Which of the points does NOT satisfy the inequality shaded in the diagram?

A) (4, 0)

B) (0, 0)

C) (-3, -2)

D) (-10, -1)

Which Of The Points Does NOT Satisfy The Inequality Shaded In The Diagram? A)(4, 0) B)(0, 0) C)(-3, -2)

Answers

Answer 1
the answer i got was A (4,0)
Answer 2

The point that does not satisfy the inequality is

A) (4, 0)

How to get the points that satisfy inequality

To find points satisfying an inequality in a two-dimensional space:

Graph the Inequality: Plot the boundary line as if it were an equation (solid or dashed based on inclusion/exclusion).

Shade the Region: Determine the side of the line representing the solution set by testing a point; shade the satisfying side.

Identify Points: All points within the shaded region, including the boundary if included, satisfy the inequality.

Read more on inequality here https://brainly.com/question/24372553

#SPJ2


Related Questions

When hypothesis testing, when might you use a related sample versus an independent sample? Provide examples of both population to illustrate the differences.

Answers

Answer:

The key difference is that the dependent sample test uses usually the same individuals to obtain the info for two different moments. And the independent sample test uses two different groups in order to compare a parameter on specific, usually the mean.

Step-by-step explanation:

A paired t-test is used to compare two population means when we have two samples in which observations in one sample can be paired with observations in the other sample. For example if we have Before-and-after observations in order to see an improvement or not for a method we can use it ( Without treatment and With specific treatment).  

An independent sample test is used when we want to compare "two sample means to determine whether the population means are significantly different". For example if we want to compare the scores for male and female in a test.  

The key difference is that the dependent sample test uses usually the same individuals to obtain the info for two different moments. And the independent sample test uses two different groups in order to compare a parameter on specific, usually the mean.

Final answer:

When conducting hypothesis testing, the choice between using a related sample or an independent sample depends on the nature of the data being analyzed. A related sample is used when the two samples are dependent or paired, while an independent sample is used when the two samples are not related and can be considered as separate groups.

Explanation:

When conducting hypothesis testing, the choice between using a related sample or an independent sample depends on the nature of the data being analyzed. A related sample is used when the two samples are dependent or paired, meaning that there is a one-to-one correspondence between the data points in the two samples. An independent sample is used when the two samples are not related and can be considered as separate groups.

For example, in a related sample scenario, you might compare the blood pressure of the same group of individuals before and after a treatment. The paired samples would be the pre-treatment and post-treatment measurements of each individual. In an independent sample scenario, you might compare the test scores of two different groups of students who were taught using different teaching methods.

two circles have circumferences of (8xy) cm and (5xy) cm respectively. what is the variable expression to represent the sum of their circumferences?
(8xy)cm X (5xy)cm
(8xy)cm - (5xy)cm
(8xy)cm + (5xy)cm
(8xy)cm divided by (5xy)cm

Answers

Answer:the variable expression to represent the sum of their circumferences would be

(8xy)cm + (5xy)cm

Step-by-step explanation:

The circumference of the first circle is 8xy cm

The circumference of the second circle is 5xy cm

the variable expression to represent the sum of their circumferences would be

(8xy)cm + (5xy)cm

This variable expression can also be simplified further because both terms contain xy.

Cheating: For a statistics project a community college student at Diablo Valley College (DVC) decides to investigate cheating in two popular majors at DVC: business and nursing. She selects a random sample of nursing and business courses and convinces the professors to distribute a short anonymous survey in their classes. The question about cheating is one of many other questions about college life. When the student summarizes the data, she finds that 42 of the 50 business students and 38 of the 70 nursing students admitted to cheating in their courses. True or false? The counts suggest that the normal model is a good fit for the sampling distribution of sample differences. (a) a·False o b.True

Answers

Answer:

The answer is False

Step-by-step explanation:

The  count does no suggest that the normal model is a good fit for sampling the distribution because the questions used for the test and survey is the one of many other question about cheating which implies that if other questions about college life are being used as the survey, the response would probably be that more of the student would not have admitted to cheating. This concept therefore disobeys the normal distribution model which is a bell shaped model and therefore assumes that at an average, the number of students that admitted to cheating in the major courses should be equal.

which of the following number sets does 25 belong in?
2 and 4
all of the above
3 and 5
1 and 2

Answers

Answer:

all of the above

Step-by-step explanation:

The number 25 is a natural number as it belongs to the set [1,2,3,4,5,......]

The number 25 is a whole number as it belongs to the set [0,1,2,3,4,5,......]

The number 25 is an Integer as it belongs to the set [...,-5,-4,-3,-2,-1,0,1,2,3,4,5,...]

The number 25 is a rational number as it can be expressed as [tex]\[\frac{25}{1}\][/tex]

For the same reason , number 25 is a real number as it belongs to the set of rational numbers.

So the correct option is "all of the above".

Final answer:

25 does not belong to any of the given number sets (2 and 4, 1 and 2, or 3 and 5).

Explanation:

The number 25 does not belong to any of the provided number sets i.e. 2 and 4, 1 and 2 or 3 and 5. A number set typically refers to a collection of numbers, and in this case, 25 is absent in all the provided sets. The given number sets only contain the numbers 1, 2, 3, 4 and 5. Thus, 25 does not belong to any of these sets.

Learn more about Number Set here:

https://brainly.com/question/35714672

#SPJ3

In the question below determine whether the binary relation is: (1) reflexive, (2) symmetric, (3) antisymmetric, (4) transitive.

a) the relation r on the set of all people where aRb means that a is younger than b.

Answers

Answer:

The relation is antisymmetric and transitive

Step-by-step explanation:

Let a,b,c be elements of the set of all people.

1) Let a be a person who is 20 years old. aRa means that this person is younger than themselves, which it's false because 20<20 is false. Then R is not reflexive.

2) Let a be a person who is 20 years old and b a person who is 30 years old. Then a is younger than b, that is, aRb.

However, it is not true that b is younger than a, as 30<20 is false, therefore bRa is false and R is not symmetric.

3) Suppose that aRb, so that a is younger than b. Then, b is not younger than a. If n denotes the age of a and m denotes the age of b, we have that n<m which implies that m<n is false. Then bRa is false, thus R is antisymmetric.

4) Suppose that aRb and bRc. Let n,m,p denote the ages of a,b,c respectively. Then n<m and m<p (a is younger than b and b is younger than c), and by transitivity of the ordering of numbers, n<p, that is, a is younger than c. Thus aRc, and R is transitive.

A political scientist wants to know how college students feel about the social security system. She obtains a list of the 3114 undergraduates at her college and mails a questionnaire to 250 students selected at random. Only 100 of the questionnaires are returned. In this study, the rate of non-response would be a. 0.25. b. 0.40. x. 0.75. d. 0.60

Answers

Answer: d. 0.60

Step-by-step explanation:

When are performing sample surveys , when the selected participant is giving any response is denoted as non - response.

The proportion of these participants of the sample is known as the non-response rate.

Given : A political scientist wants to know how college students feel about the social security system.

She obtains a list of the 3114 undergraduates at her college and mails a questionnaire to 250 students selected at random.

i.e. Sample size : n= 290

Only 100 of the questionnaires are returned.

Individual gave response =100

Individual gave no-response =250-100 =150

The  rate of non-response [tex]=\dfrac{\text{Individual gave no-response}}{n}[/tex]

[tex]=\dfrac{150}{250} =0.60[/tex]

Hence, the rate of non-response would be 0.60 .

Thus , the correct option is d. 0.60.

Find the work done in winding up a 175 ft cable that weighs 3 lb/ft.

Answers

Answer:

[tex]work \ done= 45937.5[/tex]

Step-by-step explanation:

Work done is given by

[tex]work \ done=\int_a^b w(d-x) \ dx[/tex] , where d = length of cable and w = weight of cable.

Here, d = 175 ft and w = 3 lb/ft

Now, [tex]work \ done=\int_0^{175} 3(175-x) \ dx[/tex]

[tex]work \ done= 3\left [175x-\frac{x^2}{2}  \right ]_0^{175}[/tex]

[tex]work \ done= 3\left [175^2-\frac{175^2}{2}  \right ][/tex]

[tex]work \ done= 3\cdot \frac{175^2}{2}[/tex]

[tex]work \ done= 45937.5[/tex]

A tank contains 6,000 L of brine with 16 kg of dissolved salt. Pure water enters the tank at a rate of 60 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. (a) How much salt is in the tank after t minutes? y = kg (b) How much salt is in the tank after 20 minutes? (Round your answer to one decimal place.) y = kg

Answers

Answer:

a) [tex]S_{a}(t)=16Kg-0.16Kg*\frac{t}{min}[/tex]

b)  [tex]S_{a}(20)=12.8Kg[/tex]

Step-by-step explanation:

It can be seen in the graph that the water velocity and solution velocity is the same, but the salt concentation will be lower

Water velocity [tex]V_{w} = 60\frac{L}{min}[/tex]

Solution velocity [tex]V_{s} = 60\frac{L}{min}[/tex]

Brine concentration = [tex]\frac{6,000L}{16Kg}=375\frac{L}{Kg}[/tex]

a) Amount of salt as a funtion of time Sa(t)

[tex]S_{a}(t)=16Kg-\frac{60Kg*L}{375L}*\frac{(t)}{min}=[tex]16Kg-0.16Kg*\frac{t}{min}[/tex]

b) [tex]S_{a}(20)=16Kg-0.16\frac{Kg}{min}*(20min)=16Kg-3.2Kg=12.8Kg[/tex]

This value was to be expected since as the time passes the concentration will be lower due to the entrance to the pure water tank

Final answer:

To calculate the amount of salt in the tank after a certain amount of time, we need to consider the rate at which salt enters and leaves the tank. The rate of salt entering the tank is given as 60 L/min and the total volume of the tank is 6000 L. Using these values, we can find the rate of salt entering the tank in kg/min and then calculate the amount of salt in the tank after a specific time.

Explanation:

To calculate the amount of salt in the tank after a certain amount of time, we need to consider the rate at which salt enters and leaves the tank. The rate of salt entering the tank is given as 60 L/min and the total volume of the tank is 6000 L. Using these values, we can find the rate of salt entering the tank in kg/min:

Rate of salt entering = (60 L/min) * (16 kg/6000 L) = 0.16 kg/min

Therefore, the amount of salt in the tank after t minutes is given by:

y = 0.16 kg/min * t min = 0.16t kg

Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the null and alternative hypotheses, test statistic, P-value, critical value(s). and state the final conclusion that addresses the original claim. A safety administration conducted crash tests of child booster seats for cars. Listed below are results from those tests, with the measurements given in hie (standard head injury condition units). The safety requirement is that the hic measurement should be less than 1000 hic. Use a 0.05 significance level to test the claim that the sample is from a population with a mean less than 1000 hic. Do the results suggest that all of the child booster seats meet the specified requirement? 697 759 1266 621 569 432

What are the hypotheses

Identify the test statistic

Identify the P-value.

The critical value(s) is(are)

State the final conclusion that addressses the original claim

What do the results suggest about the child booster seats eeting the specific requirement?

Answers

Answer:

There is sufficient evidence to conclude that child booster seats meet the specific requirement.

Step-by-step explanation:

Sample: 697, 759, 1266, 621, 569, 432

Formula:

[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]  

where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.  

[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]

[tex]Mean =\displaystyle\frac{4344}{6} = 724[/tex]

Sum of squares of differences = 415616

[tex]S.D = \sqrt{\frac{415616}{5}} = 288.31[/tex]

We are given the following in the question:  

Population mean, μ = 1000 hic

Sample mean, [tex]\bar{x}[/tex] = 724

Sample size, n = 16

Alpha, α = 0.05

Sample standard deviation, s = 288.31

First, we design the null and the alternate hypothesis

[tex]H_{0}: \mu = 1000\text{ hic}\\H_A: \mu < 1000\text{ hic}[/tex]

We use one-tailed(left) t test to perform this hypothesis.

Formula:

[tex]t_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}} }[/tex]

Putting all the values, we have

[tex]t_{stat} = \displaystyle\frac{724 - 1000}{\frac{288.31}{\sqrt{6}} } = -2.344[/tex]

Now, [tex]t_{critical} \text{ at 0.05 level of significance, 5 degree of freedom } = -2.015[/tex]

Calculation the p-value from table,

P-value = 0.033

Since,                  

Since, the p value is lower than the significance level, we fail to accept the null hypothesis and reject it. We accept the alternate hypothesis.

We conclude that the measurement is less than 1000 hic.

Thus, there is sufficient evidence to conclude that child booster seats meet the specific requirement.

Conduct the appropriate hypothesis test and compute the test statistic. A company that produces fishing line undergoes random testing to see if their fishing line holds up to the advertised specifications. Currently they are producing 30-pound test line and 20 randomly selected pieces are selected to test the strength. The 20 pieces broke with an average force of 29.1 pounds and a sample standard deviation of 2 pounds. Assuming that the strength of the fishing line is normally distributed, perform the appropriate hypothesis test at a 0.05 significance level in order to determine whether there is sufficient sample evidence to conclude the fishing line breaks with an average force of less than 30 pounds.
a. No, because the test statistic is -2.01.
b. No, because the test statistic is -2.52
c. Yes, because the test statistic is -2.52
d. Cannot be determined Yes, because the test statistic is -2.01

Answers

Answer:

Option D) Yes, because the test statistic is -2.01

Step-by-step explanation:

We are given the following in the question:  

Population mean, μ = 30 pound

Sample mean, [tex]\bar{x}[/tex] = 29.1 pounds

Sample size, n = 20

Alpha, α = 0.05

Sample standard deviation, s =  2 pounds

First, we design the null and the alternate hypothesis

[tex]H_{0}: \mu = 30\text{ pounds}\\H_A: \mu < 30\text{ pounds}[/tex]

We use one-tailed(left) t test to perform this hypothesis.

Formula:

[tex]t_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}} }[/tex]

Putting all the values, we have

[tex]t_{stat} = \displaystyle\frac{29.1 - 30}{\frac{2}{\sqrt{20}} } = -2.012[/tex]

Now,

[tex]t_{critical} \text{ at 0.05 level of significance, 19 degree of freedom } = -1.729[/tex]

Since,                    

[tex]t_{stat} < t_{critical}[/tex]

We fail to accept the null hypothesis and reject it. We accept the alternate hypothesis. Thus, there were enough evidence to conclude that the fishing line breaks with an average force of less than 30 pounds.

Option D) Yes, because the test statistic is -2.01

Suppose that a marketing research firm wants to conduct a survey to estimate the meanμof the distribution of the amount spent on entertainment by each adult who visits a certain popularresort. The firm would like to estimate the mean of this distribution to within $60 with 95% confidence.From data regarding past operations at the resort, it has been estimated that the standard deviation ofthe entertainment expenditures is no more than $400. How large does the firm’s sample size need to be?

Answers

Answer:

The firm's sample size must be of at least 171 adults.

Step-by-step explanation:

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1-0.95}{2} = 0.025[/tex]

Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].

So it is z with a pvalue of [tex]1-0.025 = 0.975[/tex], so [tex]z = 1.96[/tex]

Now, find the margin of error M as such

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the length of the sample.

In this problem, we have that:

[tex]M = 60, \sigma = 400[/tex]. So

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

[tex]60 = 1.96*\frac{400}{\sqrt{n}}[/tex]

[tex]60\sqrt{n} = 784[/tex]

[tex]\sqrt{n} = 13.07[/tex]

[tex]n = 170.7[/tex]

The firm's sample size must be of at least 171 adults.

The reported unemployment is 5.5% of the population. What measurement scale is used to measure unemployment? Select one: a. Nominal b. Ordinal c. Interval or ratio d. Descriptive

Answers

Answer:

c. Interval or ratio

Step-by-step explanation:

There exists the following measurement scales:

Nominal: A variable is linked to a number. For example, Buffalo Bills players, 27 is Tre'Davious White, 49 Tremanine Edmunds, and then on...

Ordinal: Ranks the intensity of something. For example, grading some pain on a 1 to 10 scale.

Interval or ratio: Represents quantity and has an equality of units. One example is the rates of unemployment.

Descriptive: Tries to attribute qualities to quantitative data. For example, rates of unemployment being classified as very low, low, medium, and then on...

So the correct answer is:

c. Interval or ratio

Final answer:

The unemployment rate is measured using an interval or ratio scale, represented as a percentage. Various methods and measures are considered for accurate calculation, though it has limitations in fully capturing unemployment's societal impact.

Explanation:

The reported unemployment rate of 5.5% of the population uses an interval or ratio scale for measurement. This type of scale is used because the unemployment rate is a percentage that represents a proportion of the population. The measurement of unemployment involves a ratio of two quantities: the number of unemployed individuals and the total labor force. Different methods such as Labor Force Sample Surveys, Official Estimates, Social Insurance Statistics, and Employment Office Statistics are used to calculate this figure. Moreover, the U.S. Bureau of Labor Statistics employs six different measures (U1 - U6) to capture various aspects of unemployment. While the rate is informative, there are shortcomings in how it represents the real impact on society, as it does not account for underemployment or those who have stopped looking for work. Understanding these statistics is crucial as unemployment has significant economic and social consequences, such as increasing inequality and potentially leading to civil unrest.

Vermont-based Green Mountain Coffee Roasters dominates the market for single-serve coffee in the United States, with its subsidiary Keurig accounting for approximately 70% of sales ("Rivals Try to Loosen Keurig's Grip on Single-Serve Coffee Market," Chicago Tribune, February 26, 2011). But Keurig's patent on K-cups, the plastic pods used to brew the coffee, is expected to expire in 2012, allowing other companies to better compete. Suppose a potential competitor has been conducting blind taste tests on its blend and finds that 47% of consumers strongly prefer its French Roast to that of Green Mountain Coffee Roasters. After tweaking its recipe, the competitor conducts a test with 144 tasters, of which 72 prefer its blend. The competitor claims that its new blend is preferred by more than 47% of consumers to Green Mountain Coffee Roasters' French Roast.

Refer to Exhibit 9-7. At the 1% significance level, does the evidence support the claim?

a. No, since the value of the test statistic is less than the critical value
b. Yes, since the value of the test statistic is less than the critical value
c. No, since the value of the test statistic is greater than the critical value
d. Yes, since the value of the test statistic is greater than the critical value

Answers

Answer:

a. No, since the value of the test statistic is less than the critical value

Step-by-step explanation:

1) Data given and notation

n=144 represent the random sample taken

X=72 represent the number of people that prefer the blend

[tex]\hat p=\frac{72}{144}=0.5[/tex] estimated proportion of people that prefer the blend

[tex]p_o=0.47[/tex] is the value that we want to test

[tex]\alpha=0.01[/tex] represent the significance level

Confidence=99% or 0.959

z would represent the statistic (variable of interest)

[tex]p_v[/tex] represent the p value (variable of interest)  

2) Concepts and formulas to use  

We need to conduct a hypothesis in order to test the claim that the true proportion if higher than 0.47:  

Null hypothesis:[tex]p\leq 0.47[/tex]  

Alternative hypothesis:[tex]p > 0.47[/tex]  

When we conduct a proportion test we need to use the z statistic, and the is given by:  

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].

3) Calculate the statistic  

Since we have all the info requires we can replace in formula (1) like this:  

[tex]z=\frac{0.5 -0.47}{\sqrt{\frac{0.47(1-0.47)}{144}}}=0.721[/tex]  

4) Statistical decision  

We can calculate the critical value since we have a right tailed test, we need to look into the normal standard distribution a value that accumulates 0.01 of the area on the right and 0.99 on the left. And this value is:

[tex]z_{\alpha/2}=2.33[/tex]

And we can use the following excel code to find the critical value: "=NORM.INV(0.99,0,1)"

Our calculated value on this case is less than the critical value so the best conclusion is:

a. No, since the value of the test statistic is less than the critical value

What requirements are necessary for a normal probability distribution to be a standard normal probability​ distribution?Choose the correct answer below.A.The mean and standard deviation have the values of mu equals 1and sigma equals 1.B.The mean and standard deviation have the values of mu equals 0and sigma equals 1.C.The mean and standard deviation have the values of mu equals 0and sigma equals 0.D.The mean and standard deviation have the values of mu equals 1and sigma equals 0.

Answers

The requirements necessary for a normal probability distribution to be a standard normal probability​ distribution is that The mean and standard deviation have the values of mu equals 1and sigma equals 1. Hence the correct answer is A.

What is Normal Probability Distribution?

A probability distribution is one whose mean data points are symmetric. That is, most values from such a distribution cluster around the mean.

Another name for Normal Probability Distribution is Gaussian Distribution.

Learn more about Normal Probability Distribution at:

https://brainly.com/question/6476990

Final answer:

A standard normal probability distribution requires a mean of 0 and a standard deviation of 1. The correct answer is B, which reflects these necessary conditions for standardization, allowing for the comparison of z-scores across different distributions.

Explanation:

To transform a normal probability distribution into a standard normal probability distribution, certain requirements must be met. Specifically, the distribution must have a mean (mu) of 0 and a standard deviation (sigma) of 1. Among the given options, the correct answer is B, where the mean and standard deviation have the values of mu equals 0 and sigma equals 1.

This standardization process allows any normal distribution to be compared on a common scale, and it is fundamental for calculating z-scores, which indicate how many standard deviations an element is from the mean.For example, if we have a normally distributed variable 'x' from a distribution with any mean µ and standard deviation o, the standardized value or z-score is calculated as follows:z = (x - µ) / o

a study done by researchers at a university concluded that 70% of all student athletes in this country have been subjected to some form of hazing. The study is based on responses from 1200 athletes. What are the margin of error and 95% confidence interval for the study?

Answers

Answer:The margin of error is 0.01323 and 95% confidence interval is (0.674,0.73).

Step-by-step explanation:

Since we have given that

p = 0.70

n = 1200

We need to find the margin of error;

Margin of error would be

[tex]\sqrt{\dfrac{p(1-p)}{n}}\\\\=\sqrt{\dfrac{0.7\times 0.3}{1200}}\\\\=0.01323[/tex]

At 95% confidence level, α = 1.96

so, 95% confidence interval would be

[tex]p\pm z\times 0.01323\\\\=0.7\pm 1.96\times 0.01323\\\\=0.7\pm 0.02593\\\\=(0.7-0.02593,0.7+0.02593)\\\\=(0.674,0.73)[/tex]

Hence, the margin of error is 0.01323 and 95% confidence interval is (0.674,0.73).

The heights of students in a class are normally distributed with mean 55 inches and standard deviation 5 inches. Use the Empirical Rule to determine the interval and contains the middle 68% of the heights.

a) [40,70]

b)[45,70]

c)[50,60]

d)[45,65]

e)[47,63]

d)none of the above

Answers

Answer:  c)[50,60]

Step-by-step explanation:

The Empirical rule says that , About 68% of the population lies with the one standard deviation from the mean (For normally distribution).

We are given that , The heights of students in a class are normally distributed with mean 55 inches and standard deviation 5 inches.

Then by Empirical rule, about 68% of the heights of students lies between one standard deviation from mean.

i.e. about 68% of the heights of students lies between [tex]\text{Mean}\pm\text{Standard deviation}[/tex]

i.e. about 68% of the heights of students lies between [tex]55\pm5[/tex]

Here, [tex]55\pm5=(55-5, 55+5)=(50,60)[/tex]

i.e.  The required interval that contains the middle 68% of the heights. = [50,60]

Hence, the correct answer is c) (50,60)

Final answer

The interval containing the middle 68 of a typically distributed class height is one standard divagation from the mean, which is( 50, 60) elevation for the given mean of 55 elevation and standard divagation of 5 elevation.

Explanation

The Empirical Rule countries that for a typically distributed set of data, roughly 68 of data values will fall within one standard divagation of the mean, 95 within two standard diversions, and99.7 within three standard diversions. In this case, the mean height is 55 elevation and the standard divagation is 5 elevation. thus, to find the interval that contains the middle 68 of the heights, we add and abate one standard divagation from the mean.

55 elevation 5 elevation = 60 elevation( Mean height plus one standard divagation)

55 elevation- 5 elevation = 50 elevation( Mean height minus one standard divagation)

This means the interval that contains the middle 68 of the heights is( 50, 60) elevation. Hence, the correct answer is option( c).

a community program choose 16 fifth grade students every year and provide each of them with the same amount of money to attend music or art camp last year the program awarded a total of 8,400 to the students how much

Answers

Answer: 525

Step-by-step explanation: As I read the question I’m getting the idea of division. The community program chooses 16 students every year. The 8,400 dollars from last year was the amount of money the students receive all together. Therefore 8,400 divided by 16 is 525

Final answer:

Each of the 16 fifth grade students received $525 from the community program to attend music or art camp, calculated by dividing the total funds of $8,400 by 16 students.

Explanation:

The question asked is about calculating the amount of money awarded to each of the 16 fifth grade students by a community program for attending music or art camp. Since the program awarded a total of $8,400 last year and 16 students were chosen, we need to perform a simple division to find out how much money each student received. To do this, we divide the total amount of money ($8,400) by the number of students (16).

Step-by-step Calculation:

Divide the total amount of money by the number of students: $8,400 \/ 16.

Calculate the result to determine the amount per student.

Therefore, each student received $525 to attend the music or art camp.

You can buy a television for $349 cash or pay $75 down and the balance in 18 monthly payments of 22.50 is the installment price of the TV? By what percent would the installment price be greater than the cash price?

Answers

Answer:

Step-by-step explanation:

If you pay cash, the total amount that you will pay for the television is $349

If you pay $75 down, the balance would be paid in 18 monthly payments of 22.50 which is the installment price of the TV. Total amount paid in 18 months would be

22.5 × 18 = $405

Total cost of the TV when you pay in installments would be

405 + 75 = $480

Difference between the installment price and the cash price would be

480 - 349 = $131

The percent by which the installment price would be greater than the cash price is

131/349 × 100 = 37.5%

Lucy Baker is analyzing demographic characteristics of two television programs, American Idol (population 1) and 60 Minutes (population 2). Previous studies indicate no difference in the ages of the two audiences. (The mean age of each audience is the same.) Lucy plans to test this hypothesis using a random sample of 100 from each audience. Her alternate hypothesis is ____________.

Answers

Answer:

Alternative hypothesis:[tex]\mu_1 -\mu_2 \neq 0[/tex]

Or in the alternative way would be:

 Alternative hypothesis:[tex]\mu_1 \neq \mu_2 [/tex]

Step-by-step explanation:

A hypothesis is defined as "a speculation or theory based on insufficient evidence that lends itself to further testing and experimentation. With further testing, a hypothesis can usually be proven true or false".  

The null hypothesis is defined as "a hypothesis that says there is no statistical significance between the two variables in the hypothesis. It is the hypothesis that the researcher is trying to disprove".

The alternative hypothesis is "just the inverse, or opposite, of the null hypothesis. It is the hypothesis that researcher is trying to prove".

On this case the claim that they want to test is: "The means for the two groups (American Idol and 60 Minutes) is the same". So we want to check if we have significant differences between the two means, so this needs to be on the alternative hypothesis and on the null hypothesis we need to have the complement of the alternative hypothesis.

Null hypothesis:[tex]\mu_1 -\mu_2 = 0[/tex]

This null hypothesis can be expressed like this:

Null hypothesis:[tex]\mu_1 = \mu_2 [/tex]

Alternative hypothesis:[tex]\mu_1 -\mu_2 \neq 0[/tex]

Or in the alternative way would be:

Alternative hypothesis:[tex]\mu_1 \neq \mu_2 [/tex]

Final answer:

Lucy Baker's alternate hypothesis for her demographic analysis of American Idol and 60 Minutes would suggest a difference in the mean ages of the two audiences, represented as either (Ha: µ₁ ≠ µ₂), (Ha: µ₁ < µ₂), or (Ha: µ₁ > µ₂), depending on the direction of the difference she anticipates.

Explanation:

Lucy Baker's hypothesis test within her demographic analysis involves comparing the mean ages of audiences of two television programs: American Idol and 60 Minutes. This is a hypothesis test for two independent sample means, assuming that population standard deviations are unknown and that the samples are random.

Given that the null hypothesis (
H) posits no difference in the mean ages of the two audiences (
µ₁ = µ₂), the alternate hypothesis (
Ha) Lucy should consider would suggest that there is a difference. Her alternate hypothesis could be that the mean age of one audience is either higher or lower than the other, which can be denoted as either (
Ha: µ₁ ≠ µ₂). However, if she has a specific direction in mind (e.g., assuming one program's audience is younger than the other), she might opt for (
Ha: µ₁ < µ₂) or (
Ha: µ₁ > µ₂), accordingly.

It's crucial to select an appropriate alternate hypothesis as it signifies the anticipated outcome that stands opposed to the assumption of the null hypothesis. In this case, given that the previous study indicates no difference, Lucy's alternative hypothesis should represent the possibility that a difference indeed exists.

Construct the indicated confidence interval for the difference between the two population means. Assume that the two samples are independent simple random samples selected from normally distributed populations. Also assume that the population standard deviations are equal (σ1= 2 ), so that the standard error of the difference between means is obtained by pooling the sample variances. A paint manufacturer wanted to compare the drying times of two different types of paint. Independent simple random samples of 11 cans of type A and 9 cans of type B were selected and applied to similar surfaces. The drying times, in hours, were recorded. The summary statistics are as follows.Type A: X1= 71.5hr, S1=3.4 hr N1=11Type B: X2=68.5 hr, S2= 3.6 hr, N2= 9Construct a 99% confidence interval for μ1-μ2 , the difference between the mean drying time for paint type A and the mean drying time for paint type B.

Answers

Answer:

The indicated confidence interval for the difference between the two population means is  (-1.5159, 7.5159)

Step-by-step explanation:

Let the drying times of type A be the first population and the drying times of type B be the second population. Then

We have small sample sizes [tex]n_{1} = 11[/tex] and [tex]n_{2} = 9[/tex], besides [tex]\bar{x}_{1} = 71.5[/tex], [tex]s_{1} = 3.4[/tex] , [tex]\bar{x}_{2} = 68.5[/tex] and [tex]s_{2} = 3.6[/tex]. Therefore, the pooled

estimate is given by  

[tex]s_{p}^{2} = \frac{(n_{1}-1)s_{1}^{2}+(n_{2}-1)s_{2}^{2}}{n_{1}+n_{2}-2} = \frac{(11-1)(3.4)^{2}+(9-1)(3.6)^{2}}{11+9-2} = 12.1822[/tex]

The 99% confidence interval for the true mean difference between the mean drying time of type A and the mean drying time of type B is given by

[tex](\bar{x}_{1}-\bar{x}_{2})\pm t_{0.01/2}s_{p}\sqrt{\frac{1}{11}+\frac{1}{9}}[/tex], i.e.,

[tex](71.5-68.5)\pm t_{0.005}(3.4903)\sqrt{\frac{1}{11}+\frac{1}{9}}[/tex]

where [tex]t_{0.005}[/tex] is the 0.5th quantile of the t distribution with (11+9-2) = 18 degrees of freedom. So

[tex]3\pm(-2.8784)(3.4903)(0.4495)[/tex], i.e.,

the indicated confidence interval for the difference between the two population means is  (-1.5159, 7.5159)

Consider the function shown. A segment extends from negative 5 comma 0 to negative 2 comma 5. A segment extends from negative 2 comma 5 to 1 comma 5. A segment extends from 1 comma 5 to 8 comma negative 2. Where is the function decreasing? Enter your answer in the boxes. The function is decreasing from x = to x = .

Answers

Answer: The function is constant from x = -2 to x=1

Final answer:

The function is decreasing from x = 1 to x = 8, as the segment in that interval shows a decrease in y values as x increases.

Explanation:

To determine where the function is decreasing, we need to look at the segments provided. A function is decreasing if, as x increases, the y value of the function decreases. From the description of the segments, we can analyze behavior in each interval:

The first segment extends from x = -5 to x = -2 and ascends from a y-value of 0 to 5, which means the function is increasing in this interval.The second segment stretches from x = -2 to x = 1 and remains at a consistent y-value of 5, indicating a horizontal line and therefore, the function is neither increasing nor decreasing.The final segment extends from x = 1 to x = 8, moving from a y-value of 5 to -2. During this segment, as x increases, y decreases, which clearly marks this interval as a decreasing interval for the function.

Therefore, the function is decreasing from x = 1 to x = 8.

A person leaves her camp at 7:00 a.m. to hike back to her car. The distance from the car in kilometers y after x hours of hiking can be modeled by the linear function y = − 3 x + 18 . What does the x -intercept of the function mean.

Answers

Answer:

The x axis in the function represents, the number of hours after 7:00 A.M. , the person reaches her car. The person reaches the car at 1:00 P.M.

Step-by-step explanation:

The x axis denotes the no. of hours and and the y axis denotes the distance from the car.

X Intercept is a point where the line intersects the X axis, we can easily notice the fact that at that point, y=0 ie. The person has reached his/her respective car.

The line intersects x at 6.

Therefore, a total of 6 hours are taken from the beginning of the hike.

Thus, the person reaches the car at 1:00 P.M.

Answer:

The person will take 6 hours to get back to her car.

Step-by-step explanation:

The Wall Street Journal Corporate Perceptions Study 2011 surveyed readers and asked how each rated the Quality of Management and the Reputation of the Company for over 250 world-wide corporations. Both the Quality of Management and the Reputation of the Company were rated on an Excellent, Good, and Fair categorical scale. Assume the sample data for 200 respondents below applies to this study.

Col1 Quality of Management Excellent Good Fair
Col2 Excellent 40 35 25
Col3 Good 25 35 10
Col4 Fair 5 10 15

Use a .05 level of significance and test for independence of the quality of management and the reputation of the company.
Compute the value of the 2 test statistic (to 2 decimals).
The p-value is
What is your conclusion?
b. If there is a dependence or association between the two ratings, discuss and use probabilities to justify your answer.

Answers

Answer:

a)[tex]\chi^2 = \frac{(40-35)^2}{35}+\frac{(35-40)^2}{40}+\frac{(25-25)^2}{25}+\frac{(25-24.5)^2}{24.5}+\frac{(35-28)^2}{28}+\frac{(25-17.5)^2}{17.5}+\frac{(5-10.5)^2}{10.5}+\frac{(10-12)^2}{12}+\frac{(15-7.5)^2}{7.5} =17.03[/tex]

[tex]p_v = P(\chi^2_{4} >17.03)=0.0019[/tex]

And we can find the p value using the following excel code:

"=1-CHISQ.DIST(17.03,4,TRUE)"

Since the p value is lower than the significance level we can reject the null hypothesis at 5% of significance, and we can conclude that we have association or dependence between the two variables.

b)

P(E|Ex)= P(EΛEx )/ P(Ex) = (40/215)/ (70/215)= 40/70=0.5714

P(E|Gx)= P(EΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(E|Fx)= P(EΛFx )/ P(Fx) = (25/215)/ (50/215)= 25/50=0.5

P(G|Ex)= P(GΛEx )/ P(Ex) = (25/215)/ (70/215)= 25/70=0.357

P(G|Gx)= P(GΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(G|Fx)= P(GΛFx )/ P(Fx) = (10/215)/ (50/215)= 10/50=0.2

P(F|Ex)= P(FΛEx )/ P(Ex) = (5/215)/ (70/215)= 5/70=0.0714

P(F|Gx)= P(FΛGx )/ P(Gx) = (10/215)/ (80/215)= 10/80=0.125

P(F|Fx)= P(FΛFx )/ P(Fx) = (15/215)/ (50/215)= 15/50=0.3

And that's what we see here almost all the conditional probabilities are higher than 0.2 so then the conclusion of dependence between the two variables makes sense.

Step-by-step explanation:

A chi-square goodness of fit test "determines if a sample data matches a population".

A chi-square test for independence "compares two variables in a contingency table to see if they are related. In a more general sense, it tests to see whether distributions of categorical variables differ from each another".

Assume the following dataset:

Quality management        Excellent      Good     Fair    Total

Excellent                                40                35         25       100

Good                                      25                35         10         70

Fair                                         5                   10          15        30

Total                                       70                 80         50       200

Part a

We need to conduct a chi square test in order to check the following hypothesis:

H0: There is independence between the two categorical variables

H1: There is association between the two categorical variables

The level of significance assumed for this case is [tex]\alpha=0.05[/tex]

The statistic to check the hypothesis is given by:

[tex]\chi^2 = \sum_{i=1}^n \frac{(O_i -E_i)^2}{E_i}[/tex]

The table given represent the observed values, we just need to calculate the expected values with the following formula [tex]E_i = \frac{total col * total row}{grand total}[/tex]

And the calculations are given by:

[tex]E_{1} =\frac{70*100}{200}=35[/tex]

[tex]E_{2} =\frac{80*100}{200}=40[/tex]

[tex]E_{3} =\frac{50*100}{200}=25[/tex]

[tex]E_{4} =\frac{70*70}{200}=24.5[/tex]

[tex]E_{5} =\frac{80*70}{200}=28[/tex]

[tex]E_{6} =\frac{50*70}{200}=17.5[/tex]

[tex]E_{7} =\frac{70*30}{200}=10.5[/tex]

[tex]E_{8} =\frac{80*30}{200}=12[/tex]

[tex]E_{9} =\frac{50*30}{200}=7.5[/tex]

And the expected values are given by:

Quality management        Excellent      Good     Fair       Total

Excellent                                35              40          25         100

Good                                      24.5           28          17.5        85

Fair                                         10.5            12           7.5         30

Total                                       70                 80         65        215

And now we can calculate the statistic:

[tex]\chi^2 = \frac{(40-35)^2}{35}+\frac{(35-40)^2}{40}+\frac{(25-25)^2}{25}+\frac{(25-24.5)^2}{24.5}+\frac{(35-28)^2}{28}+\frac{(25-17.5)^2}{17.5}+\frac{(5-10.5)^2}{10.5}+\frac{(10-12)^2}{12}+\frac{(15-7.5)^2}{7.5} =17.03[/tex]

Now we can calculate the degrees of freedom for the statistic given by:

[tex]df=(rows-1)(cols-1)=(3-1)(3-1)=4[/tex]

And we can calculate the p value given by:

[tex]p_v = P(\chi^2_{4} >17.03)=0.0019[/tex]

And we can find the p value using the following excel code:

"=1-CHISQ.DIST(17.03,4,TRUE)"

Since the p value is lower than the significance level we can reject the null hypothesis at 5% of significance, and we can conclude that we have association or dependence between the two variables.

Part b

We can find the probabilities that Quality of Management and the Reputation of the Company would be the same like this:

Let's define some notation first.

E= Quality Management excellent     Ex=Reputation of company excellent

G= Quality Management good     Gx=Reputation of company good

F= Quality Management fait     Ex=Reputation of company fair

P(EΛ Ex) =40/215=0.186

P(GΛ Gx) =35/215=0.163

P(FΛ Fx) =15/215=0.0697

If we have dependence then the conditional probabilities would be higher values.

P(E|Ex)= P(EΛEx )/ P(Ex) = (40/215)/ (70/215)= 40/70=0.5714

P(E|Gx)= P(EΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(E|Fx)= P(EΛFx )/ P(Fx) = (25/215)/ (50/215)= 25/50=0.5

P(G|Ex)= P(GΛEx )/ P(Ex) = (25/215)/ (70/215)= 25/70=0.357

P(G|Gx)= P(GΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(G|Fx)= P(GΛFx )/ P(Fx) = (10/215)/ (50/215)= 10/50=0.2

P(F|Ex)= P(FΛEx )/ P(Ex) = (5/215)/ (70/215)= 5/70=0.0714

P(F|Gx)= P(FΛGx )/ P(Gx) = (10/215)/ (80/215)= 10/80=0.125

P(F|Fx)= P(FΛFx )/ P(Fx) = (15/215)/ (50/215)= 15/50=0.3

And that's what we see here almost all the conditional probabilities are higher than 0.2 so then the conclusion of dependence between the two variables makes sense.

The paint used to make lines on roads must reflect enough light to be clearly visible at night. Let µ denote the true average reflectometer reading for a new type of paint under consideration. A test of H0: µ = 20 versus Ha: µ > 20 will be based on a random sample of size n from a normal population distribution. What conclusion is appropriate in each of the following situations? (Round your P-values to three decimal places.)(a) n = 16, t = 3.3, a = 0.05P-value =(b) n = 8, t = 1.8, a = 0.01P-value =(c) n = 26,t = -0.6P-value =

Answers

Answer:

a) [tex]df=n-1=16-1=15[/tex]

The statistic calculated is given by t=3.3  

Since is a one-side upper test the p value would be:      

[tex]p_v =P(t_{15}>3.3)=0.0024[/tex]  

So since the p value is lower than the significance level [tex]pv<\alpha[/tex] we reject the null hypothesis.

b) [tex]df=n-1=8-1=7[/tex]

The statistic calculated is given by t=1.8  

Since is a one-side upper test the p value would be:      

[tex]p_v =P(t_{7}>1.8)=0.057[/tex]  

So since the p value is higher than the significance level [tex]pv>\alpha[/tex] we FAIL to reject the null hypothesis.

c) [tex]df=n-1=26-1=25[/tex]

The statistic calculated is given by t=-0.6  

Since is a one-side upper test the p value would be:      

[tex]p_v =P(t_{25}>-0.6)=0.723[/tex]  

So since the p value is higher than the significance level [tex]pv>\alpha[/tex] we FAIL to reject the null hypothesis.

Step-by-step explanation:

1) Data given and notation      

[tex]\bar X[/tex] represent the sample mean

[tex]s[/tex] represent the standard deviation for the sample

[tex]n[/tex] sample size      

[tex]\mu_o =20[/tex] represent the value that we want to test    

[tex]\alpha[/tex] represent the significance level for the hypothesis test.    

t would represent the statistic (variable of interest)      

[tex]p_v[/tex] represent the p value for the test (variable of interest)  

State the null and alternative hypotheses.      

We need to conduct a hypothesis in order to determine if the true mean is higher than 20, the system of hypothesis would be:      

Null hypothesis:[tex]\mu \leq 20[/tex]      

Alternative hypothesis:[tex]\mu > 20[/tex]      

We don't know the population deviation, so for this case is better apply a t test to compare the actual mean to the reference value, and the statistic is given by:      

[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex] (1)      

t-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".  

(a) n = 16, t = 3.3, a = 0.05, P-value =

First we need to calculate the degrees of freedom given by:  

[tex]df=n-1=16-1=15[/tex]

The statistic calculated is given by t=3.3  

Since is a one-side upper test the p value would be:      

[tex]p_v =P(t_{15}>3.3)=0.0024[/tex]  

So since the p value is lower than the significance level [tex]pv<\alpha[/tex] we reject the null hypothesis.

(b) n = 8, t = 1.8, a = 0.01, P-value =

First we need to calculate the degrees of freedom given by:  

[tex]df=n-1=8-1=7[/tex]

The statistic calculated is given by t=1.8  

Since is a one-side upper test the p value would be:      

[tex]p_v =P(t_{7}>1.8)=0.057[/tex]  

So since the p value is higher than the significance level [tex]pv>\alpha[/tex] we FAIL to reject the null hypothesis.

(c) n = 26,t = -0.6, P-value =

 First we need to calculate the degrees of freedom given by:  

[tex]df=n-1=26-1=25[/tex]

The statistic calculated is given by t=-0.6  

Since is a one-side upper test the p value would be:      

[tex]p_v =P(t_{25}>-0.6)=0.723[/tex]  

So since the p value is higher than the significance level [tex]pv>\alpha[/tex] we FAIL to reject the null hypothesis.

Final answer:

The P-value helps decide whether to reject the null hypothesis in a t-test. If the P-value is less than the significance level α, the null hypothesis is rejected. For each given scenario, the P-value is found from the t-distribution considering the provided t-statistic and degrees of freedom (n-1).

Explanation:

The problem is about conducting a t-test to check if the reflectometer reading (μ) for a new type of road paint is greater than a specified value (20). The P-value of the t-test will tell us if we should reject the null hypothesis H0: μ = 20 in favor of the alternative hypothesis Ha: μ > 20. The P-value is the probability of observing a t-score as extreme as the one calculated from the sample data (or more extreme), given that the null hypothesis is true.

(a) For n = 16, t = 3.3, and α = 0.05, we can use the t-distribution table or a statistical software to find the P-value. Since t is positive and we are dealing with a one-tailed test (because Ha: μ > 20), the P-value is the area to the right of the t-score (3.3) under the t-distribution. If the calculated P-value is less than α (0.05), we reject the null hypothesis.
(b) The same process applies for n = 8, t = 1.8, and α = 0.01. However, due to the smaller α level, we would need a larger t statistic (and thus a smaller P-value) to reject the null hypothesis.
(c) For n = 26, t = -0.6, if the calculated P-value is greater than the chosen α value, we do not reject the null hypothesis believing that the true mean reflectometer reading is 20.

Learn more about Hypothesis Testing here:

https://brainly.com/question/34171008

#SPJ3

A farmer uses a lot of fertilizer to grow his crops. The farmer’s manager thinks fertilizer products from distributor A contain more of the nitrogen that his plants need than distributor B’s fertilizer does. He takes two independent samples of four batches of fertilizer from each distributor and measures the amount of nitrogen in each batch. Fertilizer from distributor A contained 23 pounds per batch and fertilizer from distributor B contained 18 pounds per batch. Suppose the population standard deviation for distributor A and distributor B is four pounds per batch and five pounds per batch, respectively. Assume the distribution of nitrogen in fertilizer is normally distributed. Let µ1and µ2 represent the average amount of nitrogen per batch for fertilizer’s A and B, respectively. Which of the following is the appropriate conclusion at the 5% significance level? The test statistic calculated in Excel with these data is 1.5617.

Answers

Answer:

[tex]z=\frac{(23-18)-0}{\sqrt{\frac{4^2}{4}+\frac{5^2}{4}}}}=1.5617[/tex]  

[tex]p_v =P(Z>1.5617)=0.059[/tex]

If we compare the p value and the significance level given [tex]\alpha=0.05[/tex] we see that [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and the difference between the true mean of group A and B is not significantly higher than 0 at 5% of significance.

Step-by-step explanation:

Data given and notation

[tex]\bar X_{A}=23[/tex] represent the mean for the sample A

[tex]\bar X_{B}=18[/tex] represent the mean for the sample B

[tex]\sigma_{A}=4[/tex] represent the population standard deviation for the sample A

[tex]\sigma_{B}=5[/tex] represent the population standard deviation for the sample B

[tex]n_{A}=4[/tex] sample size selected A

[tex]n_{B}=4[/tex] sample size selected B

[tex]\alpha=0.05[/tex] represent the significance level for the hypothesis test.

z would represent the statistic (variable of interest)

[tex]p_v[/tex] represent the p value for the test (variable of interest)

State the null and alternative hypotheses.

We need to conduct a hypothesis in order to check if the mean for A is higher than the mean for B, the system of hypothesis would be:

Null hypothesis:[tex]\mu_{A}-\mu_{B}\leq 0[/tex]

Alternative hypothesis:[tex]\mu_{A}-\mu_{B}>0[/tex]

We know the population deviations, so for this case is better apply a z test to compare means, and the statistic is given by:

[tex]z=\frac{(\bar X_{A}-\bar X_{B})-0}{\sqrt{\frac{\sigma^2_{A}}{n_{A}}+\frac{\sigma^2_{B}}{n_{B}}}}[/tex] (1)

z-test: "Is used to compare group means. Is one of the most common tests and is used to determine whether the means of two groups are equal to each other".

Calculate the statistic

We can replace in formula (1) the info given like this:

[tex]z=\frac{(23-18)-0}{\sqrt{\frac{4^2}{4}+\frac{5^2}{4}}}}=1.5617[/tex]  

P-value

Since is a one right tailed test the p value would be:

[tex]p_v =P(Z>1.5617)=0.059[/tex]

Conclusion

If we compare the p value and the significance level given [tex]\alpha=0.05[/tex] we see that [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and the difference between the true mean of group A and B is not significantly higher than 0 at 5% of significance.

Final answer:

To determine the appropriate conclusion at the 5% significance level, conduct a hypothesis test for the difference in means between the two fertilizer distributors.

Explanation:

To determine the appropriate conclusion at the 5% significance level, we need to conduct a hypothesis test for the difference in means between the two fertilizer distributors. The test statistic calculated in Excel is 1.5617. We compare this test statistic to the critical value of the t-distribution at the desired significance level of 5% with 6 degrees of freedom (8 samples - 2). If the test statistic is greater than the critical value, we reject the null hypothesis that the means are equal and conclude that there is evidence to suggest that distributor A's fertilizer contains more nitrogen than distributor B's.

Learn more about Hypothesis testing here:

https://brainly.com/question/34171008

#SPJ11

The price of a certain security follows a geometric Brownian motion with drift parameter µ = 0.12 and the volatility parameter σ = 0.24.

(a) If the current price of the security is $40, find the probability that a call option, having four months until expiration and with a strike price of K = 42 will be exercised.

(b) In addition to the above information as in part (a) if the interest rate is 8%, find the risk-neutral arbitrage free valuation of the call option.

Answers

Answer:

Brownian Motion- The usual model for the time-evolution of an asset price S(t) is given by the geometric Brownian motion.

Now the geometric Brownian motion is represented by the following stochastic differential equation:

dS(t)=μS(t)dt+σS(t)dB(t)Note-  coefficients μ  representing the drift and σ,volatility of the asset, respectively, are both constant in this model.

To solve the problem now we have the been Data provided:

μ= 0.12,

σ=0.24,

Step-by-step explanation:

Step A:

we have, the variables of Black Scholes Model, by putting the values of variables available, we get:

S = Current stock price = 40 ,

K = Strike Price = 42 ,

Next is, "r" the risk free rate,

risk free rate, r = mu = 0.12 ,

Volatility, σ = 0.24

time to maturity, T, as we have;

T= 4 months = 4/12.T = 1/3 year(360 days)

Step B:

We now need to calculate the parameter d₂ of the Black Scholes Model. .

The probability which we want is 1 - N(-d₂),

So, we have;

d₂=㏑(S/K)+(r-σ²/2)T/σ√T

Step C:

As step C is done on excel for further calculations so, do use it if you are solving it on computer.

Final answer:

To find the probability that a call option will be exercised and the risk-neutral arbitrage-free valuation of the call option, we can use the Black-Scholes-Merton model and the risk-neutral pricing framework respectively.

Explanation:

To find the probability that a call option will be exercised, we can use the Black-Scholes-Merton model. In this case, we have:

The current price of the security (S) = $40

The strike price of the option (K) = $42

The time to expiration (T) = 4 months (or 0.33 years)

The risk-free interest rate (r) = 8% (or 0.08)

The volatility of the security (σ) = 0.24

Using these values, we can plug them into the Black-Scholes-Merton formula to calculate the probability of the call option being exercised.

For part (b), we can use the risk-neutral pricing framework to calculate the arbitrage-free valuation of the call option. This involves discounting the expected future payoff of the option at the risk-free interest rate.

To calculate the risk-neutral valuation, we use the same values as in part (a) and discount the expected payoff to the present value using the risk-free interest rate.

The profile of the cables on a suspension bridge may be modeled by a parabola. The central span of a bridge is 1270 ft long and 157 ft high. The parabola y=0.00039x^2 gives a good fit to the shape of the cables, where IxI less than of equal to 635, and x and y are measured in feet. Approximate the length of the cables that stretch between the tops of the two towers.

Answers

Answer:

Step-by-step explanation:

Given

span of bridge [tex]L=1270\ ft[/tex]

height of span [tex]h=157\ ft[/tex]

Equation of Parabola

[tex]y=0.00039x^2[/tex]

[tex]|x|<635[/tex] i.e.

[tex]-635<x<635[/tex]

[tex]\frac{dy}{dx}=2\times 0.00039[/tex]

length of Arc[tex]=\int_{a}^{b}\sqrt{1+(\frac{dy}{dx})^2}[/tex]

[tex]=\int_{-635}^{635}\sqrt{1+(\frac{dy}{dx})^2}[/tex]

[tex]=\int_{-635}^{635}\sqrt{1+(0.00078x)^2}[/tex]

[tex]=2\times \int_{0}^{635}\sqrt{1+(0.00078x)^2}[/tex]

[tex]=2\times (660.08)[/tex]

[tex]=1320.16\ ft[/tex]

The approximate length of the cables is approximately 4534.24 feet.

To approximate the length of the cables that stretch between the tops of the two towers of the suspension bridge, we can use the integral calculus to find the length of the curve defined by the equation [tex]\(y = 0.00039x^2\).[/tex]

The formula for finding the length of a curve between two points [tex]\([a, b]\)[/tex] is given by the integral:

[tex]\[L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx\][/tex]

Where:

- L is the length of the curve.

- a and b are the x-coordinates of the two points between which we want to find the length.

- f(x) is the function representing the curve.

- f'(x) is the derivative of the function.

In this case, we want to find the length of the cables between the two towers, which corresponds to the x-values from -635 to 635 since the width of the bridge is 1270 feet. The curve is defined by [tex]\(y = 0.00039x^2\)[/tex], so:

- a = -635

- b = 635

- [tex]\(f(x) = 0.00039x^2\)[/tex]

- [tex]\(f'(x) = 2 \cdot 0.00039x\)[/tex]

Now, let's calculate the length:

[tex]\[L = \int_{-635}^{635} \sqrt{1 + (2 \cdot 0.00039x)^2} \, dx\][/tex]

[tex]\[L = \int_{-635}^{635} \sqrt{1 + 0.0001536x^2} \, dx\][/tex]

Now, we can evaluate this integral:

[tex]\[L = \int_{-635}^{635} \sqrt{1 + 0.0001536x^2} \, dx \approx 4534.24\][/tex]

So, the approximate length of the cables that stretch between the tops of the two towers of the suspension bridge is approximately 4534.24 feet.

Learn more about Length of suspension bridge cables here:

https://brainly.com/question/33334933

#SPJ3

Resistors are labeled 100 Ω. In fact, the actual resistances are uniformly distributed on the interval (95, 103). Find the mean resistance. Find the standard deviation of the resistances. Find the probability that the resistance is between 98 and 102 Ω. Suppose that resistances of different resistors are independent. What is the probability that three out of six resistors have resistances greater than 100 Ω?

Answers

Answer:

[tex]E[R][/tex] = 99 Ω

[tex]\sigma_R[/tex] = 2.3094 Ω

P(98<R<102) = 0.5696

Step-by-step explanation:

The mean resistance is the average of edge values of interval.

Hence,

The mean resistance, [tex]E[R] = \frac{a+b}{2}  = \frac{95+103}{2} = \frac{198}{2}[/tex] = 99 Ω

To find the standard deviation of resistance, we need to find variance first.

[tex]V(R) = \frac{(b-a)^2}{12} =\frac{(103-95)^2}{12} = 5.333[/tex]

Hence,

The standard deviation of resistance, [tex]\sigma_R = \sqrt{V(R)} = \sqrt5.333[/tex] = 2.3094 Ω

To calculate the probability that resistance is between 98 Ω and 102 Ω, we need to find Normal Distributions.

[tex]z_1 = \frac{102-99}{2.3094} = 1.299[/tex]

[tex]z_2 = \frac{98-99}{2.3094} = -0.433[/tex]

From the Z-table, P(98<R<102) = 0.9032 - 0.3336 = 0.5696

Tanya enters a raffle at the local fair, and is wondering what her chances of winning are.


If her probability of winning can be modeled by a beta distribution with α = 5 and β = 2, what is the probability that she has at most a 10% chance of winning?

Answers

Answer:

[tex]P(X<0.1)= 5.5x10^{-5}[/tex]

Step-by-step explanation:

Previous concepts

Beta distribution is defined as "a continuous density function defined on the interval [0, 1] and present two parameters positive, denoted by α and β, both parameters control the shape. "

The probability function for the beta distribution is given by:

[tex] P(X)= \frac{x^{\alpha-1} (1-x)^{\beta -1}}{B(\alpha,\beta)}[/tex]

Where B represent the beta function defined as:

[tex]B(\alpha,\beta)= \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}[/tex]

Solution to the problem

For our case our random variable is given by:

[tex] X \sim \beta (\alpha=5, \beta =2)[/tex]

We can use the following R code to plot the distribution for this case:

> x=seq(0,1,0.01)

> plot(x,dbeta(x,5,2),main = "Beta distribution a=5, b=2",ylab = "Probability")

And we got as the result the figure attached.

And for this case we want this probability, since we want the probability that she has at most 10% or 0.1 change of winning:

[tex]P(X<0.1)[/tex]

And we can find this probability with the following R code:

> pbeta(0.1,5,2)

[1] 5.5e-05

And we got then this : [tex]P(X<0.1)= 5.5x10^{-5}[/tex]

Find a solution to the following initial-value problem: dy dx = y(y − 2)e x , y (0) = 1.

Answers

This equation is separable, as

[tex]\dfrac{\mathrm dy}{\mathrm dx}=y(y-2)e^x\implies\dfrac{\mathrm dy}{y(y-2)}=e^x\,\mathrm dx[/tex]

Integrate both sides; on the left, expand the fraction as

[tex]\dfrac1{y(y-2)}=\dfrac12\left(\dfrac1{y-2}-\dfrac1y\right)[/tex]

Then

[tex]\displaystyle\int\frac{\mathrm dy}{y(y-2)}=\int e^x\,\mathrm dx\implies\frac12(\ln|y-2|-\ln|y|)=e^x+C[/tex]

[tex]\implies\dfrac12\ln\left|\dfrac{y-2}y\right|=e^x+C[/tex]

Since [tex]y(0)=1[/tex], we get

[tex]\dfrac12\ln\left|\dfrac{1-2}1\right|=e^0+C\implies C=-1[/tex]

so that the particular solution is

[tex]\dfrac12\ln\left|\dfrac{y-2}y\right|=e^x-1\implies\boxed{y=\dfrac2{1-e^{2e^x-2}}}[/tex]

Other Questions
Martin decides to take up a particular course for his undergraduate degree. Most people do not take up this course as it is surrounded by taboos, fears, prejudices, and hypocrisy. This course is most likely to be:__________. Janessa bought for 4 stamps for $1.48 at this rate how much would 10 stamps cost What is your opinion miss peregrines home of peculiar children In which of the following cases did the court state that the name given to a damages cause by the parties has only slight weight, but that the controlling elements are the parties intent and the cases special circumstances? A circle has a radius of 5 inches (What is the measure, in radians, of this central angle? The mean annual salary for intermediate level executives is about $74000 per year with a standard deviation of $2500. A random sample of 50 intermediate level executives is selected. What is the probability that the mean annual salary of the sample is between $71000 and $73500?A 0.079B. 0.500C. 0.487D. 0.306 In contrast to the Monetarists, the Keynesians assume that the velocity of money varies directly with _______________.. Lucky Louie just inherited $50,000 from his great aunt, has $1,500 in his checking account, owns a car with a value of $8,000, and has $20,000 in his 401(k) at work. Louie owes $6,000 on his car, $12,000 on school loans and $3,000 on his credit card. What is Louie's net worth? Which sentence below represents the number of test questions in the problem below? A test is worth 80 points. Multiple-choice questions are worth 2 points, and short-answer questions are worth 4 points. If the test has 25 questions, how many multiple choice questions are there? A. The number of multiple-choice questions plus the number of short-answer questions is 25. B. The number of multiple-choice questions times the number of short-answer questions is 25. C. The number of multiple-choice questions minus the number of short-answer questions is 80.D. The number of multiple-choice questions plus the number of short-answer questions is 80. Equation of the line that passes tjrougj the points of (0,-3) (1,-5) The intensity level of a power mower at a distance of 1.0 m is 100 dB. You wake up one morning to find that four of your neighbors are mowing their lawn 20 m from your open bedroom window. What is the intensity level in your bedroom? The intensity level of a power mower at a distance of 1.0 m is 100 dB. You wake up one morning to find that four of your neighbors are mowing their lawn 20 m from your open bedroom window. What is the intensity level in your bedroom? A. 50 dB B. 400 dB C. 104 dB D. 80 dB E. 40 dB A veterinarian has 70 clients who own cats, dogs, or both. Of these clients, 36 own cats, including 20 clients who own both cats and dogs. Which of the following statements must be true? Indicate all such statements. What percentage of the US population is estimated not to engage in 30 minutes of low-to-moderate physical activity? Which sign makes the inequality true?60.00 ___ (56. 28 + 3.42) Presumably, hyperglycemia promotes cellular dehydration because: glucose, as an energy source, accelerates the osmotic work performed by plasma membranes. glucose, as an energy source, accelerates plasma membrane ion exchange pumps. glucose molecules raise the osmotic pressure of the extracellular space. glucose molecules are exchanged for water molecules across the plasma membrane. Air is compressed adiabatically in a piston-cylinder assembly from 1 bar, 300 K to 10 bar, 600 K. The air can be modeled as an ideal gas and kinetic and potential energy effects are negligible. Determine the amount of entropy produced, in kJ/K per kg of air, for the compression. What is the minimum theoretical work input, in kJ per kg of air, for an adiabatic compression from the given initial state to a final pressure of 10 bar? In order to vote in Texas, you must meet which of the following requirements? A. be a resident of Texas, a U.S. citizen, and at least 18 years of age B. be a resident of Texas, a U.S. citizen, and at least 21 years of age C. be a resident of Texas, a legal permanent resident of the U.S, and at least 18 years of age Read the excerpt from Adam's personal narrative. I stepped into the tidal pool carefully, wishing I had brought my water shoes. "What's the matter, afraid of a few crabs?" Laura smiled. "It doesn't hurt that much when they pinch. They're only little," she said. Laura wasn't afraid of anything, or at least I'd never seen her get scared. She was the type to dive off a cliff and not even think about what was in the water below. "But there are so many of them!" I winced. "I know, its so cool!" she replied, scooping a crab into her hand to look at it more closely. I nearly screamed. How does this paragraph develop the characters in the dialogue? It explains to the reader where the characters are and what they are doing. It shows that Adam is afraid of what is in the water, but Laura is fearless and likes to tease him. It shows that Adam is interested in learning more about the crabs, but Laura is ignoring him. It explains to the reader how long Adam and Laura have known each other. Be sure to answer all parts.Write equations for the initiation and propagation steps for the formation of dichloromethane by free-radical chlorination of chloromethane. Draw the structure of the products of each equation.Be sureto include lone pair(s) of electrons where necessary.Please clearly show both propogation steps and the organic + inorganic radical. the functioning of DNA and RNA are affected by various enzymes. Sometimes, environmental factors can influence how these enzymes work. Which of these are factors that can change enzyme functionality? Steam Workshop Downloader