Answer: Option (D) is the correct answer.
Explanation:
Law of conservation of mass states that energy can neither be created nor it can be destroyed. It can only be transformed from one form to another.
Therefore, in a chemical reaction an equation can only be balanced if the number of reactants equal the number of products because energy required for reactants is utilized in the formation of the products.
For example, [tex]2Al + 6HCl \rightarrow 2AlCl_{3} + 3H_{2}[/tex] is a balanced equation because the number of reactant atoms equal the number of product atoms.
Thus, we can conclude that out of the given options, [tex]3Ca + 2Cr(NO3)_3 \rightarrow 3Ca(NO3)_{3} + 2Cr[/tex] equations violates the law of conservation of mass because number of reactant atoms does not equal the number of product atoms.
Friction and motion occur at the same time.
True
False
The ph of a 0.55 m aqueous solution ammonia, nh3, at 25.0°c is 11.50. what is the value of kb for nh3?
The equilibrium constant for ammonia[tex]\left({{{\text{K}}_{\text{b}}}}\right)[/tex] is[tex]\boxed{1.82\times{{10}^{-5}}}[/tex].
Further explanation:
Chemical equilibrium is the state in which the concentration of reactants and products become constant and do not change with time. This is because the rate of forward and backward direction becomes equal. The general equilibrium reaction is as follows:
[tex]{\text{A(g)}}+{\text{B(g)}}\rightleftharpoons{\text{C(g)}}+{\text{D(g)}}[/tex]
Equilibrium constant is the constant that relates the concentration of product and reactant at equilibrium. The formula to calculate the equilibrium constant for general reaction is as follows:
[tex]{\text{K}}=\frac{{\left[{\text{D}}\right]\left[{\text{C}}\right]}}{{\left[{\text{A}}\right]\left[{\text{B}}\right]}}[/tex]
Here, K is the equilibrium constant.
The equilibrium constant for the dissociation of acid is known as [tex]{{\text{K}}_{\text{a}}}[/tex]and equilibrium constant for the dissociation of base is known as[tex]{{\text{K}}_{\text{b}}}[/tex].
The expression that relates pH and pOH is given as follows:
[tex]{\text{pH}}+{\text{pOH}}=14[/tex] …… (1)
Rearrange equation (1) to calculate pOH.
[tex]{\text{pOH}}=14-{\text{pH}}[/tex] …… (2)
Substitute 11.50 for the value of pH in equation (2).
[tex]\begin{aligned}{\text{pOH}}&=14-{\text{11}}{\text{.50}}\\&={\text{2}}{\text{.5}}\\\end{aligned}[/tex]
pOH is the measure of hydroxide ion concentration. The formula to calculate pOH is as follows:
[tex]{\text{pOH}}=-\log\left[{{\text{O}}{{\text{H}}^-}}\right][/tex] …… (3)
Here,
[tex]\left[{{\text{O}}{{\text{H}}^-}}\right][/tex] is the concentration of hydroxide ion.
Rearrange equation (3) to calculate [tex]\left[{{\text{O}}{{\text{H}}^-}}\right][/tex].
[tex]\left[{{\text{O}}{{\text{H}}^-}}\right]={10^{-{\text{pOH}}}}[/tex] …… (4)
Substitute 2.5 for pOH in equation (4).
[tex]\begin{aligned}\left[{{\text{O}}{{\text{H}}^-}}\right]&={10^{-2.5}}\\&=0.0031622\\\end{aligned}[/tex]
The given equilibrium reaction is,
[tex]{\text{N}}{{\text{H}}_{\text{3}}}+{{\text{H}}_2}{\text{O}}\rightleftharpoons{\text{NH}}_4^++{\text{O}}{{\text{H}}^-}[/tex]
The expression of [tex]{{\text{K}}_{\text{b}}}[/tex]for the above reaction is as follows:
[tex]{{\text{K}}_{\text{b}}}=\frac{{\left[{{\text{NH}}_4^+}\right]\left[{{\text{O}}{{\text{H}}^-}}\right]}}{{\left[{{\text{N}}{{\text{H}}_3}}\right]}}[/tex] …... (5)
The equilibrium concentration of both [tex]{\text{NH}}_4^+[/tex] and [tex]{\text{O}}{{\text{H}}^-}[/tex] is the same.
0.0031622 M of [tex]{\text{O}}{{\text{H}}^-}[/tex]is present at equilibrium so 0.0031622 M out of 0.55 M of has reacted.
The initial concentration of the aqueous solution is 0.55 M. So the concentration of [tex]{\text{N}}{{\text{H}}_3}[/tex] left at equilibrium is calculated as follows:
[tex]\begin{aligned}\left[{{\text{N}}{{\text{H}}_3}}\right]&={\text{Initial concentration of N}}{{\text{H}}_{\text{3}}}-{\text{Reacted concentration of N}}{{\text{H}}_{\text{3}}}\\&={\text{0}}{\text{.55 M}}-{\text{0}}{\text{.0031622 M}}\\&={\text{0}}{\text{.5468378 M}}\\\end{aligned}[/tex]
The value of[tex]\left[{{\text{O}}{{\text{H}}^-}}\right][/tex]is 0.0031622 M.
The value of [tex]\left[{{\text{N}}{{\text{H}}_3}}\right][/tex] is 0.5468378 M.
The value of [tex]\left[{{\text{NH}}_4^+}\right][/tex] is 0.0031622 M.
Substitute these values in equation (5).
[tex]\begin{aligned}{{\text{K}}_{\text{b}}}&=\frac{{\left({0.0031622\;{\text{M}}}\right)\left({0.0031622\;{\text{M}}}\right)}}{{\left({0.546837{\text{8 M}}}\right)}}\\&=1.82861\times{10^{-5}}\\&\approx1.82\times{10^{-5}}\\\end{aligned}[/tex]
Therefore, equilibrium constant for ammonia is[tex]{\mathbf{1}}{\mathbf{.82\times1}}{{\mathbf{0}}^{{\mathbf{-5}}}}[/tex].
Learn more:
1. Calculation of equilibrium constant of pure water at 25°c: https://brainly.com/question/3467841
2. Complete equation for the dissociation of [tex]{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}[/tex](aq): https://brainly.com/question/5425813
Answer details:
Grade: Senior school
Subject: Chemistry
Chapter: Equilibrium
Keywords: NH3, OH-, NH4+, H2O, equilibrium, kb, pH, pOH, 14, 11.5, 2.5, aqueous solution, 0.0031622 M, 0.5468378 M.