Answer:
-240°, -600°
Step-by-step explanation:
Coterminal angles are angles that land in the same spot around a circle.
So, that means they do full turns of the circle to reach each other.
To find coterminal angles of a given angle (here 120 degrees), you add or subtract 360 (the number of degrees in a full circle). That can go in both positive or negative directions.
So, from 120 degrees, let's find the coterminal angle that is 1 rotation above and one rotation below:
120 + 360 = 480
120 - 360 = -240
You see that 480 isn't among the possible answers, so one part of the answer is -240. If you subtract another 360 degrees, you end up with -600 degrees... so the answer is -240°, -600°
BRAINLIEST - ALGEBRA HELP! See image.
Answer:
Option a
[tex]f(x) = e^{x-1} -2[/tex]
Step-by-step explanation:
If the graph of the function [tex]y=f(x+h) +b[/tex] represents the transformations made to the graph of [tex]y= f(x)[/tex] then, by definition:
If [tex]b> 0[/tex] the graph moves vertically upwards b units.
If [tex]b <0[/tex] the graph moves vertically down b units
If [tex]h<0[/tex] The graph moves horizontally h units to the right
If [tex]h>0[/tex] The graph moves horizontally h units to the left
In this problem we have the parent function [tex]y=e^x[/tex]
We know that the parent function is translated 1 unit rigth and 2 units down.
This is:
[tex]h<0 = -1\\\\b < 0 = -2[/tex]
Finally the transformation is:
[tex]y=f(x-1) -2[/tex]
[tex]f(x) = e^{x-1} -2[/tex]
The circle graph shows the distribution of age groups of people living in a city. Identify the measure of arc PR. HELP ASAP!!
Answer:
100.8°
Step-by-step explanation:
∠POR = ∠POQ + ∠QOR
∠POQ is 20% of 360° ( measure of the angles in a circle )
= 0.2 × 360° = 72°
∠QOR is 8% of 360° = 0.08 × 360° = 28.8°
Hence
arc PR = ∠POR = 72° + 28.8° = 100.8°
Which of the following is a trigonometric identity?
A. cot theta + tan theta = 1
B. sec^2theta + csc^2theta = 1
C. tan^2theta = sin^2theta × sec^2theta
D. cos^2theta = sec^2theta × tan^2theta
option B is right answer
Solving Trigonometric Equations Using Inverses Quiz part 1
1. -2
2. -0.36
3. C
4. tan^2theta = sin^2theta × sec^2theta (This Question)
5. 60 degrees
6. 0.71
7. 0.09
8. 2pi/3 , 4pi/3
9. pi/4 , 5pi/4
Step-by-step explanation: I just took it...
These are the correct answers you're welcome
Doua carti costau impreuna 125 de lei. Stiind ca pretul uneia a crescut cu 10 la suta iar a celeillalte cu 20 la sutasi ca dupa cresterea peturilor ele costa impreuna 143,5 lei aflati pretul initial al fiecarei carti
Answer:
btw way you all this means
Step-by-step explanation:
Two books cost 125 MDL together. Knowing that the price has risen by 10% and the other by 20%, after the cost of the cars costs 143.5 lei together with the initial price of each book
Edgar has birdbath that holds 2 gallons of water How many 1 pint containers does it take to fill birdbath? EXPLAIN
Answer:
16
Step-by-step explanation:
1 gallon is equal to 8 pints.
2 gallons is equal to 16 pints.
Rewrite the following expression .
[tex]x\frac{9}{7}[/tex]
For this case we must rewrite the following expression:
[tex]x ^ {\frac {9} {7}}[/tex]
By definition of properties of powers and radicals we have to:
[tex]\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}[/tex]
Then, the expression can be rewritten as:
[tex]x ^ {\frac {9} {7}} = \sqrt [7] {x ^ 9}[/tex]
If we want to simplify:
[tex]\sqrt [7] {x ^ 9} = \sqrt [7] {x ^ 7 * x ^ 2} = x \sqrt [7] {x ^ 2}[/tex]
ANswer:
[tex]x ^ {\frac {9} {7}} = \sqrt [7] {x ^ 9} = x \sqrt [7] {x ^ 2}[/tex]
Please Help
Write the equation of a parabola with vertex (-5,8) and directrix x=2. Show all of your work and put your equation in graphing/vertex form.
ANSWER
[tex]( {y - 8)}^{2} = - 28(x + 5)[/tex]
EXPLANATION
The given parabola has directrix x=2.
This implies that, the parabola is opens in the direction of the negative x-axis because it must open in a negative direction to the directrix.
The equation of such parabola is of the form:
[tex]( {y - k)}^{2} = 4p(x - h)[/tex]
where (h,k)=(-5,8) is the vertex.
[tex] |p| = | - 2 - 5| = 7[/tex]
[tex]p = \pm7[/tex]
But the parabola opens to the left.
p=-7
The equation now becomes
[tex]( {y - 8)}^{2} = 4( - 7)(x - - 5)[/tex]
[tex]( {y - 8)}^{2} = - 28(x + 5)[/tex]
Help with this trig math question
Answer:
8
Step-by-step explanation:
We want to evaluate the function f(x) = 3(log to the base 2 of x) + (log to the base 2 of 1/x) at x = 16.
Note that 2^4 = 16, so (log to the base 2 of 16) is 4.
Also note that 1/16 = 1/(2^4), so (log to the base 2 of 1/(2^4 is -4.
In summary, f(x) = 3(log to the base 2 of x) + (log to the base 2 of 1/x) at x = 16 is equal to 3(4) -4, or 8.
find the next two terms of the following sequence: 14,38,74,122,182,254
ANSWER
The next two terms are
338, 434
EXPLANATION
The given sequence is 14,38,74,122,182,254
Let us observe some pattern and use it to find the next two terms.
14+24=38
38+36=74
74+48=122
122+60=182
182+72=254
To get the next term we add 84 to 254
254+84=338
To get the next term,we add 96 to 338
338+96=434
Which descriptions from the list below accurately describe the relationship
between QRS and TUV? Check all that apply.
Answer:
There similar
Answer: Similar and Same shape
Step-by-step explanation:
I got it wrong and these were the correct answers ON G
Helena is purchasing a house for $210000 with a 15-year fixed -rate mortgage at 4.5% interest. She has made 5% down payment . The house is valued at $200,000 and the local tax rate is 3.5% . Her homeowners insurance is $720 per year . What are her total monthly payments
Answer:
$2169.49
Step-by-step explanation:
The mortgage payment is ...
A = (210,000·0.95)(0.045/12)/(1 -(1 +0.045/12)^(-12·15)) ≈ 1526.16
The monthly set-aside for taxes is ...
3.5%·200,000/12 = 583.33
The monthly set-aside for insurance is ...
720/12 = 60
So the total of P&I + taxes + insurance will be ...
$1526.16 +583.33 +60.00 = $2169.49
Answer:
2202.72
Step-by-step explanation:
just got the answer right on the quiz
i need help asapppppppp
Answer:
Question 1 - f(x) = | x | - 2
First, let's find the 5 values requested:
x = -2 ==> | x | - 2 = | - 2 | - 2 = 2 - 2 = 0
x = -1 ==> | x | - 2 = | - 1 | - 2 = 1 - 2 = -1
x = -0 ==> | x | - 2 = | 0 | - 2 = 0 - 2 = -2
x = 1 ==> | x | - 2 = | 1 | - 2 = 1 - 2 = -1
x = 2 ==> | x | - 2 = | 2 | - 2 = 0 - 2 = -2
You can see the plotted graph attached.
Question 1 - f(x) = | x - 1 | - 1
First, let's find the 5 values requested:
x = -2 ==> | x - 1 | - 1 = | - 2 - 1 | - 1 = | - 3 | - 1 = 3 - 1 = 2
x = -1 ==> | x - 1 | - 1 = | - 1 - 1 | - 1 = | - 2 | - 1 = 2 - 1 = 1
x = 0 ==> | x - 1 | - 1 = | 0 - 1 | - 1 = | - 1 | - 1 = 1 - 1 = 0
x = 1 ==> | x - 1 | - 1 = | 1 - 1 | - 1 = | 0 | - 1 = 0 - 1 = -1
x = 2 ==> | x - 1 | - 1 = | 2 - 1 | - 1 = | 1 | - 1 = 1 - 1 = 0
You can see the plotted graph attached.
Randomly selecting a seventh grader from a school that has 256 sixth graders, 225 seventh graders ,and 275 eighth graders
Answer:
225/756
Step-by-step explanation:
275+256+225
=756
We want to know what are the odds of selecting a seventh grader which is:
225/756
Find the point where line A intersects line B.
Answer:
D.
Step-by-step explanation:
Use the equation m=y2-y1/x2-x1 to get the equation of both lines. Then, substitute numbers in to get the y-intercept. For example, for line A, you get y=4x+8. This is because 12-0/1--2 = 12/3 or 4. Then, do 12=4(1)+b. 12-4 = 8, so b equals 8. Do the same for the other line. Then, use the substitution method. This is where you take both equations and combine them without using y. For example, -2x+12=4x+8. You add 2x to 4x and get 6x. Then, you subtract 8 from 12 and get 4. We get x=4/6, which simplifies into 2/3. Then, you substitude that into one of the equations. 2/3 times 4 is 8/3 and add 8 to it. Multiply 8 by 3 to get that amount in thirds. You will get 8/3 plus 24/3 to get 32/3 as your y-value.
To find where two lines intersect, you set their equations equal to each other to solve for x, then substitute x into one equation to solve for y. The point of intersection in the example is (0.67, 4.34).
Explanation:To find the point where Line A intersects with Line B, you first need to write out the equations for both lines. Assuming you know the slope and y-intercept of each line, an equation for a line takes the form y = mx + b, where m is the slope and b is the y-intercept. For example, if Line A is y = 2x + 3 and Line B is y = -x + 5, you would set the two equations equal to each other, like this: 2x + 3 = -x + 5. Solving for x, you'd get x = 0.67. Then, you would substitute x into either line's equation for y (I'll use Line A): y = 2(0.67) + 3 = 4.34. So, the point of intersection would be (0.67, 4.34).
Learn more about Intersection of Lines here:https://brainly.com/question/32797114
#SPJ2
Find the standard form of the equation of the parabola with a vertex at the origin and a focus at (0, 9).
a. y = (1/36)x^2
b. y= (1/9)x^2
c. y= 9x
d. y= 36x
Answer:
Answer is A
Step-by-step explanation:
A car salesperson sells a used car for $8,800 and earns 5% of the sale price as commission. How many dollars does the salesperson earn in commission?
Final answer:
To calculate the commission, multiply the sale price of $8,800 by the commission rate of 5% to get a commission of $440.
Explanation:
The question is asking to calculate the commission a salesperson earns from selling a used car. The salesperson earns a 5% commission on the sale price of the car, which is $8,800. To find the commission, we multiply the sale price by the commission rate:
Sale Price = $8,800
Commission Rate = 5% (or 0.05 in decimal form)
Commission = Sale Price × Commission Rate
Commission = $8,800 × 0.05
Commission = $440
Therefore, the salesperson earns a commission of $440.
Please help!!!!!!!!!!!
Answer:
y = 51.3°
Step-by-step explanation:
tan(y) = Opp./Adj
tan(y) = 10/8
tan(y) = 1.25
y = 51.3°
What is the best next step in the construction of an equilateral triangle?
Answer:
option B
Step-by-step explanation:
Use a compass to draw a circle centered at B with a radius that is length of AB.
then draw a circle centered at A with a radius that is length of AB
join the point of intersection of two circles through straight lines to point A and point B.
!
Answer with explanation:
Given a circle having center A, and radius equal to AB.
One side of equilateral Triangle = AB
We have to draw two sides which have length equal to AB.
Draw a circle having center B and radius equal to AB.The Circle will pass through center A and cuts the Original circle at P.Join AP and BP.This is the equilateral triangle that we are interested in.
The Next in the construction of an equilateral triangle is:
Option B:→ Use a Compass to draw a circle centered at B with a radius that is equal to AB.
Which points are on a plane curve described by the following set of parametric equations?
Select all that apply
x= 3t+4 and y= 2t^2
(1,-2)
(1,2)
(1,7)
(2,10)
(7,2)
ANSWER
The points (1,2) and (7,2) lie on the given curve.
EXPLANATION
The given parametric equations are:
[tex]x = 3t + 4[/tex]
and
[tex]y = 2 {t}^{2} [/tex]
We make t the subject in the first equation to obtain:
[tex]t = \frac{x - 4}{3} [/tex]
We substitute this into the second equation to get:
[tex]y =2{(\frac{x - 4}{3} )}^{2} [/tex]
When x=1,
[tex]y = 2 {(\frac{1 - 4}{3} )}^{2} = 2[/tex]
When x=2
[tex]y =2{(\frac{2- 4}{3} )}^{2} = \frac{8}{9} [/tex]
When x=7,
[tex]y =2{(\frac{7 - 4}{3} )}^{2} = 2[/tex]
Therefore the points (1,2) and (7,2) lie on the given curve.
The points are on a plane curve described by the following set of parametric equations are:(1,2), (7,2).
What is Parametric equation?Given:
x= 3t+4 and y= 2t²
Hence:
x=3t +4 = t=(x-4)/3
y=2t² =y=2[(x-4)/3]
y=2[(x-4)/3]²
When x=1
y=2(1-4/3)²
y=2(-3/3)²
y=2(1)
y=2
When x=7
y=2(7-4/3)²
y=2(3/3)²
y=2(1)
y=2
Therefore the points are on a plane curve described by the following set of parametric equations are:(1,2), (7,2).
Learn more about Parametric equation here:https://brainly.com/question/51019
#SPJ5
A CD usually sells for $14.00. If the CD is 20% off, and sales tax is 8%, what is the total price of the CD, including tax?
Final answer:
To find the total cost of a CD with a 20% discount and 8% sales tax, calculate the discount on the original price, subtract it to find the discounted price, then add the sales tax to this discounted price. The total cost comes out to $12.10.
Explanation:
Calculating the Total Cost of a CD Including Discount and Sales Tax
Firstly, to determine the sale price of the CD that usually sells for $14.00 with a 20% discount, we apply the discount percentage to the original price. We convert 20% to its decimal form, which is 0.20, and multiply by $14.00 to find the amount discounted: $14.00 × 0.20 = $2.80. Subtracting this discount from the original price, $14.00 - $2.80, gives us the discounted price of the CD, which is $11.20.
Next, to calculate the total cost including a sales tax of 8%, we first convert the tax rate to its decimal form, 0.08, and multiply it by the discounted price: $11.20 ×0.08 = $0.896. Rounding to the nearest cent, the sales tax is approximately $0.90. Adding the sales tax to the discounted price, $11.20 + $0.90, gives us the total cost of the CD, which is $12.10.
Therefore, the total price of the CD, including the 20% discount and the 8% sales tax, is $12.10.
Question 14 Math Help please
ANSWER
(1,0) is a solution
EXPLANATION
The given inequality is
[tex]y \leqslant |x + 2|- 3[/tex]
We substitute the point to see which ones satisfy the inequality.
For (1,0)
[tex]0\leqslant|1+ 2|- 3[/tex]
[tex]0\leqslant 0[/tex]
This is true.
(1,0) is a solution.
For (-1-1)
[tex]- 1\leqslant | - 1 + 2|-3[/tex]
[tex]- 1\leqslant-2[/tex]
False
(-1,-1) is not a solution.
For (0,0)
[tex]0\leqslant|0+2|-3[/tex]
[tex]0\leqslant- 1[/tex]
False.
For (0,1)
[tex]1\leqslant|0+ 2|-3[/tex]
[tex]1\leqslant-1[/tex]
This is also false
Will someone please help me solve this !!
Answer:
∠H= 109º
∠F = 71º
∠G = 109º
Step-by-step explanation:
∠I = 71º
Interior opposite angles of parallel lines sums up to 180º.
∠H = 180 - 71 = 109º
Line IH is equal to Line FG.
∠F = ∠I
∠F = 71º
∠G = ∠H
∠G = 109º
What is the domain of the function y= radical x?
Answer: [tex]x\geq0[/tex] or [tex][0,\infty)[/tex]
Step-by-step explanation:
You have the function:
[tex]y=\sqrt{x}[/tex]
The domain of the function is the set of all the possible input values that the function can has.
We know that the square root of a negative number is not defined in the Real numbers. Therefore, "x" cannot be a negative number.
Then the domain of f(x) will be:
[tex]x\geq0[/tex] or [tex][0,\infty)[/tex]
Answer:
Step-by-step explanation:
Can you write this as y = √x?
The domain of the function y = √x is [0, ∞ ). In elementary algebra, before you encounter imaginary numbers, y = √x is not defined for negative x.
Please help I need this answer.
Answer:
see below
Step-by-step explanation:
The images are mirrored right/left, so the reflection must be across the y-axis. That only leaves two answer choices.
If you translate ABC to the left, you will put it entirely in quadrant II, so reflection across the y-axis will put it in quadrant I. Obviously, that is not the correct sequence of transformations.
If you translate ABC 3 units to the right, it will put line AB on x=2. Then reflection across the y-axis will put that vertical segment on x = -2, exactly where corresponding segment DE is located.
The appropriate choice is the one shown below:
Plot 5-5i and write the number in trig form
Answer:5√2(cos(−π/4)+ isin(−π/4)) is in trig form
Step-by-step explanation:
Which function has a range of (−90°, 90°)?
Answer:
C) f(x) = tan^-1(x)
Step-by-step explanation:
The question is equivalent to asking which trig function passes the horizontal line test over the domain (-90°, 90°). Both the sine function and the tangent function are defined on that domain and pass the horizontal line test.
The inverse sine function has a range of [-90°, 90°] (with square brackets, signifying the end points are part of the range). The inverse tangent function does not have a range that includes ±90°, so is a better match for the range in the question.
The variable z is directly proportional to x, and inversely proportional to y. When x is 7 and y is 7, z has the value 2. What is the value of z when x= 10, and y= 12
Answer:
z = [tex]\frac{5}{3}[/tex]
Step-by-step explanation:
Given z is directly proportional to x and inversely proportional to y then the equation relating them is
z = [tex]\frac{kx}{y}[/tex] ← k is the constant of proportionality
To find k use the condition x = 7, y = 7 and z = 2
k = [tex]\frac{zy}{x}[/tex] = [tex]\frac{2(7)}{7}[/tex] = 2
z = [tex]\frac{2x}{y}[/tex] ← equation of proportionality
When x = 10 and y = 12, then
z = [tex]\frac{2(10)}{12}[/tex] = [tex]\frac{20}{12}[/tex] = [tex]\frac{5}{3}[/tex]
Someone mind helping me out? :)
Answer:
Step-by-step explanation:
Area of a circle is A = πr², and diameter of a circle is d = 2r.
d = 2r
72 = 2r
r = 36
A = πr²
A = π(36)²
A = 1296π
A ≈ 4069
Math is right about the answer
A textbook has a length of 6 inches wide inches and a width of X inches if the length of diagonal of the front covers 8 inches the length of the diagonal of the width of 7 inches find the values of XY
Answer: x=7 y=8
Step-by-step explanation:width is x and the width is 7inches
height is y and the diagonal length 8inches
Please help me out :)
Answer:
818.4 in²
Step-by-step explanation:
shaded region = area of sector - area of triangle
area of sector = area of circle × fraction of circle
A = π × 27.8² × [tex]\frac{150}{360}[/tex] ≈ 1011.65 in²
area of triangle = 0.5 × 27.8 × 27.8 × sin150° ≈ 193.21 in²
shaded region = 1011.65 - 193.21 ≈ 818.4 in²