Answer:
We have a not significant increase of the population until 1700s or 1800s and then a significant increase growth from these years to the present.
Explanation:
From the figure attached we see the evolution of the human population since early times (1050).
We see that from 1050 until 1750-1850 we have an increase slowly with a low value for the increase per year.
But after these years (1750-1850) we see a considerable increase of the population, like an exponential model.
So then we can conclude in general terms this:
We have a not significant increase of the population until 1700s or 1800s and then a significant increase growth from these years to the present.
The growth of the human population from early times to the present is best described by the Exponential Growth Model, which shows a rapid increase in population over time. It took 123 years to add 1 billion people between 1804 and 1930 and only 24 years to add 2 billion people between 1975 and 1999.
The best mathematical model that describes the growth of the human population from early times to the present is the Exponential Growth Model. Exponential growth occurs when a quantity increases exponentially over time, and this is evident in the rapid increase in the global population over centuries. The provided information shows that it took 123 years to add 1 billion people between 1804 and 1930, but only 24 years to add 2 billion people between 1975 and 1999.
For more such questions on Exponential Growth Model, click on:
https://brainly.com/question/31889848
#SPJ3
The probable question may be:
Over the course of history, the human population has experienced significant growth. Starting from an estimated 5 million people in the year 10,000 BCE, it is believed that the population has increased exponentially over the centuries. In 2021, the global population was approximately 7.8 billion.
Based on this data, which of the following mathematical models best describes the growth of the human population from early times to the present?
A) Linear Growth Model
B) Exponential Growth Model
C) Logarithmic Growth Model
D) Polynomial Growth Model
Your pet hamster sits on a record player whose angular speed is constant. If he moves to a point twice as far from the center, then his linear speed
A) doubles.
B) halves.
C) remains the same.
Answer:
option A
Explanation:
given,
angular speed is constant
initial distance = r
final distance (r')= 2 r
initial linear velocity = v
final linear velocity = v'
we know,
v = r ω......................(1)
where r is the distance
ω is the angular speed
now,
v' = r' ω
v' = 2 r ω
v' = 2 v
hence, the linear velocity doubles.
The correct answer is option A
If you are going 30 miles an hour in good condition, it will take how many feet to stop .
Answer:
158400 feet per hour
Explanation:
First we find:
How many feet are in miles per hour?
Multiply your speed in miles per hour by 5,280. This is the number of feet in a mile. The result is your speed in feet per hour.
For example, 30 miles per hour times 5,280 feet per mile is 158,400 feet per hour.