Answer:
1) Since you have not provided the equations to select the right one, I am going to explain you the relevant facts that are used to solve this question.
2) The transuranium elements are the chemiical elements with atomic number greater than that of the uranium.
The atomic number of uranium is 92. So, the transuranium elements are the elements with atomic number 93 or greater.
This are some of the transuranium elements:
Neptunio - 93
Plutonium - 94
Americium - 95
Curium - 96
Berkelium - 97
Californium - 98
Einstenium - 99
And so all the known elements (the last one is the 118).
3) In a nuclear reaction the total mass number ( shown as superscript to the left of the symbol) and total atomic number (shown as subscript to the left of the symbol) are conserved.
4) Beta decay is the release of a beta particle, which is an electron (considered massles and with charge - 1). So, the beta decay is represented with the symbol:
0
β, which means 0 mass and charge - 1.
-1
5) This is, then, an example of a β decay equation for one transuranium element:
239 239 0
Np → Pu + β
93 94 -1
As you see 239 = 239 + 0 and 93 = 94 - 1, showing that the total mass number ( shown as superscript to the left of the symbol) and the total atomic number (shown as subscript to the left of the symbol) are conserved.
Explanation:
Which law states that the volume and absolute temperature of a fixed quantity of gas are directly proportional under constant pressure conditions?
Charles’ Law........
Answer: Charles' Law
Explanation:
Charles' Law: This law states that volume is directly proportional to the temperature of the gas at constant pressure and number of moles.
[tex]V\propto T[/tex] (At constant pressure and number of moles)
[tex]{V_1\times T_1}={V_2\times T_2}[/tex]
where,
[tex]V_1[/tex] = initial volume of gas
[tex]V_2[/tex] = final volume of gas
[tex]T_1[/tex] = initial temperature of gas
[tex]T_2[/tex] = final temperature of gas
Therefore, the volume and absolute temperature of a fixed quantity of gas are directly proportional under constant pressure conditions.
What do we call a product of a reaction that is an insoluble substance
Answer:
Precipitate.
Explanation:
Precipitation reaction is a reaction in which to a substance called a precipitate separate in solid form from a solution, as by means of a reagent called precipitant.For example:The reaction between AgNO₃ and NaCl:
AgNO₃ + NaCl → AgCl↓ + NaNO₃
It will produce insoluble substance (AgCl) which is considered as a precipitate.
Solution X mixed with magnesium chloride solution to form a white precipitate. The white precipitate obtained and reacted with dil HCL to give colourless gas bubbles turn lime water milky
What is solution X?
Answer:
Solution X might be a solution of carbonate ions [tex]\text{CO}_3^{2-}\;(aq)[/tex].
The question doesn't tell much about the positive ion in solution X. The ion itself shall not react with carbonate ions [tex]\text{CO}_3^{2-}\;(aq)[/tex] to form a precipitate. For that, cations from group 1 metals will work. For example, X can be a solution of sodium carbonate, which contain a large number of sodium ions [tex]\text{Na}^{+}\;(aq)[/tex].
Explanation:
Start with the first observation:
"Solution X mixed with magnesium chloride solution to form a white precipitate."
A solution of magnesium chloride [tex]\text{MgCl}_2\;(aq)[/tex] contains both
[tex]\text{Mg}^{2+}\;(aq)[/tex] ions and[tex]\text{Cl}^{-}\;(aq)[/tex] ions.Both may react to form a white precipitate.
[tex]\text{Mg}^{2+}\;(aq)[/tex] ions:
[tex]\text{Mg}^{2+}\;(aq)[/tex] might react with hydroxide ions [tex]\text{OH}^{-}\;(aq)[/tex] to form the white-colored, weakly-soluble base magnesium hydroxide [tex]\text{Mg}(\text{OH})_2\;(s)[/tex]. [tex]\text{Mg}^{2+}\;(aq)[/tex] might also react with carbonate ions [tex]\text{CO}_3^{2-}[/tex] to form the white-colored, insoluble salt magnesium carbonate, [tex]\text{MgCO}_3\;(s)[/tex].[tex]\text{Cl}^{-}\;(aq)[/tex] ions:
[tex]\text{Cl}^{-}\;(aq)[/tex] ions might react with silver ions [tex]\text{Ag}^{+}\;(aq)[/tex] to form the white-yellowish insoluble salt silver chloride [tex]\text{AgCl}\;(s)[/tex].Second observation:
"The white precipitate obtained and reacted with [dilute] HCl to give [colorless] gas bubbles."
Indeed [tex]\text{Mg}(\text{OH})_2\;(s)[/tex] will react with dilute HCl, but no gas will be formed: [tex]\text{Mg}(\text{OH})_2\;(s) +2\;\text{HCl}\;(aq)\to\text{MgCl}_2\;(aq) + 2\;\text{H}_2\text{O}\;(l)[/tex].[tex]\text{MgCO}_3\;(s)[/tex] reacts with dilute HCl to produce the colorless gas carbon dioxide [tex]\text{CO}_2\;(g)[/tex]: [tex]\text{MgCO}_3\;(s) + 2\;\text{HCl}\;(aq) \to\text{MgCl}_2\;(aq)+\text{H}_2\text{O}\;(l) +\text{CO}_2\;(g)[/tex].Silver chloride [tex]\text{AgCl}\;(s)[/tex] does not react with dilute HCl.The carbon dioxide gas from the reaction between [tex]\text{MgCO}_3\;(s)[/tex] and dilute HCl reacts with lime water (saturated calcium hydroxide [tex]\text{Ca}(\text{OH})_2\;(aq)[/tex] solution in water) to form the white-colored, insoluble salt calcium carbonate [tex]\text{CaCO}_3\;(s)[/tex]. The [tex]\text{CaCO}_3\;(s)[/tex] precipitate will turn the lime water milky.
In summary,
[tex]\rm \underbrace{\text{Na}_2\text{CO}_3\;(\rm aq)}_{\text{White Precipitate}} + \text{MgCl}_2 \;(aq) \to 2\;\text{NaCl}\;(aq) + \underbrace{\text{MgCO}_3\;(\rm s)}_{\text{White Precipitate}[/tex].
[tex]\rm \underbrace{\text{MgCO}_3\;(\rm s)}_{\text{From Solution X}} + \text{HCl} \;(aq) \to \text{MgCl}_2\;(aq) + \rm H_2O\;( aq) + \underbrace{{\rm CO_2}\;(g)}_{\rm Colorless\;Gas}[/tex].
[tex]\rm Ca(OH)_2\;(aq)+CO_2\;(g)\to \underbrace{\rm CaCO_3\;(s)}_{\begin{aligned}&\small\text{Turns Lime}&\\[-0.5em]&\small\text{Water Milky}&\end{aligned}} + H_2O\;(l)[/tex].
what is the percent of O in CO2
72.71 . simple google search, you shouldnt waste points
For this case we have the [tex]CO_ {2}[/tex]
It is composed of one atom of carbon and two of oxygen.
The atomic mass of carbon and oxygen, which can be found in a periodic table, are given by:
[tex]C: 12 \frac {g} {mol}\\O: 16 \frac {g} {mol}[/tex]
Then, we find the atomic mass of [tex]CO_{2}[/tex]:
[tex]1 * 12 \frac {g} {mol} = 12 \frac {g} {mol}\\2 * 16 \frac {g} {mol} = 32 \frac {g} {mol}[/tex]
Adding we have:
[tex]44 \frac {g} {mol}[/tex]
To find the percentage of oxygen, we divide the atomic mass of the two oxygen atoms between that of [tex]CO_{2}:[/tex]
[tex]\frac {32} {44} * 100 = 72.73[/tex]%
Thus, the percentage of oxygen is 72.73%
Answer:
72.73%
What temperature does table salt melt at?
1,474 degrees fahrenheit (801 degrees celsius)
Salt, also known as sodium chloride, melts roughly around 801 degrees Celsius or 1473.8 Fahrenheit.
I think this is mainly for table salt.
Which of the following is a cause of eutrophication of a lake?
Answer:
C. Excess nutrients promote the growth of algae
Explanation:
The eutrophication can simply be explained as an over-saturation of the waters with nutrients. This usually happens because of the human activity, with the largest sources that contribute to this being the fecal matter from the farmed animals and the fertilizers used in the agriculture. They are either released into the water directly or manage to reach it on their own by natural means. Once they reach the water they increase the amount of nutrients a lot, and that prompts the growth of the algae. As the algae grow more and more and occupy more and more area, they block the sunlight, so the organisms that use photosynthesis die out. Also, the algae contribute to eliminating the oxygen of the waters, so the fish and the other organisms die out as well, leading to a total collapse of the ecosystem.
Boyle's Law relates temperature to gas volume and Charles's Law relates pressure to gas volume.
True
False
False100% sure of it
how much heat is required to raise the temperature of 1.248kg of gold from 22.0°c to 45.0°c(c=0.129j/g°c)
Answer:
= 3,702.816 Joules
Explanation:
Heat absorbed by water is equivalent to heat released by copper.
Heat absorbed is given by:
Q = mcΔT
where m is the mass, c is the specific capacity and ΔT is the change in temperature.
Mass = 1248 g
ΔT = 45°C - 22°C = 23°C
c = 0.129j/g°c
Heat = 1248 g × 23°C × 0.129j/g°C
= 3,702.816 Joules
The heat required can be calculated using the formula Q = mcΔT, where Q is the heat energy, m is the mass, c is the specific heat capacity, and ΔT is the temperature change.
Explanation:The amount of heat required to raise the temperature of a substance can be calculated using the formula:
Q = mcΔT
Where Q is the heat energy, m is the mass of the substance, c is the specific heat capacity, and ΔT is the temperature change. In this case, the mass of the gold is 1.248 kg, the specific heat capacity is 0.129 J/g°C, and the temperature change is from 22.0°C to 45.0°C. Converting the mass to grams (1.248 kg = 1248 g), we can calculate the heat energy:
Q = (1248 g)(0.129 J/g°C)(45.0°C - 22.0°C) = 19230.72 J
Therefore, the total amount of heat required to raise the temperature of 1.248 kg of gold from 22.0°C to 45.0°C is 19230.72 Joules.
step.
Apply A hydrate contains 0.050 mol of H2O for every
0.00998 mol of ionic compound. Write a generalized
formula of the hydrate.
Answer:
General formula of the hydrate XY.5H₂O
Explanation:
The general formula of a hydrate is given by; XY.nH₂O
Where n is the number of water of crystallization;
n = Moles of H₂O/Moles of XY
= 0.050 Mol/0.00998 mol
= 5.01
≈ 5
Therefore, the generalized formula of the hydrate is XY.5H₂O
The generalized formula of the hydrate can be written as [tex]\[ \text{ionic compound} \cdot 5 \text{H}_2\text{O} \][/tex]
To write the generalized formula of the hydrate, we need to represent the ratio of moles of water molecules to moles of the ionic compound in the hydrate.
Given:
[tex]Moles \ of \ water\ (H_2O) = 0.050 \ mol[/tex]
[tex]Moles\ of\ ionic\ compound = 0.00998\ mol[/tex]
The ratio of moles of water to moles of the ionic compound can be expressed as:
[tex]\[ \frac{\text{moles of water}}{\text{moles of ionic compound}} = \frac{0.050 \, \text{mol}}{0.00998 \, \text{mol}} \][/tex]
To simplify this ratio and express it as a whole number, we can multiply both the numerator and denominator by a factor that will result in whole numbers. In this case, we can multiply by [tex]1000[/tex]
[tex]\[ \frac{0.050 \, \text{mol} \times 1000}{0.00998 \, \text{mol} \times 1000} = \frac{50}{9.98} \][/tex]
This simplifies to approximately
[tex]\[ \frac{50}{9.98} = 5.01 \][/tex]
So, the ratio of moles of water to moles of the ionic compound in the hydrate is approximately [tex]\(5.01:1\)[/tex]
Where "ionic compound" represents the formula of the ionic compound present in the hydrate.
what is the theoretical yield of copper produced by this reaction Al with CuCl2 Al - 0.5g CuCl2 - 3.5g
Answer:
The theoretical yield of copper is approximately 1.65 grams.
Explanation:
Relative atomic mass data from a modern periodic table:
Al: 26.982;Cu: 63.546;Cl: 35.45.What's the balanced equation for the reaction between [tex]\text{Al}[/tex] and [tex]\text{CuCl}_2[/tex]?As a metal, aluminum is more reactive than copper. Aluminum will reduce the [tex]\text{Cu}^{2+}[/tex] ion in [tex]\text{CuCl}_2\;(aq)[/tex] to [tex]\text{Cu}\;(s)[/tex]. This process will form a positive aluminum ion, which will then combine with chloride ions in the solution. What will be the charge on each aluminum ion? Aluminum is in IUPAC Group 13 of the periodic table. Each aluminum atom contains three valence electrons. As a main group metal in the p-block, each atom will lose all three of its valence electrons to form [tex]\text{Al}^{3+}[/tex] ions with three positive charges. Each ion will combine with three [tex]\text{Cl}^{-}[/tex] ions to produce a species with the empirical formula [tex]\text{Al}\text{Cl}_3[/tex].
Reactants:
[tex]\text{Al}\;(s)[/tex] and[tex]\text{CuCl}_2\;(aq)[/tex].Products:
[tex]\text{AlCl}_3\;(aq)[/tex] and[tex]\text{Cu}\;(s)[/tex].Let the coefficient in front of [tex]\text{AlCl}_3\;(aq)[/tex] be [tex]1[/tex].
[tex]\begin{array}{cccccccl}\text{Al}\;(s) & +& \text{CuCl}_2\;(aq) & \to & \text{AlCl}_3\;(aq) & + & \text{Cu}\;(s)\\ & & & & {\bf 1} & & &\begin{aligned}&\text{Assign "1" to the most}\\[-0.5em]&\text{complex compound.}\end{aligned} \\ {\bf 1}& &{\bf 3/2} & & 1 & & &\begin{aligned}&\text{Al and Cl atoms}\\[-0.5em]&\text{conserve.}\end{aligned}\end{array}[/tex][tex]\begin{array}{cccccccl}\phantom{\;\text{Al}\;(s)} & \phantom{+}& \phantom{\text{CuCl}_2\;(aq)} & \phantom{\to} & \phantom{\text{AlCl}_3\;(aq)} & \phantom{+} & \phantom{\text{Cu}\;(s)}\\[-1em]1& &{3/2} & & 1 & & {\bf 3/2} &\begin{aligned}&\text{Cu atoms shall also}\\[-0.5em]&\text{conserve.}\end{aligned} \\2& &{3} & & 2 & & {3} &\begin{aligned}&\text{Multiply all}\\[-0.5em]&\text{coefficients by two}\\[-0.5em]&\text{to eliminate fractions.}\end{aligned}\end{array}[/tex].
Hence the balanced equation:
[tex]2 \;\text{Al} \;(s) + 3 \;\text{CuCl}_2\;(aq) \to 2\;\text{AlCl}_3\;(aq) + 3\;\text{Cu}\;(s)[/tex].
Which reactant is limiting?Assume that [tex]\text{CuCl}_2[/tex] is the limiting reactant.
Formula mass of [tex]\text{CuCl}_2[/tex]:
[tex]M(\text{CuCl}_2) = 63.546 + 2 \times 35.45 = 134.446\;\text{g}\cdot\text{mol}^{-1}[/tex].
Number of moles of [tex]\text{CuCl}_2[/tex] available:
[tex]\displaystyle n = \frac{m}{M} = \frac{3.5}{134.446} = 0.0260328\;\text{mol}[/tex].
The ratio between the coefficient in front of [tex]\text{CuCl}_2[/tex] is the same as the coefficient in front of [tex]\text{Cu}[/tex].
[tex]\displaystyle \frac{n(\text{Cu})}{n(\text{CuCl}_2)} = \frac{\text{Coefficient in front of } n(\text{Cu})}{\text{Coefficient in front of } n(\text{CuCl}_2)} = \frac{3}{3} = 1[/tex].
[tex]n(\text{Cu}) = 1 \cdot n(\text{CuCl}_2) = 0.0260328\;\text{mol}[/tex].
Mass of copper that is expected to be produced if [tex]\text{CuCl}_2[/tex] is the limiting reactant:
[tex]m(\text{Cu}) = n(\text{Cu}) \cdot M(\text{Cu}) = 0.0260328 \times 63.546 =1.65\;\text{g}[/tex].
Assume that [tex]\text{Al}[/tex] is the limiting reactant.
The methods are similar. Try the steps above yourself.
Formula mass of [tex]\text{Al}[/tex]:
[tex]M(\text{CuCl}_2) = 26.982\;\text{g}\cdot\text{mol}^{-1}[/tex].
Number of moles of [tex]\text{Al}[/tex] available:
[tex]\displaystyle n = \frac{m}{M} = \frac{0.5}{26.982} = 0.0185\;\text{mol}[/tex].
The ratio between the coefficient in front of [tex]\text{CuCl}_2[/tex] is [tex]3/2[/tex] times the coefficient in front of [tex]\text{Al}[/tex].
[tex]\displaystyle \frac{n(\text{Cu})}{n(\text{Al})} = \frac{\text{Coefficient in front of } n(\text{Cu})}{\text{Coefficient in front of } n(\text{Al})} = \frac{3}{2}[/tex].
[tex]\displaystyle n(\text{Cu}) = \frac{3}{2} \cdot n(\text{Al}) = 0.0277963\;\text{mol}[/tex].
Mass of copper that is expected to be produced if [tex]\text{Al}[/tex] is the limiting reactant:
[tex]m(\text{Cu}) = n(\text{Cu}) \cdot M(\text{Cu}) = 0.0277963 \times 63.546 =1.77\;\text{g}[/tex].
[tex]1.65\;\text{g} < 1.77\;\text{g}[/tex]. The first assumption is valid. [tex]\text{CuCl}_2[/tex] will run out before all [tex]0.5\;\text{g}[/tex] of aluminum are consumed, Only [tex]1.65\;\text{g}[/tex] of copper will be produced.
I tried finding the answer to this time and time again. I cannot find it. I hope someone can help me. What does photochemical smog react with?
A chemical reaction between solar ultraviolet radiation and an atmosphere polluted with hydrocarbons and oxides of nitrogen causes photochemical smog. ... Smog can happen both during the day and at night, but photochemical smog only happens in the presence of sunlight.
____________ A measurement of the amount of space an object occupies.
Volume is a measurement if the amount of space an object occupies.
9) A 22.8 mL volume of argon gas is collected at 48.0o C. At constant pressure, what volume would this same sample of gas occupy at standard temperature?
Using Charles's Law, the volume of argon gas at standard temperature (0°C) after initial conditions of 22.8 mL at 48°C is calculated to be approximately 19.5 mL.
Explanation:The student is asking for help with the concept of how gas volume changes with temperature at constant pressure, a principle known as Charles's Law. Since the question involves argon gas, a noble gas, and relates to changes in temperature and volume, this is a Chemistry subject, typically studied in high school.
According to Charles's Law, the volume of a gas is directly proportional to its temperature when pressure is held constant. The formula relating initial and final volumes and temperatures is V1/T1 = V2/T2, where V1 and T1 are the initial volume and temperature, and V2 and T2 are the final volume and temperature. Here, T must be in Kelvin.
The standard temperature (STP) is defined as 0 degrees Celsius or 273.15 K. To find the volume at STP (V2) for the argon gas, we first convert the initial temperature from degrees Celsius to Kelvin:
T1 = 48.0 + 273.15 = 321.15 KV1 = 22.8 mL (initial volume)T2 = 0 + 273.15 = 273.15 K (STP)Now, we apply Charles's Law:
V1/T1 = V2/T2 -> (22.8 mL / 321.15 K) = V2 / 273.15 K
Multiplying both sides by 273.15 K to solve for V2 gives:
V2 = (22.8 mL * 273.15 K) / 321.15 K
V2 ≈ 19.5 mL
So, at standard temperature, this sample of argon would occupy approximately 19.5 mL.
Identify the examples of diffusion in the list below. check all that apply
A) A teacher takes the cap off a permanent marker. A few minutes later, students at the back of the classroom complain about the odor of the marker
B) A cooking school students burns a piece of toast. Soon, the entire kitchen smells like burnt toast
C) An inflated balloon shrinks when it is placed in a cold freezer
D) Toxic fumes produced by chemical factory are detected in the air in a town several miles away
E) Heating a flexible container filled with gas causes it to expand
Answer: A, B, D
Explanation:
all of these examples show matter moving from a high volume of matter, to low volume of matter. When the molecules of the paint, toast, and chemicals were released, they will try to disperse away from the high concentration
Examples of diffusion include the spread of marker odor in a classroom, the smell of burnt toast in a kitchen, and the detection of toxic fumes in a town miles from a chemical factory. Diffusion is the movement of particles from an area of higher concentration to an area of lower concentration.
Explanation:Examples of diffusion in the list provided include:
A) A teacher takes the cap off a permanent marker. A few minutes later, students at the back of the classroom complain about the odor of the marker. This is diffusion because the odor molecules move from a region of higher concentration near the marker to a lower concentration throughout the classroom.B) A cooking school student burns a piece of toast. Soon, the entire kitchen smells like burnt toast. Again, this is an example of diffusion as the smell of burnt toast moves from the area of higher concentration around the toast to the rest of the kitchen.D) Toxic fumes produced by a chemical factory are detected in the air in a town several miles away. The movement of fumes from a high concentration near the factory to a lower concentration in the town is diffusion.Option C) is not an example of diffusion; it is an example of the gas contracting due to lower kinetic energy when cooled. Option E) concerns the expansion of a container with gas when heated due to increased pressure, not diffusion.
a foce that pushes or pulls is known as
Answer:
Newton 3rd Law of Motion or the Law of Force Pairs
(An applied force)
Force is a phenomenon that creates a push or pull that has both magnitude and direction. No push or pull exists in isolation, and multiple forces interacting can have cumulative effects. The force can vary in magnitude and can manifest both as a contact force and a field force.
Explanation:A force is a push or pull that acts upon an object as a result of its interaction with another object. It has both magnitude and direction, therefore it's a vector quantity. Objects and systems are moved by forces. This area comes under the study of dynamics.
Examples of a force can include a person pushing a table (a contact force), or the gravitational pull of the Earth on a falling object (a field force). Forces have been categorized into many types such as push, pull, thrust, lift, weight, friction, and tension.
Keep in mind that no push or pull occurs in isolation (Newton's third law). For instance, when you are pushing a wall, the wall exerts an equal and opposite force on you.
When multiple forces act on an object, they add up like vectors. If two forces push in different directions on an object, the total force will be in the direction of the resultant force.
Learn more about Force here:
https://brainly.com/question/13191643
#SPJ12
I need to get my grade up fast someone plz help with any of these
Answer:
1. the outer layer of the eye: G scelra
2. when a light ray bends, or changes direction, when it moves from one material into another: F refraction
3. an optical instrument that makes objects that are far away look closer: K telescope
4. the point where all of the beams of light leaving a lens converge: focal point
5. a term for a medium that transmits nearly all the light rays that hit it: C transparent
6. the distance between any two peaks or any two troughs of a wave: J wavelength
7. a term used to describe a person who cannot see close objects clearly: B
farsighted
8. a term used to describe a person who cannot see faraway objects clearly: M nearsighted
9. a narrow beam of light that travels in a straight line: H light ray
10. a curved, transparent object used to refract light: lens
11. a word used to describe a medium that only allows some of the light rays that hit it to pass through it: E translucent
12. the process of converting light energy into...(can't see the rest)
13. (isn't visible either)
What is the molar mass of Cu(OH)2
Answer:
97.54
Explanation:
Molar mas of cu (oh) 2
Cu = 63.54
O x 2 = 16 x 2 = 32
H x 2 = 1 x 2 = 2
TOTAL = 97.54
How many moles of sulfur atoms are present in 2.00 moles of CS2 ?
Answer: 4 mol
C + 2S = CS2
1 mol of CS2 contains 2 mol of sulfur
So 2 mol of cs2 contains 2*2 mol of S
2mol CS2 x 2 mol S/ 1 mol CS2 =
4 mol S
Final answer:
In 2.00 moles of carbon disulfide (CS2), there are 4.00 moles of sulfur atoms because each molecule of CS2 contains two sulfur atoms.
Explanation:
The question asks how many moles of sulfur atoms are present in 2.00 moles of carbon disulfide (CS2). Carbon disulfide is a chemical compound made up of one carbon atom and two sulfur atoms per molecule (CS2).
To determine the moles of sulfur atoms, we use the mole ratio from the molecular formula, which is 1 mole of CS2 contains 2 moles of sulfur (S). Accordingly, for 2.00 moles of CS2, we would have:
2.00 moles CS2 × (2 moles S / 1 mole CS2) = 4.00 moles of sulfur atoms.
Which statement is supported by the cell theory
HURRRYYYYY
All living beings are made up of cells. or Cell is the most basic unit of life. or All cells must come from pre-existing cells.
I hoped I helped a little
How does photosynthesis use solar energy?
Answer:
Photosynthesis in plants converts solar energy into chemical energy using electrons and protons from water. The process of photosynthesis in plants involves a series of steps and reactions that use solar energy, water, and carbon dioxide to produce organic compounds and oxygen
Answer:
Solar energy is converted to chemical energy in the chemical bonds of the glucose molecule.
Explanation:
H2S polar or nonpolar ?
Answer:
Hydrogen sulfide is nonpolar. Even though the molecular geometry would allow for it to polar, the bonds are not polar, so the molecule isn't either. Polarity is determined by electronegativity.
[tex]H_2S[/tex] is a polar substance.
Explanation:Polar particles form when two molecules don't share electrons similarly in a covalent bond. This happens when there is a distinction between the electronegativity of every molecule. An extraordinary distinction shapes an ionic bond, while a lesser contrast frames a polar covalent bond.
If the electronegativity between the two ions is somewhere in the range of 0.5 and 2.0, the structure of the particle forms a polar covalent bond. In the event that the electronegativity distinction between the ions is more than 2.0, the bond is ionic. Ionic mixes are amazingly polar particles.
Instances of polar particles include:
Water - [tex]H_2O[/tex] Ammonia salts - [tex]NH_3[/tex] Sulfur dioxide - [tex]SO_2[/tex] Hydrogen sulfide - [tex]H_2S[/tex]What is the mass of N2 in a 56 liter container at STP?
Answer:
Explanation:molar mass of N2=28
Volume occpied at stp=22.4 so 28/22.4=1.25 so mass nitrogen will be 56 multiply 1.25 =70g
A gas has a volume of 450.0 mL. If the temperature is held constant, what volume would the gas occupy if the pressure were
a. doubled?
b. reduced to one-fourth of its original value?
a) Answer:
= 225 mL
Explanation:
Using Boyle's law of gases;
The volume of a fixed mass of a gas is inversely proportional to its pressure at constant temperature.
Therefore;
P1V1 = P2V2
in this case; let the initial pressure be P;
Therefore; V1 = 450 mL, P1 = P, V2 = ? and P2 = 2P
Thus;
V2 = P1V1/P2
= (P×450)/ (2P)
= 225 mL
Therefore, the new volume will be 225 mL
b) Answer;
=1800 mL
Explanation;
Let the initial pressure be P;
Therefore; V1 = 450 mL, P1 = P, V2 = ? and P2 = 1/4P
Thus;
V2 = P1V1/P2
= (P×450)/(0.25P)
= 1800 mL
Thus, when the pressure is reduced to one-fourth of its original, the new volume will be 1800 mL.
Given that the initial volume of the gas is 450 mL, the new volume of the gas obtained based on the given data are:
A. The new volume of the gas when the pressure is doubled is 225 mL
B. The new volume of the gas when the pressure is reduced to one-fourth of its original value is 1800 mL
A. How to determine the new volume Initial volume (V₁) = 450 mL Temperature = constant Initial pressure (P₁) = PNew pressure (P₂) = 2PNew volume (V₂) =?P₁V₁ / T₁ = P₂V₂ / T₂
Since the temperature is constant, we have:
P₁V₁ = P₂V₂
P × 450 = 2P × V₂
Divide both side by 2P
V₂ = (P × 450) / 2P
V₂ = 450 / 2
V₂ = 225 mL
B. How to determine the new volume Initial volume (V₁) = 450 mL Temperature = constant Initial pressure (P₁) = PNew pressure (P₂) = ¼PNew volume (V₂) =?P₁V₁ / T₁ = P₂V₂ / T₂
Since the temperature is constant, we have:
P₁V₁ = P₂V₂
P × 450 = ¼P × V₂
450P = PV₂ / 4
Cross multiply
450P × 4 = PV₂
Divide both side by P
V₂ = (450P × 4) / P
V₂ = 450 × 4
V₂ = 1800 mL
Learn more about gas laws:
https://brainly.com/question/6844441
Which process takes place in both plant and animal cells? Conversion of solar energy Cellular respiration Formation of glucose Photosynthesis
Answer:
Cellular Respiration
Explanation:
Cellular respiration is the process that occurs in both plant and animal cells, allowing them to convert glucose into ATP, the usable form of energy for cellular functions. While photosynthesis only happens in plants, cellular respiration is essential for both plants and animals, illustrating a fundamental connection between these two types of organisms.
Explanation:The process that takes place in both plant and animal cells is cellular respiration. This is a series of metabolic pathways that extracts energy from the bonds in glucose, a sugar that's produced during photosynthesis in plants, and converts it into ATP (adenosine triphosphate), which is a form of energy that all living things can use.
Although plants are capable of photosynthesis, the process by which they convert solar energy into chemical energy (glucose), they also perform cellular respiration to break down this glucose into usable energy for cellular activities. Animals, which cannot perform photosynthesis, rely entirely on cellular respiration to convert energy from consumed food into ATP.
It's important to note that photosynthesis only occurs in photosynthetic organisms such as plants, algae, and certain bacteria, while cellular respiration occurs in virtually all living organisms. This highlights the interconnectedness of life processes, as the oxygen created as a byproduct of photosynthesis is used by animals during cellular respiration, and the carbon dioxide produced by animals during cellular respiration is utilized by plants during photosynthesis.
how many atoms are in 63.5 grams of Hg
USATEST PREP QUESTION HELP ! Really appreciate it !
A hurricane-hit region is isolated from the rest of the country because of flooding. The storm has also cut off the power supply and all means of communication. A newspaper wants to get pictures of the place to report the incident to the rest of the country.
How can the newspaper get a photo of the place in time for its morning edition?
A) access pictures of the area taken by satellites
B) use pictures taken previously of other flooded areas
C) send a team of photographers to get pictures of the area
D) request local newspapers in the affected area to send pictures
Answer is A Access pictures of the area taken by satelites.
Explanation: Satelites are the only thing out of these four answers that does not requir power supply from the town. Hope it helped!
The newspaper can get the pictures of the place by accessing pictures of the area taken by satellites.
Satellites use magnetic sensors to collect electromagnetic radiation of specific wavelength reflected from the Earth surface.
These sensors are able to detect wavelengths that are not possible by human eyes.
The power supply that has been cut off does not affect the satellite, hence it will detect the waves reflected from the Earth surface during the hurricane and the photo of the place can used by the newspaper for its morning edition.
Thus, the best way for the newspaper to get the pictures of the place is to access pictures of the area taken by satellites.
Learn more here:https://brainly.com/question/18657303
Need help !!!!! ASAP
The answer is:
The approximate volume is 9.84 L.
[tex]V=9.84L[/tex]
Why?Since we are given the numer of moles, the temperature and the pressure of the gas, we can calculate the approximate volume using The Ideal Gas Law.
The Ideal Gas Law is based on Boyle's Law, Gay-Lussac's Law, Charles's Law, and Avogadro's Law, and it's described by the following equation:
[tex]PV=nRT[/tex]
Where,
P is the pressure of the gas.
V is the volume of the gas.
n is the number of moles of the gas.
T is the absolute temperature of the gas (Kelvin).
R is the ideal gas constant, which is equal to:
[tex]R=0.082\frac{atm.L}{mol.K}[/tex]
So, we are given the information:
[tex]n=1.5mol\\Temperature=300K\\Pressure=3.75atm[/tex]
Now, substituting the given information and isolating the Volume from The Ideal Gas Law equation, we have:
[tex]PV=nRT[/tex]
[tex]V=\frac{nRT}{P}[/tex]
[tex]3.75atm*V=1.5mol*0.082*\frac{atm.L}{mol.K}*300K[/tex]
[tex]V=\frac{ 1.5mol*0.082*\frac{atm.L}{mol.K}*300K}{3.75atm}\\\\V=\frac{36.9atm.L}{3.75atm}=9.84L[/tex]
So, the approximate volume is 9.84 L.
[tex]V=9.84L[/tex]
Have a nice day!
I DONT UNDERSTAND!!!!
Answer:
[tex]\boxed{\text{311 K}}[/tex]
Explanation:
We can use the Ideal Gas Law and solve for T.
pV = nRT
Data:
p = 0.998 atm
V = 1.20 L
n = 0.0470 mol
R = 0.082 06 L·atm·K⁻¹mol⁻¹
Calculation:
0.998 × 1.20 = 0.0470 × 0.082 06 × T
1.198 = 0.003 857T
[tex]T = \dfrac{1.198}{0.003 857} = \textbf{311 K}[/tex]
The Kelvin temperature is [tex]\boxed{\textbf{311 K}}[/tex], not 307 K.
I suppose you could choose the last square, as it has the closest value.
what best describes charles law
A) If volume increases, temperature increases
The law is V/T, meaning the two values are directly proportional, as one increases, the other increases too.
The statement which best describes Charles law is: A) If volume increases, temperature increases.
What is Charles law?Charles law states that when the pressure of an ideal gas is kept constant, the volume of a gas is directly proportional to the absolute temperature of the gas.
Mathematically, Charles law is given by this formula;
[tex]V\;\alpha \;T\\\\V=kT[/tex]
This ultimately implies that, as the volume of an ideal gas increases, its temperature also increases in accordance with Charles law.
Read more on Charles law here: https://brainly.com/question/888898
How many grams of iron oxide would be formed if 2 moles of iron completely with oxygen gas
Answer: About 160 grams
Explanation: The formula for this reaction is 4Fe + 3O2 = 2Fe2O3. Since only 2 moles of iron are reacting then only 1 mole of the product will be produced. The molar mass of the product is about 160 grams.