To make 88,5□1 round down to 88,500, the digit that replaces □ must be less than 5; therefore, the replacements could be :0, :2, or :4.
potential
Explanation:The given number is '88,5□1' and we want to find the digit that replaces the □ and rounds the number to '88,500' when we round to the nearest hundred. An important point to remember about rounding is that if the digit in the tens place is less than 5, we round down, while if it's 5 or above, we round up. Since we want to round down to 88,500, the digit that replaces □ in the tens place must therefore be less than 5. So, the possible digits could be :0, :2, or :4.
Learn more about Rounding Numbers here:https://brainly.com/question/28562556
#SPJ3
graph the line y=-3x
Answer:
Step-by-step explanation:
Graph y = -3x. Start at the origin (0, 0). Place a dark dot there. Now, starting with your pencil point on that dot, move 1 space to the right and from this new point move 3 spaces down. Place a dark dot at this new point.
Now draw a straight line through both dark dots. This is the desired graph.
Step-by-step explanation: Let's graph the equation y = -3x using its slope and y-intercept. The problem here is that our equation doesn't match up quite so well with the formula y = mx + b
Our slope or m which is represented by the coefficient of the x-term is clearly -3. However, you might be asking what is our y-intercept or b. Well, y = -3x can be thought of as y = -3x + 0. So you can now see that our b or y-intercept equals 0.
To graph the line, we start with the y-intercept. So our first point is a 0 on the y-axis and we call that point A. When the slope is a integer, you can change it to a fraction by putting it over 1. So our slope of -3 can be thought of as -3/1.
From point A, we would go down 3 units and over 1 unit to plot point B. Now we can connect points A and B like I did in the picture and we have our line.
Given FGE, find m=HFE if m=G - 65°
A. 25°
B. 50°
C. 60°
D. 65°
Answer:
The correct answer is option A. 25°
Step-by-step explanation:
From the figure we can see an isosceles triangle. FGE
<G = 65° (given)
m<G = m<E = 65°
To find the value of m<HFE
Consider the triangle FHE in the figure we get,
m<E + m<HFE + m<FHE = 180
m<HFE = 180 - (m<E + m<FHE)
= 180 - (65 + 90) = 25°
Therefore m<HFE = 25°
The correct answer is option A. 25°
The correct answer is option A. 25°
What is the length of the hypotenuse of the triangle ?
Answer: The answer is d 10 times 2 squared-the last choise.
BECAUSE:a squared + b squared = c squared
10 squared + 10 squared = c squared
100+100=c squared
the square root of 200 = c squared
PUT ME AS BRAINLIESTTTTTTTTTTT!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Answer:
10√2 units
Step-by-step explanation:
Given : A right angles triangle QRS
QS= SR = 10 units
To Find : Hypotenuse
Solution:
Perpendicular = 10 units
Base = 10 units
Hypotenuse = QR
Now we will use Pythagoras theorem
[tex]Hypotenuse^2=Perpendicular^2+Base^2[/tex]
[tex]QR^2=QS^2+SR^2[/tex]
[tex]QR^2=10^2+10^2[/tex]
[tex]QR^2=100+100[/tex]
[tex]QR^2=200[/tex]
[tex]QR=\sqrt{200}[/tex]
[tex]QR=10\sqrt{2}[/tex]
Hence the length of the hypotenuse of the triangle is 10√2 units
So, Option D is correct.
Which is the polynomial function of lowest degree with rational real coefficients, a leading coefficient of 3 and roots sqrt 5 and 2
Answer:
f(x) = 3x² -21x + 30
Step-by-step explanation:
Polynomial function of lowest degree with roots as 'a' and 'b' and leading coefficient as 'c' is given by:
P(x) = c (x - a) (x - b)
Given: Leading coefficient = 3, Roots = sqrt 5 and 2
P(x) = 3 (x - 5) (x - 2)
= 3 ( x² - 2x - 5x +10)
= 3 ( x² - 7x +10)
= 3x² - 21x + 30
find the x and y intercepts of the following function.
g(x)=x^2-5x-84
Answer:
see explanation
Step-by-step explanation:
To find the y- intercept let x = 0 in the function
g(0) = 0 - 0 - 84 = - 84 ← y- intercept
To find the x- intercepts let y = 0, that is
x² - 5x - 84 = 0
To factor the quadratic
Consider the factors of the constant term (- 84) which sum to give the coefficient of the x- term
The factors are - 12 and + 7, since
- 12 × 7 = - 84 and - 12 + 7 = - 5, thus
(x - 12)(x + 7) = 0
Equate each factor to zero and solve for x
x - 12 = 0 ⇒ x = 12
x + 7 = 0 ⇒ x = - 7
x- intercepts are x = - 7 and x = 12
There are 18 skaters competing in the competition. How many ways can they win the gold, silver, and bronze medal?
Only one person can win gold, silver, and bronze. The order of the winner does matter. So it’ll be 18 times 17 times 16.
Answer: 4,896
Stwhiep-by-step explanation:
Given, There are 18 skaters competing in the competition.
To find : The number of ways in which they can win gold, silver, and bronze medal.
Since, in distribution of medals(gold, silver, and bronze) we require 3 winners in a particular order, so for this we use Permutations.
According to permutation , number of ways of selecting r things out of n = [tex]\dfrac{n!}{(n-r)!}[/tex]
Then, The number of ways in which 18 skaters can win 3 medals= [tex]\dfrac{18!}{(18-3)!}=\dfrac{18\times17\times16\times15!}{15!}=4,896[/tex]
Hence, the required number of ways =4,896
How do you Graph 0.5x+0.8y=240
Answer:
y= 300 - 5/9x
Step-by-step explanation:
0.8y = 240 - 0.5x
divide both sides by 0.8,
y= 300 - 5/9x
-5/9 is your gradient
300 is your y-intercept
To graph 0.5x + 0.8y = 240, first arrange the equation into y = mx + b form, where m is the slope and b is the y-intercept. Finally, plot this equation on a graph using the slope and y-intercept.
Explanation:To graph the equation 0.5x + 0.8y = 240, you need to first arrange it in the form of y = mx + b (slope-intercept form), where m is the slope and b is the y-intercept.
Solving for y, we get:
0.8y = -0.5x + 240
y = -0.625x + 300
Then you can plot this equation in the format y = mx + b on a graph. Place the y-intercept at 300 on the y-axis. From there, use the slope (-0.625) to find the second point: down 0.625 units and to the right 1 unit. Repeat this step to plot a few points and then draw a line passing through them.
Learn more about Graphing Linear Equations here:https://brainly.com/question/14240165
#SPJ3
What is the y-value of the solution to the system of equations?
3x + 5y = 1
7x + 4y = −13
−3
−1
2
5
The answer is y=2 !!!!!!!!!!!!!!
Answer:
y = 2
Step-by-step explanation:
3x + 5y = 1
7x + 4y = −13
We will use the elimination method to eliminate the x variable. Then we will solve for y. We need the coefficients of the x-terms in the two equations to be additive inverses, so they will add to zero, eliminating x.
Multiply both sides of the first equation by -7, and multiply both sides of the second equation by 3.
-21x - 35y = -7
21x + 12y = -39
Now add the equations to eliminate x.
-23y = -46
Divide both sides by -23.
y = 2
The tree diagram below shows the possible combinations of juice and snack that can be offered at the school fair.
How many different combinations are modeled by the diagram?
Answer:
B) 8
Step-by-step explanation:
To count the number of possibilities on a tree diagram, all you need to do is count the total number of "branches" at the end of the "tree". Here, that is 8. Also, if the tree gets too big, you can multiply the number of combinations in the first sector, then the second, and so on. So, that will be 4 * 2 = 8.
Answer:
B). 8
Step-by-step explanation:
i go this right on my quiz if u want proof scroll down
I really hope this helps someone! have a great day!!
Solve |3x - 4| = 15
a) {-19/3, 19/3}
b) {11/3, 19/3}
c) {-11/3, 19/3}
Answer:
option C
{-11/3 , 19/3}
Step-by-step explanation:
Given in the question an equation
|3x-4| = 15
To solve the absolute equation we need to add ± on right side of equation.
3x-4 = ±15
3x - 4 = 15 or 3x - 4 = -153x = 15+4 or 3x = -15 + 4
3x = 19 or 3x = -11
x = 19/3 or x = -11/3
The solution of |3x-4| = 15 is {-11/3 , 19/3}
Answer:
The solution of I3x - 4I = 15 is {-11/3 , 19/3}
Step-by-step explanation:
* Lets explain the meaning of I I (absolute value)
- The absolute value of any number is the magnitude of the number
means the value of the number without its sign, we ignore the sign
of the number
- The absolute never equal a negative value
- If IxI = a, then x = a or x = -a
* Now lets solve the problem
∵ I3x - 4I = 15
∴ 3x - 4 = 15 OR 3x - 4 = -15
* Lets solve the two equation
∵ 3x - 4 = 15 ⇒ add 4 to both sides
∴ 3x = 19 ⇒ divide both sides by 3
∴ x = 19/3
∵ 3x - 4 = -15 ⇒ add 4 to both sides
∴ 3x = -11 ⇒ divide each side by 3
∴ x = -11/3
* The solution of I3x - 4I = 15 is {-11/3 , 19/3}
What is the equation of a circle centered at the origin with raduis 15? Please show work
[tex]\bf \textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~\stackrel{origin}{(\stackrel{0}{ h},\stackrel{0}{ k})}\qquad \qquad radius=\stackrel{15}{ r} \\\\\\ (x-0)^2+(y-0)^2=15^2\implies x^2+y^2=225[/tex]
help me with this i suck at mathematical reasoing
Answer:
6Step-by-step explanation:
The formula of an area of a rectangle:
[tex]A_r=lw[/tex]
l - length
w - width
We have l = 12 in and w = 8 in.
Substitute:
[tex]A_r=(12)(8)=96\ in^2[/tex]
The formula of an area of a triangle:
[tex]A_t=\dfrac{bh}{2}[/tex]
b - base
h - altitutde
We have b = 32 in and A - 96 in².
Substitute:
[tex]\dfrac{32h}{2}=96[/tex]
[tex]16h=96[/tex] divide both sides by 16
[tex]h=6\ in[/tex]
Freshman Algebra, I need to simplify it
[tex] \frac{ - 1}{4} (v {q}^{4} )( - 8 {v}^{3} q {)}^{2} [/tex]
[tex]\bf -\cfrac{1}{4}(vq^4)(-8v^3q)^2\implies -\cfrac{1}{4}(vq^4)\stackrel{\textit{distributing the exponent}}{[(-8)^2v^{2\cdot 3}q^2]}\implies -\cfrac{1}{4}(vq^4)(64v^6q^2) \\\\\\ -\cfrac{1}{4}(vq^4 64v^6q^2)\implies -\cfrac{64}{4}(v v^6 q^4q^2)\implies -16v^{1+6}q^{4+2}\implies -16v^7q^6[/tex]
At a cost of $200, your club bought 175 frisbees to sell at the pep rally. You plan on selling them for $5 each. Which of the following represents the profit function, P, after selling a certain number of frisbees, f.
This prompt involves calculating total revenue, marginal revenue, total cost, and marginal cost for a competitive firm and finding the profit maximizing quantity of dog coats sold. The analysis is done by constructing a table and graphing relevant curves to identify where marginal revenue equals marginal cost.
Explanation:The question regards the calculation of total revenue, marginal revenue, total cost, and marginal cost for a perfectly competitive firm, Doggies Paradise Inc., and the identification of the profit maximizing quantity of dog coats sold. To find these values, a table must be constructed with output levels from one to five units. The price per unit is $72, and fixed costs are $100, with variable costs increasing with each additional unit produced. The total revenue (TR) is the price multiplied by the quantity sold, while the marginal revenue (MR) is the additional revenue from selling one more unit. Total cost (TC) is the sum of fixed costs and variable costs at each output level, and marginal cost (MC) is the change in total costs when production is increased by one unit. The profit maximizing quantity is determined where MR equals MC or where the additional cost of producing one more unit no longer yields an additional profit.
Total Revenue and Total Cost Curves
Sketching these curves will show the relationship between the cost of producing dog coats and the revenue generated from sales at different production levels. The TR curve shows a steady increase as more units are sold, while the TC curve reflects the fixed costs and the upward slope as variable costs increase with higher output.
Marginal Revenue and Marginal Cost Curves
Graphing MR against MC allows for visual determination of the profit maximizing output, which is the point where the two curves intersect. This indicates that producing any more units beyond this point will not increase profit.
Write the expression as single natural logarithm
3 in 3 + 2 in x ? Help needed 10 points.
Answer:
ln 27x²
Step-by-step explanation:
Using the rules of logarithms
• log[tex]x^{n}[/tex] ⇔ nlogx
• logx + logy ⇒ logxy
Given
3 ln 3 + 2 ln x, then
= ln 3³ + lnx²
= ln 27 + lnx² = ln 27x²
Solve The Equation
4x×9y=7
4x-9y=9
Answer:
[tex]\large\boxed{x=\dfrac{9}{8}-\dfrac{\sqrt{109}}{8},\ y=-\dfrac{1}{2}-\dfrac{\sqrt{109}}{18}}\\or\\\boxed{x=\dfrac{9}{8}+\dfrac{\sqrt{109}}{2},\ y=-\dfrac{1}{2}+\dfrac{\sqrt{109}}{18}}[/tex]
Step-by-step explanation:
[tex]\left\{\begin{array}{ccc}4x\times9y=7&(1)\\4x-9y=9&(2)\end{array}\right\\\\(2)\\4x-9y=9\qquad\text{subtract}\ 4x\ \text{from both sides}\\-9y=-4x+9\qquad\text{change the signs}\\9y=4x-9\qquad\text{substitute it to (1)}\\\\4x(4x-9)=7\qquad\text{use the distributive property}\ a(b+c)=ab+ac\\(4x)(4x)+(4x)(-9)=7\\(4x)^2-36x=7\\(4x)^2-2(4x)(4.5)=7\qquad\text{add}\ 4.5^2\ \text{to both sides}\\(4x)^2-2(4x)(4.5)+4.5^2=7+4.5^2\qquad\text{use}\ (a-b)^2=a^2-2ab+b^2[/tex]
[tex](4x-4.5)^2=7+20.25\\(4x-4.5)=27.25\to 4x-4.5=\pm\sqrt{27.25}\\\\4x-\dfrac{45}{10}=\pm\sqrt{\dfrac{2725}{100}}\\\\4x-\dfrac{45}{10}=\pm\dfrac{\sqrt{2725}}{\sqrt{100}}\\\\4x-\dfrac{45}{10}=\pm\dfrac{\sqrt{25\cdot109}}{10}\\\\4x-\dfrac{45}{10}=\pm\dfrac{\sqrt{25}\cdot\sqrt{109}}{10}\\\\4x-\dfrac{45}{10}=\pm\dfrac{5\sqrt{109}}{10}\qquad\text{add}\ \dfrac{45}{10}\ \text{to both sides}\\\\4x=\dfrac{45}{10}\pm\dfrac{5\sqrt{109}}{10}[/tex]
[tex]4x=\dfrac{9}{2}\pm\dfrac{\sqrt{109}}{2}\qquad\text{divide both sides by 4}\\\\x=\dfrac{9}{8}\pm\dfrac{\sqrt{109}}{8}\\\\\text{Put the values of}\ x\ \text{to (2):}\\\\9y=4\left(\dfrac{9}{8}\pm\dfrac{\sqrt{109}}{8}\right)-9\\\\9y=\dfrac{9}{2}\pm\dfrac{\sqrt{109}}{2}-\dfrac{18}{2}\\\\9y=-\dfrac{9}{2}\pm\dfrac{\sqrt{109}}{2}\qquad\text{divide both sides by 9}\\\\y=-\dfrac{1}{2}\pm\dfrac{\sqrt{109}}{18}[/tex]
find the circumference of the circle. use 3.14 for round to the nearest unit
21 cm
A. 24
B.66
C.125
D.69
Answer:
66 (B.)
Step-by-step explanation:
I hust got an 100% on the unit test
Final answer:
Using the formula C = πd with pi (3.14) and the given diameter 21 cm, the circumference is calculated to be 65.94 cm, which rounds to 66 cm, making the correct answer B. 66.
Explanation:
The circumference (C) of a circle is calculated by the formula C = πd, where π (pi) is a constant approximately equal to 3.14, and d is the diameter of the circle.
Given the diameter of 21 cm for the circle, we calculate the circumference as follows:
Circumference = π × diameterCircumference = 3.14 × 21 cmCircumference = 65.94 cmWhen rounded to the nearest whole number, the circumference is 66 cm.
Therefore, the correct answer is choice B. 66.
Starla bought cloth napkins at an outlet store for $3.50 each, and she also used a $15 off coupon. In the equation below, x represents the number of napkins, and y represents the cost before tax. y = $3.50x - $15 If Starla paid $55.00 before tax, how many napkins did she buy? A. 20 B. 2 C. 16 D. 21
A. 20
Begin by substituting the known value. I have removed the symbols for now just to make the equation easier to read. 55 = 3.5x - 15
Add 15 on both sides of the equation to cancel out the subtraction. 70 = 3.5x
Finally, divide both sides by 3.5 to cancel out the subtraction. 20 = x
So, Starla bought 20 napkins.
In triangle ABC, sinA= 0.3, sinB=0.4 and a=12. Find b
Answer:
b = 16Step-by-step explanation:
Use the formula of an area of a triangle:
[tex]A=\dfrac{1}{2}bc\sin A=\dfrac{1}{2}ac\sin B=\dfrac{1}{2}ab\sin C[/tex]
Therefore we have the equation:
[tex]\dfrac{1}{2}bc\sin A=\dfrac{1}{2}ac\sin B[/tex] multiply both sides by 2
[tex]bc\sin A=ac\sin B[/tex] divide both sides by c
[tex]b\sin A=a\sin B[/tex] divide both sides by sin A
[tex]b=\dfrac{a\sin B}{\sin A}[/tex]
We have
[tex]\sin A=0.3,\ \sin B=0.4,\ a=12[/tex]
Substitute:
[tex]b=\dfrac{(12)(0.4)}{0.3}=\dfrac{4.8}{0.3}=\dfrac{48}{3}=16[/tex]
Using the Law of Sines and given values sinA, sinB, and side a, we can determine that the length of side b in the triangle is 16 units.
To find the length of side b in triangle ABC, we can use the Law of Sines, which states that in any triangle, the ratio of the length of a side to the sine of its opposite angle is constant:
a / sin A = b / sin B = c / sin C
Given that sinA = 0.3, sinB = 0.4, and a (side opposite angle A) is 12, we can write
12 / 0.3 = b / 0.4
Multiplying both sides of the equation by 0.4 and solving for b gives us:
b = (12 / 0.3) * 0.4
b = 40 * 0.4
b = 16
Therefore, the length of side b is 16 units.
How many degrees has ABC been rotated about the origin?
The answers is A: 90 Degrees
Answer: The correct option is (A) 90°.
Step-by-step explanation: We are given to find the number of degrees by which the triangle ABC has been rotated counterclockwise about the origin.
From the graph, we note that
the co-ordinates of the vertices of triangle ABC are A(-8, 6), B(-5, 9) and C(-2, 6).
And, the co-ordinates of the vertices of the rotated triangle A'B'C' are (-6, -8), B(-9, -5) and C(-6, -2).
That is, the transformation is as follows :
(x, y) ⇒ (-y, x).
Since this is the transformation rule for 90 degrees counterclockwise, so the required number of degrees is 90 degrees.
Option (A) is CORRECT.
answer fffffgggggggggggggggggg
Answer:
50 is the change per week. And the starting total is 650.
Step-by-step explanation:
It is in the question.
Which is an equation of the line through (-1, -4) and parallel to the line 3x + y = 5?
A. y= 3x - 1
B. y= -3x + 7
C. y = -3x - 7
D. y = 3x + 1
The answer is C. y = -3x - 7
The equation of the line that is parallel to the line 3x + y = 5 and passing through (-1, -4) will be 3x + y + 7 = 0.
What is the linear system?A linear system is one in which the parameter in the equation has a degree of one. It might have one, two, or even more variables.
The equation of the line that is parallel to the line 3x + y = 5 and passing through (-1, -4).
We know the equation of a parallel line is given as 3x + y = C
The equation is passing through (-1, -4).
Then we have
C = 3 × (-1) + (-4)
C = - 3 - 4 C = -7
Then the equation of the parallel line will be
3x + y = -7
3x + y + 7 = 0
More about the linear system link is given below.
https://brainly.com/question/20379472
#SPJ2
The graph below represents which system of inequalities?
graph of two infinite lines that intersect at a point. One line is solid and goes through the points negative 3, 0, negative 4, negative 1 and is shaded in below the line. The other line is solid, and goes through the points 1, 1, 2, negative 1 and is shaded in below the line.
Answer:
The system of inequalities is
[tex]y\leq x+3[/tex]
[tex]y\leq -2x+3[/tex]
Step-by-step explanation:
step 1
Find the equation of the solid line that goes through the points negative 3, 0, negative 4, negative 1
Let
A(-3,0),B(-4,-1)
Find the slope
m=(-1-0)/(-4+3)
m=-1/-1=1
The equation of the line into point slope form is equal to
y-y1=m(x-x1)
we have
m=1
point A(-3,0)
substitute
y-0=(1)(x+3)
y=x+3
The solution is the shaded area below the solid line
therefore
The equation of the first inequality is equal to
[tex]y\leq x+3[/tex]
step 2
Find the equation of the solid line that goes through the points 1, 1, 2, negative 1
Let
C(1,1),D(2,-1)
Find the slope
m=(-1-1)/(2-1)
m=-2/1=-2
The equation of the line into point slope form is equal to
y-y1=m(x-x1)
we have
m=-2
point C(1,1)
substitute
y-1=(-2)(x-1)
y=-2x+2+1
y=-2x+3
The solution is the shaded area below the solid line
therefore
The equation of the first inequality is equal to
[tex]y\leq -2x+3[/tex]
therefore
The system of inequalities is
[tex]y\leq x+3[/tex]
[tex]y\leq -2x+3[/tex]
(Very easy) Find the surface area of this figure
The surface area of the two triangles is 12 cm^2.
3*4=12
The surface area of the bottom rectangle is 8 cm^2.
4*2=8
The surface area of the rectangle that is on the left side of the figure is 6 cm^2.
3*2=6
The surface area of the rectangle that is on the top side of the figure is 10 cm^2.
To find the third side of the triangle, use the Pythagorean theorem.
3^2+4^2=h^2
9+16=25
The third side of the triangle is 5 cm.
The surface area of the whole figure is 36 cm^2.
12+8+6+10=36
List the positive factors of 30.
Answer:
1, 2, 3, 5, 6, 10, 15, 30.
Answer:
Positive factors of 30 are: 1, 2, 3, 5, 6, 10, 15, 30
Step-by-step explanation:
We are asked to list the positive factors of the number 30.
Factors are the whole numbers which when multiplied together produce another number. So positive factors only include the whole numbers that are greater than 0.
Positive factors of 30 include the following whole numbers:
[tex]1, 2, 3, 5, 6, 10, 15, 30[/tex]
3.5d + 6.25 = 1 + 5.25d
The solution is d =
Answer:
d = 3
Step-by-step explanation:
3.5d + 6.25 = 1 + 5.25d
5.25d - 3.5d = 6.25 - 1
1.75d = 5.25
d = 5.25 ÷ 1.75 = 3
Determine whether the function f(x) = 3(x - 1)^4 is even or odd
Answer:
The function is neither even nor odd.
Step-by-step explanation:
the function is even if f(-x) = f(x)
The function is odd if f(-x) = -f(x)
We are given the function:
f(x) = 3(x-1)^4
Solving
f(x) = 3(x^4 -4x^3+6x^2-4x+1)
f(x) = 3x^4-12x^3+18x^2-12x+3
Now putting -x instead of x i,e f(-x)
f(-x) = 3(-x)^4-12(-x)^3+18(-x)^2-12(-x)+3
Solving
f(-x) =3x^4+12x^3+18x^2+12x+3
so, f(-x) ≠ f(x) The function is not even
and f(-x) ≠ -f(x) The function is not odd
Hence the function is neither even nor odd.
the vector u is graphed. which of the vectors below would be orthogonal to vector u?
ANSWER
[tex]< \frac{1}{5} , - \frac{1}{3} \: >[/tex]
EXPLANATION
The given vector , u has the following components,
[tex]u = < \: - 5 , - 3 \: > [/tex]
If two vectors are orthogonal, then their dot product is zero.
[tex]< \: - 5 , - 3 \: > \bullet < \: \frac{1}{5} , - \frac{1}{3} \: > = - 5 \times \frac{1}{5} \times - 3 \times - \frac{1}{3} = - 1 + 1 = 0[/tex]
Hence,the vector
[tex] < \frac{1}{5} , - \frac{1}{3} \: >[/tex]
is orthogonal to vector u.
Find the product (8/6n-4)(9n^2-4)
Answer:
4(3n+2) or 12n+8
Step-by-step explanation:
Given expression is:
[tex](\frac{8}{6n-4})(9n^{2}-4)[/tex]
The numerator of the fraction will be multiplied with 9n^2- 4
So, Multiplication will give us:
[tex]=\frac{8(9n^2-4)}{6n-4}[/tex]
We can simplify the expression before multiplication.
The numerator will be broken down using the formula:
[tex]a^2 - b^2 = (a+b)(a-b)\\So,\\= \frac{8[(3n)^2 - (2)^2]}{6n-4}\\ = \frac{8(3n-2)(3n+2)}{6n-4}[/tex]
We can take 2 as common factor from denominator
[tex]=\frac{8(3n-2)(3n+2)}{2(3n-2)}\\After\ cutting\\= 4(3n+2)[/tex]
Hence the product is 4(3n+2) or 12n+8 ..
Answer: 1 and the second part is 12n+8
Step-by-step explanation:Edgen2020
Which set of the side lenths form a right triangle?
Answer:
15m, 20m, 25mStep-by-step explanation:
If for x ≤ y < z
x² + y² = z²
then x, y and z form a right triangle.
1 .
15m, 20m, 25m
15² + 20² = 225 + 400 = 625
25² = 625
CORRECT :)
2.
3ft, 6ft, 5ft
3² + 5² = 9 + 25 = 34
6² = 36
34 ≠ 36
3.
10in, 41in, 40in
10² + 40² = 100 + 1600 = 1700
41² = 1681
1700 ≠ 1681
4.
7cm, 8cm, 10cm
7² + 8² = 49 + 64 = 113
10² = 100
113 ≠ 100