). We need to calculate the lowest frequency

Using formula of frequency

[tex]f_{1}=\dfrac{v}{\lambda_{1}}[/tex]

Put the value into the formula

[tex]f_{1}=\dfrac{343}{5.3}[/tex]

[tex]f_{1}=64.7\ Hz[/tex]

(b). We need to calculate the next two resonant frequencies for the bugle

Using formula of resonant frequency

[tex]f_{2}=\dfrac{v}{\lambda_{2}}[/tex]

[tex]f_{2}=\dfrac{v}{l}[/tex]

Put the value into the formula

[tex]f_{2}=\dfrac{343}{2.65}[/tex]

[tex]f_{2}=129.4\ Hz[/tex]

For third frequency,

[tex]f_{3}=\dfrac{v}{\lambda_{3}}[/tex]

[tex]f_{3}=\dfrac{3v}{2l}[/tex]

Put the value into the formula

[tex]f_{3}=\dfrac{3\times343}{2\times2.65}[/tex]

[tex]f_{3}=194.2\ Hz[/tex]

Hence, (a). The lowest frequency is 64.7 Hz.

(b). The next two resonant frequencies for the bugle are 129.4 Hz and 194.2 hz.

The next two resonant frequencies for the bugle are 64.72Hz and 323.6Hz

The lowest frequency is expressed as:

f = v/2l

[tex]f_0=\frac{343}{2(2.65)} f_0=\frac{343}{5.3}\\f_0= 64.72 Hz[/tex]

Since the bugle is an open pipe the next two resonant frequencies are;

[tex]f_2 =3f_0=3(64.72) = 194.15Hz\\\\f_3 = 5f_0 = 5(64.72) =323.6Hz \\[/tex]

Hence the next two resonant frequencies for the bugle are 64.72Hz and 323.6Hz

Learn more on resonant frequency here: https://brainly.com/question/3292140

You are riding your bicycle directly away from a stationary source of sound and hear a frequency that is 1.0% lower than the emitted frequency. The speed of sound is 343 m/s. What is your speed

Answers

Answer:

Explanation:

Given

apparent frequency is 1 % lower than the original frequency

Speed of sound [tex]v=343\ m/s[/tex]

suppose f is the original frequency  

apparent frequency [tex]f'=0.99f[/tex]

using Doppler's formula

[tex]f'=f\cdot \frac{v-v_o}{v+v_s} [/tex]

where  

[tex]f'[/tex]=apparent frequency  

[tex]v[/tex]=velocity of sound in the given media

[tex]v_s[/tex]=velocity of source

[tex]v_o[/tex]=velocity of observer  

[tex]0.99f=f(\dfrac{343-v_o}{v+0})[/tex]

[tex]0.99\times 343=343-v_o[/tex]

[tex]v_o=343\times 0.1[/tex]

[tex]v_o=34.3\ m/s[/tex]

Suppose you watch a leaf bobbing up and down as ripples pass it by in a pond. You notice that it does two full up and down bobs each second. What is true of the ripples on the pond?

Answers

Answer:

The frequency of the ripples is 2Hz, and their period is 0.5 seconds.

Explanation:

Since the ripples on the pond are making the leaf oscillate up and down at a rate of two times per second, we can calculate the period T and the frequency f of the ripples on the pon[tex]T=\frac{1}{0.5Hz} =[/tex]d.

The frequency, by definition, is the number of waves per unit of time. In this case, we have two waves per second, so the frequency is 2s⁻¹, or 2Hz.

The period is the inverse of the frequency, so

[tex]T=\frac{1}{2Hz} =0.5s[/tex]

Then, the period is equal to 0.5 seconds.

A 497−g piece of copper tubing is heated to 89.5°C and placed in an insulated vessel containing 159 g of water at 22.8°C. Assuming no loss of water and a heat capacity for the vessel of 10.0 J/°C, what is the final temperature of the system (c of copper = 0.387 J/g·°C)?

Answers

Final answer:

To calculate the initial temperature of the copper piece, use the principle of energy conservation and the equations for heat gained and heat lost. The final temperature of the system is approximately 24.8 °C.

Explanation:

To calculate the initial temperature of the copper piece, we can use the principle of energy conservation. The heat gained by the water is equal to the heat lost by the copper. The heat gained by the water can be calculated using the formula:

Q = m * c * ΔT

Where Q is the heat gained, m is the mass of the water, c is the specific heat capacity of water, and ΔT is the change in temperature. The heat lost by the copper can be calculated using the formula:

Q = m * c * ΔT

Where Q is the heat lost, m is the mass of the copper, c is the specific heat capacity of copper, and ΔT is the change in temperature. Since the final temperature is known, we can rearrange the formulas to solve for the initial temperature of the copper:

Initial temperature of copper = (heat gained by water / (m * c)) + final temperature

Substituting the given values into the formulas, we get:

Heat gained by water = (159 g) * (4.18 J/g·°C) * (39.9 °C - 22.8 °C)

Heat lost by copper = (497 g) * (0.387 J/g·°C) * (final temperature - 89.5 °C)

Setting the two equations equal, we can solve for the final temperature:

(159 g) * (4.18 J/g·°C) * (39.9 °C - 22.8 °C) = (497 g) * (0.387 J/g·°C) * (final temperature - 89.5 °C)

Solving the equation, the final temperature of the system is approximately 24.8 °C.

A particle has a charge of q = +4.9 μC and is located at the origin. As the drawing shows, an electric field of Ex = +242 N/C exists along the +x axis. A magnetic field also exists, and its x and y components are Bx = +1.9 T and By = +1.9 T. Calculate the force (magnitude and direction) exerted on the particle by each of the three fields when it is (a) stationary, (b) moving along the +x axis at a speed of 345 m/s, and (c) moving along the +z axis at a speed of 345 m/s.

Answers

a)

[tex]F_{E_x}=1.19\cdot 10^{-3}N[/tex] (+x axis)

[tex]F_{B_x}=0[/tex]

[tex]F_{B_y}=0[/tex]

b)

[tex]F_{E_x}=1.19\cdot 10^{-3} N[/tex] (+x axis)

[tex]F_{B_x}=0[/tex]

[tex]F_{B_y}=3.21\cdot 10^{-3}N[/tex] (+z axis)

c)

[tex]F_{E_x}=1.19\cdot 10^{-3} N[/tex] (+x axis)

[tex]F_{B_x}=3.21\cdot 10^{-3} N[/tex] (+y axis)

[tex]F_{B_y}=3.21\cdot 10^{-3}N[/tex] (-x axis)

Explanation:

a)

The electric force exerted on a charged particle is given by

[tex]F=qE[/tex]

where

q is the charge

E is the electric field

For a positive charge, the direction of the force is the same as the electric field.

In this problem:

[tex]q=+4.9\mu C=+4.9\cdot 10^{-6}C[/tex] is the charge

[tex]E_x=+242 N/C[/tex] is the electric field, along the x-direction

So the electric force (along the x-direction) is:

[tex]F_{E_x}=(4.9\cdot 10^{-6})(242)=1.19\cdot 10^{-3} N[/tex]

towards positive x-direction.

The magnetic force instead is given by

[tex]F=qvB sin \theta[/tex]

where

q is the charge

v is the velocity of the charge

B is the magnetic field

[tex]\theta[/tex] is the angle between the directions of v and B

Here the charge is stationary: this means [tex]v=0[/tex], therefore the magnetic force due to each component of the magnetic field is zero.

b)

In this case, the particle is moving along the +x axis.

The magnitude of the electric force does not depend on the speed: therefore, the electric force on the particle here is the same as in part a,

[tex]F_{E_x}=1.19\cdot 10^{-3} N[/tex] (towards positive x-direction)

Concerning the magnetic force, we have to analyze the two different fields:

- [tex]B_x[/tex]: this field is parallel to the velocity of the particle, which is moving along the +x axis. Therefore, [tex]\theta=0^{\circ}[/tex], so the force due to this field is zero.

[tex]- B_y[/tex]: this field is perpendicular to the velocity of the particle, which is moving along the +x axis. Therefore, [tex]\theta=90^{\circ}[/tex]. Therefore, [tex]\theta=90^{\circ}[/tex], so the force due to this field is:

[tex]F_{B_y}=qvB_y[/tex]

where:

[tex]q=+4.9\cdot 10^{-6}C[/tex] is the charge

[tex]v=345 m/s[/tex] is the velocity

[tex]B_y = +1.9 T[/tex] is the magnetic field

Substituting,

[tex]F_{B_y}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N[/tex]

And the direction of this force can be found using the right-hand rule:

- Index finger: direction of the velocity (+x axis)

- Middle finger: direction of the magnetic field (+y axis)

- Thumb: direction of the force (+z axis)

c)

As in part b), the electric force has not change, since it does not depend on the veocity of the particle:

[tex]F_{E_x}=1.19\cdot 10^{-3}N[/tex] (+x axis)

For the field [tex]B_x[/tex], the velocity (+z axis) is now perpendicular to the magnetic field (+x axis), so the force is

[tex]F_{B_x}=qvB_x[/tex]

And by substituting,

[tex]F_{B_x}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N[/tex]

And by using the right-hand rule:

- Index finger: velocity (+z axis)

- Middle finger: magnetic field (+x axis)

- Thumb: force (+y axis)

For the field [tex]B_y[/tex], the velocity (+z axis) is also perpendicular to the magnetic field (+y axis), so the force is

[tex]F_{B_y}=qvB_y[/tex]

And by substituting,

[tex]F_{B_y}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N[/tex]

And by using the right-hand rule:

- Index finger: velocity (+z axis)

- Middle finger: magnetic field (+y axis)

- Thumb: force (-y axis)

Final answer:

The force on a charged particle in an electric field is given by Felectric = qE, and in a magnetic field while moving, it is Fmagnetic = qv × B, with the right-hand rule determining the direction of Fmagnetic. A stationary particle only experiences Felectric. When moving, it may experience both forces, depending on the motion's relationship to the field's direction.

Explanation:

The force on a charged particle in an electric field is given by Felectric = qE, where q is the charge and E is the electric field. If the particle is stationary, only the electric force acts on it. When moving in a magnetic field, a magnetic force Fmagnetic = qv × B also acts on it, where v is the velocity and B is the magnetic field. The direction of this force is perpendicular to both v and B as per the right-hand rule.

For a particle with charge q = +4.9 μC:

(a) When stationary, the force due to the electric field is F = qEx, only in the direction of E.(b) When moving along the +x axis, the magnetic force is zero as v and B are parallel.(c) When moving along the +z axis, both electric and magnetic forces act, and they can be calculated using the given formulas.

Sebuah kolom udara memiliki panjang 40cm.Jika garpu kala mempunyai frekuensi 320Hz,maka besarnya cepat rambat gelombang bunyi diudara pada saat resonasi pertama adalah....m/s.

Answers

Answer:

Velocity of sound is 512 m/s

Explanation:

for first resonance condition we know that

[tex]\frac{\lambda}{4} = L[/tex]

[tex]\frac{\lambda}{4} = 0.40[/tex]

[tex]\lambda = 1.6 m[/tex]

now the frequency is given as

[tex]f = 320 Hz[/tex]

now to find the velocity of sound we have

[tex]v = \lambda f[/tex]

[tex]v = 1.6 (320)[/tex]

[tex]v = 512 m/s[/tex]

When the valve between the 2.00-L bulb, in which the gas pressure is 2.00 atm, and the 3.00-L bulb, in which the gas pressure is 4.00 atm, is opened, what will be the final pressure in the two bulbs

Answers

Answer:

[tex]P_{C} = 3.2\, atm[/tex]

Explanation:

Let assume that gases inside bulbs behave as an ideal gas and have the same temperature. Then, conditions of gases before and after valve opened are now modelled:

Bulb A (2 L, 2 atm) - Before opening:

[tex]P_{A} \cdot V_{A} = n_{A} \cdot R_{u} \cdot T[/tex]

Bulb B (3 L, 4 atm) - Before opening:

[tex]P_{B} \cdot V_{B} = n_{B} \cdot R_{u} \cdot T[/tex]

Bulbs A & B (5 L) - After opening:

[tex]P_{C} \cdot (V_{A} + V_{B}) = (n_{A} + n_{B})\cdot R_{u} \cdot T[/tex]

After some algebraic manipulation, a formula for final pressure is derived:

[tex]P_{C} = \frac{P_{A}\cdot V_{A} + P_{B}\cdot V_{B}}{V_{A}+V_{B}}[/tex]

And final pressure is obtained:

[tex]P_{C} = \frac{(2\,atm)\cdot (2\,L)+(4\,atm)\cdot(3\,L)}{5\,L}[/tex]

[tex]P_{C} = 3.2\, atm[/tex]

In the rough approximation that the density of a planet is uniform throughout its interior, the gravitational field strength (force per unit mass) inside the planet at a distance from the center is , where is the radius of the planet. (For the Earth, at least, this is only a rough approximation, because the outer layers of rock have lower density than the inner core of molten iron). 1. Using the uniform-density approximation, calculate the amount of energy required to move a mass m from the center of the Earth to the surface. 2. For comparison, how much energy would be required to move the mass from the surface of the planet to a very large distance away? 3. Imagine that a small hole is drilled through the center of the Earth from one side to the other. Determine the speed of an object of mass m, dropped into this hole, when it reaches the center of the planet.

Answers

Answer:

The answers to the questions are;

1. The amount of energy required to move a mass m from the center of the Earth to the surface is 0.5·m·g·R

2. The amount of energy required to move the mass from the surface of the planet to a very large distance away m·g·R.

3. The speed of an object of mass m, dropped into this hole, when it reaches the center of the planet is 9682.41783 m/s.

Explanation:

We note that the Work done W by the force F on the mass to move a small distance is given by

F×dr

The sum of such work to move the body to a required location is

W =[tex]\int\limits {F} \, dr[/tex]

F = mg' = m[tex]\frac{gr}{R}[/tex]

We integrate from 0 to R (the center to the Earth surface)

Therefore W = [tex]\int\limits^R_0 {m\frac{gr}{R}} \, dr[/tex]

Which gives W = [tex]\frac{mg}{R} [\frac{r^2}{2} ]^R_0 = \frac{1}{2}mgR[/tex]

2. To find the work done we have to integrate from the surface to infinity as follows W = [tex]\int\limits^{inf}_R {m\frac{gr}{R}} \, dr[/tex] = [tex]\frac{mg}{R} [\frac{r^2}{2} ]^{inf}_R = mgR[/tex]

The energy required to move the object to a large distance is equal to twice the energy reqired to move the object to the surface.

3 We note that the acceleration due to gravity at the surface is g and reduces to zero at the center of the Earth

v² = u² + 2·g·s

Radius of the Earth = 6371 km

From surface to half radius we have

v₁² = 2×9.81×6371/2×1000 = 62499460.04

v₁ = 7905.66 m/s

From the half the radius of the earth to the Earth center =

v₂² = 7905.66² + 2×9.81/2×6371/2×1000 = 93749215.04

v₂ = 9682.41783 m/s

The speed of an object of mass m, dropped into this hole, when it reaches the center of the planet. is 9682.41783 m/s

1. Energy to Move from Center to Surface: Using the uniform-density approximation, the energy required to move a mass m from Earth's center to the surface is [tex]\(-\frac{GMm}{R}\)[/tex]. 2. Energy to Move from Surface to Infinity: Moving the mass from the surface to infinity requires zero energy. 3. Speed at Earth's Center: The speed of an object dropped through a hole from the surface to the Earth's center is [tex]\(\sqrt{\frac{2GM}{R}}\)[/tex].

1. Energy to Move Mass from Center to Surface:

The gravitational potential energy U is given by:

[tex]\[ U = -\frac{GMm}{r} \][/tex]

where:

- G is the gravitational constant,

- M is the mass of the planet,

- m is the mass being moved,

- r is the distance from the center.

For this scenario, r is the radius of the planet R.

[tex]\[ U_{\text{center to surface}} = -\frac{GMm}{R} \][/tex]

2. Energy to Move Mass from Surface to Infinity:

When moving the mass to a very large distance away [tex](\( \infty \))[/tex], the potential energy becomes zero.

[tex]\[ U_{\text{surface to infinity}} = 0 \][/tex]

3. Speed of Object Dropped Through Earth's Center:[tex]\[ U_{\text{surface}} = K_{\text{center}} \]\[ -\frac{GMm}{R} = \frac{1}{2}mv^2 \][/tex]converted into kinetic energy at the center.

Solve for v:

[tex]\[ v = \sqrt{\frac{2GM}{R}} \][/tex]

Given:

- M is the mass of the Earth,

- m is the mass being moved.

These expressions provide the required energy calculations and the speed of the object dropped through the Earth's center.

For more questions on energy :

https://brainly.com/question/8101588

#SPJ3

Oil spilled from a ruptured tanker spreads in a circle whose area increases at a constant rate of 5.5 mi2/hr. How rapidly is radius of the spill increasing when the area is 6 mi2?

Answers

The radius will increase at the rate of 0.64 mi/hr

Explanation:

The area of a circle can be represented by  A = π r²            I

Differentiating both sides w.r.t time

[tex]\frac{dA}{dt}[/tex] = 2π r [tex]\frac{dr}{dt}[/tex]                                    II

Dividing II by I , we have

[tex]\frac{dA}{A}[/tex] = 2 x  [tex]\frac{dr}{r}[/tex]

substituting the values

[tex]\frac{dr}{r}[/tex] = [tex]\frac{5.5}{12}[/tex] = 0.46 mi per unit radius

or dr = 1.4 x 0.46 = 0.64 mi/hr

here 1.4 mi is the radius , when area of circle is 6 mi²

A centrifuge at a museum is used to separate seeds of different sizes. The average rotational acceleration of the centrifuge according to a sign is 30 rad/s2rad/s2. Part A If starting at rest, what is the rotational velocity of the centrifuge after 10 ss?

Answers

Answer:

[tex]\omega = 300 rad/s[/tex]

Explanation:

Given,

rotational acceleration = 30 rad/s²

initial angular speed = 0 m/s

time, t = 10 s

Final angular speed = ?

Using equation of rotation motion

[tex]\omega = \omega_o + \alpha t[/tex]

[tex]\omega =0+30\times 10[/tex]

[tex]\omega = 300 rad/s[/tex]

Rotational velocity after 10 s = 300 rad/s.

A thin uniform rod of mass M and length L is bent at its center so that the two segments are now perpendicular to each other. Find its moment of inertia about an axis perpendicular to its plane and passing through (a) the point where the two segments meet and (b) the midpoint of the line connecting its two ends.

Answers

Answer:

(a) I_A=1/12ML²

(b) I_B=1/3ML²

Explanation:

We know that the moment of inertia of a rod of mass M and lenght L about its center is 1/12ML².

(a) If the rod is bent exactly at its center, the distance from every point of the rod to the axis doesn't change. Since the moment of inertia depends on the distance of every mass to this axis, the moment of inertia remains the same. In other words, I_A=1/12ML².

(b) The two ends and the point where the two segments meet form an isorrectangle triangle. So the distance between the ends d can be calculated using the Pythagorean Theorem:

[tex]d=\sqrt{(\frac{1}{2}L) ^{2}+(\frac{1}{2}L) ^{2} } =\sqrt{\frac{1}{2}L^{2} } =\frac{1}{\sqrt{2} } L=\frac{\sqrt{2} }{2} L[/tex]

Next, the point where the two segments meet, the midpoint of the line connecting the two ends of the rod, and an end of the rod form another rectangle triangle, so we can calculate the distance between the two axis x using Pythagorean Theorem again:

[tex]x=\sqrt{(\frac{1}{2}L)^{2}-(\frac{\sqrt{2}}{4}L) ^{2} } =\sqrt{\frac{1}{8} L^{2} } =\frac{1}{2\sqrt{2}} L=\frac{\sqrt{2}}{4} L[/tex]

Finally, using the Parallel Axis Theorem, we calculate I_B:

[tex]I_B=I_A+Mx^{2} \\\\I_B=\frac{1}{12} ML^{2} +\frac{1}{4} ML^{2} =\frac{1}{3} ML^{2}[/tex]

A) Moment of inertia about an axis passing through the point where the two segments meet :   [tex]I_{A} = \frac{1}{12} ML^{2}[/tex]

B) Moment of inertia  passing through the point where the midpoint of the line connects  to its two ends :   [tex]Ix_{} = \frac{1}{3} ML^{2}[/tex]

A) The moment of inertia about an axis passing through the point where the two segments meet is [tex]I_{A} = \frac{1}{12} ML^{2}[/tex]  given that the rod is bent at the center and distance from all the points to the axis remains the same, the moment of inertia about the center will remain the same.

B) Determine the moment of inertia about an axis passing through the point midpoint of the line which connects the two ends

First step: determine the distance between the ends ( d )

  After applying  Pythagoras theorem

d = [tex]\frac{\sqrt{2} }{2} L[/tex]  

Next step :  determine distance between the two axis ( x )

After applying Pythagoras theorem

x = [tex]\frac{\sqrt{2} }{4} L[/tex]    

Final step : Calculate the value of  Iₓ

applying  Parallel Axis Theorem

Iₓ = Iₐ + Mx²

   = [tex]\frac{1}{12} ML^{2}[/tex]  + [tex]\frac{1}{4} ML^{2}[/tex]

∴  [tex]Ix_{} = \frac{1}{3} ML^{2}[/tex]

Hence we can conclude that Moment of inertia about an axis passing through the point where the two segments meet :   [tex]I_{A} = \frac{1}{12} ML^{2}[/tex],  Moment of inertia  passing through the point where the midpoint of the line connects its two ends :   [tex]Ix_{} = \frac{1}{3} ML^{2}[/tex]

Learn more : https://brainly.com/question/14460640

Other Questions
The water pressure at the bottom of the Marianas Trench is approximately 1,150 kPa. With how much force would the water pressure at the bottom of the trench push on a fish with a surface area of 0.65-m2 ? After twins are conceived, their chance of survival until birth depends on the prenatal circumstances. An early sonogram might reveal two developing organisms, but later only one embryo continues to grow. This is referred to as the _____ twin phenomenon. How much consumer surplus will she enjoy? Assume that the student will purchase bags up to, but not including, the point at which she incurs a loss of consumer surplus. $ in consumer surplus. Astrid, a customer service representative with NorthTel Wireless Services, was asked by one of her customers if NorthTel would be interested in joining the chamber of commerce to meet potential customers and increase its contacts in the local business community. Astrid believes this is a very good idea and approached her manager, DeShawn, about becoming a chamber member. DeShawn said to Astrid, "Because the cost of membership is over $500 and you will have to leave the office to attend meetings, I will have to get approval from management above me." NorthTel is an example of an organization with:________.a. work specialization.b. unity of command.c. line managers.d. centralized authority.e. decentralized authority The pulse pressure is ________. A) systolic pressure plus diastolic pressure B) systolic pressure minus diastolic pressure C) systolic pressure divided by diastolic pressure D) diastolic pressure plus 1/3 (systolic pressure plus diastolic pressure) As part of summer camp, Henry goes on a treasure hunt. He starts at the base of a tree and walks 189 ft due north. He then Turns and walks 89 ft due east. He turns again and walks 89 ft due south. How far is Henry from the tree? Lobbying in the twenty-first century is driven by all of the reasons below EXCEPTthe Internet and other new technology.an increasingly expanding number of interest groups.an increasingly expanding number of issues of concern to Americans.D)overwhelming support for Lobbyists by members of the executive branch. In order to get a comprehensive evaluation of the computer programmers he managed, Justin organized a(n) __________, where he asked immediate coworkers and others who worked closely with the programmers to participate in the evaluation process. Liszt had test scores of : 72, 94, 108, 60what is the range for her test scores describe how energy flows through each levels in the energy primed is all the matter and energy from one level transferred to the next level Let Y be a normal random variable with mean and variance 2 . Assume that is known but 2 is unknown. Show that (( Y - )/ ) 2 is a pivotal quantity. Use this pivotal quantity to derive a 1- confidence interval for 2 . (The answer should be left in terms of critical values for the appropriate distribution.) What is the type of design used in descriptive studies that describes the strength and nature of relationships between two variables without clarifying the underlying causes of that relationship is labeled as:A.Cross-sectional design B.Longitudinal design C.Case study designD.Correlational design Rainier Industries has Raw materials inventory on January 1, 20x8 of $34,200 and Raw materials inventory on December 31, 20x8 of $28,400. If raw materials used during the year were $152,000 what was the amount of raw materials purchased during the year A(g) + 2B(g) C(g) + D(g) If you initially start with 1.00 atm of both A and B and find that at equilibrium 0.211 atm of C is present, what is the value of Kp for the reaction at the temperature the reaction was run? If the median of a negatively skewed distribution is 31, which value could be the mean of the distribution?A. 33 B. 36 C. 31 D. 28 Marcy's mother, Sue, did not want her to date until she was older. She also wanted Marcy to attend law school. Just before Marcy started her freshman year in college, Sue told Marcy that if Marcy would refrain from dating until she received her law degree, then Sue would pay off all of Marcy's school loans and throw in an extra $50,000. Marcy agreed and stated, "Thanks, Mom; when I graduate, I'm throwing you a big party for all you have done for me!" Sue smiles and hugs Marcy. Marcy finished law school and asked for payment of her loans, the $50,000 in cash, and for a car. Sue said, "No wayI know you went out on some dates during law school, and I never agreed on the car." Marcy said those were just study nights and that her mother had never objected to Marcy's frequent statements that she wanted a car upon graduation. Sue asks about the party. Marcy tells her that she is nuts because there is no way Marcy can afford a party since Sue has backed out of the deal. After some serious negotiation, Marcy and Sue settled their dispute with Sue agreeing to pay for half of Marcy's school loans and for all of the expenses of Marcy's upcoming wedding; Sue also agreed to forget about Marcy throwing a party for her. Was there sufficient consideration to support Marcy's agreement to throw a party for Sue?A) Yes, sufficient consideration was present.B) No, there was insufficient consideration because Sue did not promise anything in exchange.C) No, there was insufficient consideration because Marcy's agreement was illusory.D) No, because throwing a party is not of a monetary value such as to constitute consideration.E) No, because close relatives are involved. For the environment, why is the characteristic of regularity important?Please use your own words. For 28 years, Rachael was happily married and sexually fulfilled in her relationship with her husband. Since his death two years ago, she has developed a sexually satisfying lesbian relationship with Marta, who is also a widow. Rachael's pattern of sexual relationships best illustrates her? You cut a sheet of paper along its diagonal, as shown. What is the length of the diagonal? Round your answer to the nearest tenth. HOW MANY INCHES? The blood left at the crime scene was from a male. Which dna profiles could have come from the suspect? Steam Workshop Downloader