C. A non-equilateral triangle does not have three congruent sides. True
A family has two cars. The first car has a fuel efficiency of
25
miles per gallon of gas and the second has a fuel efficiency of
15
miles per gallon of gas. During one particular week, the two cars went a combined total of
1025
miles, for a total gas consumption of
55
gallons. How many gallons were consumed by each of the two cars that week?
Answer:
15x+25y=975
x+y=55
Rearrange equation two so x is by itself.
x=-y+55
Plug the rearranged equation two into equation one.
15(-y+55)+25y=975
Evaluate the 'new' equation 1.
-15y+825+25y=975
10y+825=975
10y=150
y=15
Choose an equation to evaluate with y to get x. (i chose equation 2 because it was easier)
x+15=55
Evaluate the equation
x=55-15
x=40
So now we have x=40 and y=15
Evaluate those two terms with both equations to check the correctness.
15(40)+25(15)=975
600+375=975
975=975 (correct)
40+15=55
55=55 (correct)
Both equations are correct so the values of x and y are true.
Please mark as brainliest. :)
Subtract the second equation from the first 4x+3y=17-(4x+y=9)
Answer:
[tex]2y=8[/tex]
Step-by-step explanation:
The given equations are:
[tex]4x+3y=17[/tex]
and
[tex]4x+y=9[/tex]
We subtract the second equation from the first equation to get:
[tex]4x-4x+3y-y=17-9[/tex]
This simplifies to:
[tex]2y=8[/tex]
When we subtract the second equation from the first one, we get:
[tex]2y=8[/tex]
Which are factors of x2 – 4x – 5? Check all that apply.
1.) (x – 5)
2.) (x – 4)
3.) (x – 2)
4.) (x + 1)
5.) (x + 5)
Ask: Which two numbers add up to -4 and multiply to -5?
-5 and 1
Rewrite the expression using the above
= (x - 5) and (x + 1)
Quadrilateral ABCD has vertices A(-3, 4), B(1, 3), C(3, 6), and D(1, 6). Match each set of vertices of quadrilateral EFGH with the transformation that shows it is congruent to ABCD.
E(-3, -4), F(1, -3), G(3, -6), and H(1, -6)
a translation 7 units right
E(-3, -1), F(1, -2), G(3, 1), and H(1, 1)
a reflection across the y-axis
E(3, 4), F(-1, 3), G(-3, 6), and H(-1, 6)
a reflection across the x-axis
E(4, 4), F(8, 3), G(10, 6), and H(8, 6)
a translation 5 units down
arrowBoth
arrowBoth
arrowBoth
arrowBoth
Reset Next
Previous3 Next Transformations and Congruence: Mastery Test Submit Test Tools Info
© 2019 Edmentum. All rights reserved.
E(-3, -4), F(1, -3), G(3, -6), and H(1, -6); a reflection across the x-axis
E(-3, -1), F(1, -2), G(3, 1), and H(1, 1); a translation 5 units down
E(3, 4), F(-1, 3), G(-3, 6), and H(-1, 6); a reflection across the y-axis
E(4, 4), F(8, 3), G(10, 6), and H(8, 6);a translation 7 units right
What is transformation?
Transformation is the movement of a point from its initial location to a new location. Types of transformation are rotation, translation, reflection and dilation.
Quadrilateral ABCD has vertices A(-3, 4), B(1, 3), C(3, 6), and D(1, 6). Hence:
E(-3, -4), F(1, -3), G(3, -6), and H(1, -6); a reflection across the x-axis
E(-3, -1), F(1, -2), G(3, 1), and H(1, 1); a translation 5 units down
E(3, 4), F(-1, 3), G(-3, 6), and H(-1, 6); a reflection across the y-axis
E(4, 4), F(8, 3), G(10, 6), and H(8, 6);a translation 7 units right
Find out more on transformation at: https://brainly.com/question/4289712
A chemical company makes two brands of antifreeze. The first brand is 65% pure antifreeze, and the second brand is 90% pure antifreeze. In order to obtain 40 gallons of a mixture that contains 80% pure antifreeze, how many gallons of each brand of antifreeze must be used?
[tex]\bf \begin{array}{lcccl} &\stackrel{solution}{gallons}&\stackrel{\textit{\% of }}{antifreeze}&\stackrel{\textit{gallons of }}{antifreeze}\\ \cline{2-4}&\\ \textit{1st brand}&x&0.65&0.65x\\ \textit{2nd brand}&y&0.90&0.9y\\ \cline{2-4}&\\ mixture&40&0.8&32 \end{array}~\hfill \to \begin{cases} x+y&=40\\ \boxed{x}=40-y\\ \cline{1-2} 0.65x+0.9y&=32 \end{cases} \\\\[-0.35em] ~\dotfill[/tex]
[tex]\bf \stackrel{\textit{substituting in the 2nd equation}}{0.65\left( \boxed{40-y} \right)+0.9y=32}\implies 26-0.65y+0.9y=32 \\\\\\ 26+0.25y=32\implies 0.25y=6\implies y=\cfrac{6}{0.25}\implies \blacktriangleright y=24 \blacktriangleleft \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{since we know that}}{x=40-y\implies }x=40-24\implies \blacktriangleright x=16 \blacktriangleleft[/tex]
Answer:
it should be used 16 gallons of 65% pue antifreeze and 24 gallons of 80% antifreeze.
Step-by-step explanation:
Let 'x' = amount of 65% antifreeze.
Let 'y' = amount of 90% antifreeze.
We need to obtain 40 gallons of mixture, then:
x + y = 40 gallons [1]
Also we know that the mixture should contain 80% pure antifreeze, then:
0.65x + 0.9y = 0.80(x+y) → 0.15x = 0.1y → y = 1.5x [2]
Now, subtituting the value of 'y' into [1]:
x + y = 40 gallons → x + 1.5x = 40 gallons → 2.5x = 40 gallons
⇒ x = 16 gallons.
Then: y = 40 - 16 = 24 gallons.
Now, it should be used 16 gallons of 65% pue antifreeze and 24 gallons of 80% antifreeze.
find the volume (in terms of pi) of a sphere if it’s surface area of 400pi ft squared
[tex]\bf \textit{surface area of a sphere}\\\\ SA=4\pi r^2~~ \begin{cases} r=radius\\ \cline{1-1} SA=400\pi \end{cases}\implies 400\pi =4\pi r^2 \implies \cfrac{\stackrel{100}{~~\begin{matrix} 400\pi \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~} }{~~\begin{matrix} 4\pi \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}=r^2 \\\\\\ 100=r^2\implies \sqrt{100}=r\implies 10=r \\\\[-0.35em] ~\dotfill[/tex]
[tex]\bf \textit{volume of a sphere}\\\\ V=\cfrac{4\pi r^3}{3}\qquad \implies V=\cfrac{4\pi (10)^3}{3}\implies V=\cfrac{4000\pi }{3}\implies V\approx 4188.79[/tex]
Please help me !!!!!
Answer:
the answer is 12
Step-by-step explanation:
Answer:
Second option
[tex]x =9[/tex]
Step-by-step explanation:
To solve this problem we use the secant theorem.
If two secant lines intersect with a circumference, the product between the segment external to the circumference and the total segment in one of the secant lines is equal to the product of the corresponding segments in the other secant line.
This means that
[tex](5+4)*4 = (x+3)*3[/tex]
Now we solve the equation for the variable x
[tex](9)*4 = (x+3)*3[/tex]
[tex]36 = 3x + 9[/tex]
[tex]36-9 = 3x[/tex]
[tex]3x =27[/tex]
[tex]x =9[/tex]
which parent function is an example of a piecewise function?
Answers:
Linear parent function
Quadratic parent function
An Exponential parent function
Absolute value parent function
pls helppp I’m sorry if this doesn’t make sense
The correct option is Absolute value parent function. The absolute value parent function is a piecewise function because it is defined by different expressions depending on whether the input is positive or negative. In contrast, linear, quadratic, and exponential functions are defined by a single expression over their entire domains and are not piecewise.
The absolute value parent function is an example of a piecewise function. A piecewise function is a function that is defined by multiple sub-functions, each applied to a certain interval of the domain.
On the contrary, linear, quadratic, and exponential parent functions have a single expression defining them throughout their domain.
Linear functions, such as y = ax + b, have a constant rate of change and are not piecewise. Quadratic functions, like y = ax^2 + bx + c, create parabolas and are also defined by a single expression over their entire domain. Exponential functions, such as y = b^x, grow by a consistent percentage rate and are continuous and not piecewise.
When you shift a function you are
Answer:
translating it
Step-by-step explanation:
Shifting a function, in mathematics and economics, refers to the process through which the entire graph or model of a function is moved either up, down, left or right. A phase shift, commonly noted by φ, is an example of this, seen when aligning a cosine or sine function with initial conditions of data. In economics, factors like income, household preferences and taxes cause shifts in the consumption function.
Explanation:When you shift a function in mathematics, you are essentially moving the entire graph of the function either up, down, left, or right. This is done by altering the function equation. For instance, the position of a block on a spring, modeled by a periodic function like a cosine function, can be shifted to the right. This rightward shift is termed a phase shift, typically denoted by the Greek letter phi (φ). The equation for the position as a function of time for the block becomes x(t) = Acos(wt + φ), where φ reflects the phase shift.
A shift in a function can also occur under economic contexts. Factors besides income can trigger the entire consumption function to shift, either parallelly up or down or make the slope of the consumption function steeper or flatter.
Shifting of functions is a crucial concept, whether we're handling a cosine or sine function to align the function with data's initial conditions or in economical situations where changes in income, taxes, or household preferences could cause significant shifts in the consumption function.
Learn more about Shift in Functions here:https://brainly.com/question/29028605
#SPJ3
Two pools are being filled with water. Pool A
is filled at a rate of 3 gallons every hour. Pool
B is filled at a rate of 4 gallons every 1 hour.
Which expression is correct for the pool that is
filling faster?
I need help
Answer:Pool B is being filled quicker
Step-by-step explanation: It is being filled quicker because 4 is a bigger number than 3 so there is your answer
Two lines intersect at a:
• A. ray
• B. line
• C. point
• D. plane
In physics, if a moving object has a starting position at so, an initial velocity of vo, and a constant acceleration a, the
the position S at any time t>O is given by:
S = 1/2 at ^2 + vot+so
Solve for the acceleration, a, in terms of the other variables. For this assessment item, you can use^to show exponent
and type your answer in the answer box, or you may choose to write your answer on paper and upload it.
Answer:
[tex]a=\frac{2S -2v_ot-2s_o}{t^2}[/tex]
Step-by-step explanation:
We have the equation of the position of the object
[tex]S = \frac{1}{2}at ^2 + v_ot+s_o[/tex]
We need to solve the equation for the variable a
[tex]S = \frac{1}{2}at ^2 + v_ot+s_o[/tex]
Subtract [tex]s_0[/tex] and [tex]v_0t[/tex] on both sides of the equality
[tex]S -v_ot-s_o = \frac{1}{2}at ^2 + v_ot+s_o - v_ot- s_o[/tex]
[tex]S -v_ot-s_o = \frac{1}{2}at ^2[/tex]
multiply by 2 on both sides of equality
[tex]2S -2v_ot-2s_o = 2*\frac{1}{2}at ^2[/tex]
[tex]2S -2v_ot-2s_o =at ^2[/tex]
Divide between [tex]t ^ 2[/tex] on both sides of the equation
[tex]\frac{2S -2v_ot-2s_o}{t^2} =a\frac{t^2}{t^2}[/tex]
Finally
[tex]a=\frac{2S -2v_ot-2s_o}{t^2}[/tex]
Which of the following is true about the function below? 1/sqrt x+10
Answer:
what are the questions about it? cant answer if there are no questions
Step-by-step explanation:
Answer:
its domain isn (-10,∞) and its range is (0,∞)
Step-by-step explanation:
if this is the a.pex question regarding what is true about the function below, here you go
Someone plz help me
Answer:
The answer is the third option- (24n,when n=4.8 the value is 5)
I would recommended reading over the lesson again and maybe watching some videos to help you to grasp the material.
hope this helps!
Write an exponential function whose graph contains the points (1, 6) and (0, 2).
Answer:
y = 2 [tex](3)^{x}[/tex]
Step-by-step explanation:
The exponential function is of the form
y = a [tex](b)^{x}[/tex]
To find a and b substitute the given points into the equation
Using (0, 2), then
2 = a [tex](b)^{0}[/tex] ⇒ a = 2
Using (1, 6), then
6 = 2 [tex](b)^{1}[/tex] ⇒ b = 3
Equation is y = 2 [tex](3)^{x}[/tex]
Factor completely.
-2k - k 3 - 3k 2
a.) k(-k + 1)(k - 2)
b.) -k(k - 1)(k - 2)
c.) -k(k + 1)(k + 2)
Answer:
-k (k+1) (k+2)
Step-by-step explanation:
-2k - k³ - 3k² (factor-k out)
-k (2 + k² + 3k) (rearrange to standard quadratic form)
-k (k² + 3k + 2) (factor expression inside parentheses using your favorite method)
-k (k+1) (k+2)
Answer:
Option c.
Step-by-step explanation:
The given expression is
[tex]-2k-k^3-3k^2[/tex]
We need to find the factor form of the given expression.
Taking out HCF.
[tex]-k(2+k^2+3k)[/tex]
Arrange the terms according to there degree.
[tex]-k(k^2+3k+2)[/tex]
Splitting the middle terms we get
[tex]-k(k^2+2k+k+2)[/tex]
[tex]-k((k^2+2k)+(k+2))[/tex]
[tex]-k(k(k+2)+(k+2))[/tex]
[tex]-k(k+1)(k+2)[/tex]
The factor form of given expression is -k(k+1)(k+2). Therefore, the correct option is c.
6,13,20,27 based on the pattern what are the next two terms
The pattern is plus 7
6 + 7 = 13
13 + 7 = 20
20 + 7 = 27
This means to find the next term you must add 7 to 27
27 + 7 = 34
To find the term after 34 add seven to that as well
34 + 7 = 41
so...
6, 13, 20, 27, 34, 41
Hope this helped!
~Just a girl in love with Shawn Mendes
(06.03)
How can one half x − 5 = one third x + 6 be set up as a system of equations? (6 points)
Answer:
yes it can
Step-by-step explanation:
1/2x-5=1/3x+6
Answer: third option.
Step-by-step explanation:
[tex]\frac{1}{2}x-5=\frac{1}{3}x+6[/tex] can be rewritten into two separate equationts:
[tex]\left \{ {{ y=\frac{1}{2}x-5} \atop {y=\frac{1}{3}x+6}} \right.\\\\[/tex]
You can observe that this linear equations are written in Slope-Intercept form:
[tex]y=mx+b[/tex]
But the equations shown in options provided are written in Standard form:
[tex]Ax+By=C[/tex]
Therefore, you need to move the x term to the left side of the equation (In each equation):
- For the first equation:
[tex]y-\frac{1}{2}x=-5[/tex]
Simplifying:
[tex]\frac{2y-x}{2}=-5\\\\2y-x=-10[/tex]
- For the second equation:
[tex]y-\frac{1}{3}x=6[/tex]
Simplifying:
[tex]\frac{3y-x}{3}=6\\\\3y-x=18[/tex]
Then the system of equations is:
[tex]\left \{ {{2y-x=-10} \atop {3y-x=18}} \right.[/tex]
What transformation were applied to ABCD to obtain A’B’C’D?
Answer:
Rotation 90 degree counterclockwise then 2 units up.
Step-by-step explanation:
Given : Quadrilateral ABCD and A'B'C'D'.
To find: What transformation were applied to ABCD to obtain A’B’C’D.
Solution: We have given
A (3,6) →→ A'(-6,5)
B( 3,9)→→ B'(-9 ,5)
C(7,9)→→C'(-9 ,9)
D(7,6)→→D'(-6,9)
By the 90 degree rotational rule : (x ,y) →→(-y ,x) and unit 2 unit up
A (3,6) →→ A'(-6,3) →→ A'(-6,3+2)
B( 3,9)→→ B'(-9 ,3)→→ B'(-9 ,3+2)
C(7,9)→→C'(-9 ,7) →→C'(-9 ,7+2)
D(7,6)→→D'(-6,7)→→D'(-6,7+2)
Therefore, Rotation 90 degree counterclockwise then 2 units up.
The transformation applied is Rotation 90 degree counterclockwise then 2 units up.
What are coordinates?A coordinate system in geometry is a system that employs one or more integers, or coordinates, to define the position of points or other geometric components on a manifold such as Euclidean space.
The transformation which was applied to ABCD to obtain A’B’C’D be found by finding the change in the coordinates of the quadrilateral. Therefore,
A (3,6) ⇒ A'(-6,5)B( 3,9) ⇒ B'(-9 ,5)C(7,9) ⇒ C'(-9 ,9)D(7,6) ⇒ D'(-6,9)As it is observed that the change in the coordinate is 90 degrees counterclockwise then 2 units up. Therefore, the transform of the coordinates can be done as (x ,y)⇒(-y ,x)⇒(-y, x+2).
A (3,6) ⇒ A'(-6,3+2)B( 3,9) ⇒ B'(-9 ,3+2)C(7,9) ⇒ C'(-9 ,7+2)D(7,6) ⇒ D'(-6,7+2)Since the condition holds true, it can be concluded that the transformation applied is Rotation 90 degree counterclockwise then 2 units up.
Learn more about Coordinates:
https://brainly.com/question/23450276
#SPJ5
Dimple gets paid $3,100 per month.she pays $930 a month for rent.what percent of her monthly pay goes to rent
Answer:
Its 30%
Step-by-step explanation:
I used guess and check.
(25%)
3100*.25 = 775
(30%)
3100*.3 = 930
Answer:
30%.
Step-by-step explanation:
It is the fraction 930/3100 multiplied by 100.
Percentage that is rent = (930 * 100 ) / 3100
= 30%.
What is the parabolas line of symmetry
Final answer:
The line of symmetry of a parabola is a vertical line that passes through its vertex, dividing the parabola into two equal halves. This line of symmetry can be determined mathematically for a parabolic equation by the formula x = -b/(2a). Symmetry plays an important role in the behavior of optical devices such as spherical and parabolic mirrors.
Explanation:
The line of symmetry of a parabola is a vertical line that passes through its vertex, and it divides the parabola into two mirror-image halves. This line is also known as the axis of symmetry. For a parabola described by the equation y = ax² + bx + c, the axis of symmetry can be found using the formula x = -b/(2a), where a, b, and c are coefficients in the quadratic equation, representing the parabola's concavity, slope at the vertex, and the y-intercept, respectively.
In the context of optical devices like mirrors and lenses, the concept of symmetry is crucial. For instance, a spherical mirror reflects rays in a way that demonstrates symmetry with respect to its optical axis. When a parabolic mirror is used, all parallel rays of light are reflected through its focal point, illustrating how symmetry is a fundamental principle in both nature and physics.
Just like in nature, where symmetrical patterns can be seen in butterfly wings and other complex systems, symmetry in mathematical terms is significant and pervasive, revealing fundamental properties of the objects and phenomena in question.
The equation 3x2 = 6x – 9 has two real solutions
True
O False
Answer:
False
Step-by-step explanation:
We first write the equation in the form ax² + bx + c=0 which gives us:
3x² - 6x + 9=0
Given the quadratic formula,
x= [-b ±√(b²- 4ac)]/2a ,the discriminant proves whether the equation has real roots or not.
The discriminant, which is the value under the root sign, may either be positive, negative or zero.
Positive discriminant- the equation has two real roots
Negative discriminant- the equation has no real roots
Zero discriminant - The equation has two repeated roots.
In the provided equation, b²-4ac results into:
(-6)²- (4×3×9)
=36-108
= -72
The result is negative therefore the equation has no real solutions.
Answer: FALSE
Step-by-step explanation:
Rewrite the given equation in the form [tex]ax^2+bx+c=0[/tex], then:
[tex]3x^2 = 6x - 9\\3x^2-6x +9=0[/tex]
Now, we need to calculate the Discriminant with this formula:
[tex]D=b^2-4ac[/tex]
We can identify that:
[tex]a=3\\b=-6\\c=9[/tex]
Then, we only need to substitute these values into the formula:
[tex]D=(-6)^2-4(3)(9)[/tex]
[tex]D=-72[/tex]
Since [tex]D<0[/tex] the equation has no real solutions.
Find the volume of a cone that has a radius of 9 and a height of 13.
Answer:
[tex]351 \pi[/tex] (about 1102.69902)
Step-by-step explanation:
The volume of a cone is represented by the formula [tex]V=\pi r^2 \frac{h}{3}[/tex], where [tex]V[/tex] is the volume, [tex]r[/tex] is the radius, and [tex]h[/tex] is the height.
Substitute in the values. [tex]V=\pi * 9^2 * \frac{13}{3}[/tex]Simplify the exponent. [tex]V=\pi * 81 * \frac{13}{3}[/tex]Multiply. [tex]V=351 \pi[/tex]This is as simple as the solution can get without estimating, but we can estimate with a calculator. [tex]351 \pi[/tex] is approximately equal to 1102.69902.
Answer is provided in the image attached.
Simplify 5 square root of 7 end root plus 12 square root of 6 end root minus 10 square root of 7 end root minus 5 square root of 6 . (1 point) 5 square root of 14 end root minus 7 square root of 12 5 square root of 7 end root minus 7 square root of 6 7 square root of 12 end root minus 5 square root of 14 7 square root of 6 end root minus 5 square root of 7
Answer:
So, the simplified version is
[tex]-5\sqrt{7}+7\sqrt{6}[/tex]
In words it can be written as minus 5 square root of 7 end root plus 7 square root of 6 end root
Step-by-step explanation:
[tex]5\sqrt{7}+12\sqrt{6}-10\sqrt{7}-5\sqrt{6}[/tex]
We need to simplify the above expression.
Combining the like terms of the above expression.
Like terms are those that have same variables.
[tex]=(5\sqrt{7}-10\sqrt{7})+(12\sqrt{6}-5\sqrt{6})[/tex]
[tex]=((5-10)(\sqrt{7})+((12-5)(\sqrt{6}))[/tex]
[tex]=((-5)(\sqrt{7})+((7)(\sqrt{6}))[/tex]
So, the simplified version is
[tex]-5\sqrt{7}+7\sqrt{6}[/tex]
In words it can be written as minus 5 square root of 7 end root plus 7 square root of 6
What is the true solution to In 20+ In 5 = 2 In x?
X5
x= 10
X = 50
X=100
Answer:
for this question the correct answer is x= 10
Step-by-step explanation:
The true value of the equation In 20+ In 5 = 2 In x is x=10.
What is logaritmic function?
It is a function which is denoted through log or ln.
How to solve logarithmic function?
We have been given a log equation
log20+log5=2logx (log m +log n =log(mn))
log(20*5)=2logx
log(100)=2logx
log[tex](10)^{2}[/tex]=2logx (log[tex]m^{n}[/tex]=nlogm)
2 log 10=2 log x
x=10
Hence the required answer is x=10
Learn more about logarithmic functions at https://brainly.com/question/13473114
#SPJ2
which table represents vaiable solution for y=5x, where x is the number of tickets sold for the school play and y is the amount of money collected for the tickets?
Answer:
The answer is the first table: (0, 0), (10, 50), (51, 255), (400, 2000)
Step-by-step explanation:
Let's check all of the tables:
Table 1:
x = 0, y = 0 ⇒ 0 = 5 · 0 ⇒ 0 = 0
x = 10, y = 50 ⇒ 50 = 5 · 10 ⇒ 50 = 50
x = 51, y = 255 ⇒ 255 = 5 · 51 ⇒ 255 = 255
x = 400, y = 2000 ⇒ 2000 = 5 · 400 ⇒ 2000 = 2000
A new landowner is interested in constructing a fence around the perimeter of her property. Her property is 1,080√30
feet wide and 500√20 feet long. What is the perimeter of the property? (Recall that the perimeter is the sum of each
side of a shape or boundary).
A 1,580√40 feet
B. 5,320√5 feet
C. 3,160√20 feet D. 10,640√5 feet
Answer:
16302.9432 ft
Step-by-step explanation:
P = 2L + 2W
Where P is the perimeter, L is the length and W is the width
P = 2(1080√30) + 2(500√20) = 16302.9432 ft
Answer:
D
Step-by-step explanation:
took the test :)
Indicate in standard form the equation of the line through K(6,4) L(-6,4)
[tex]\bf (\stackrel{x_1}{6}~,~\stackrel{y_1}{4})\qquad (\stackrel{x_2}{-6}~,~\stackrel{y_2}{4}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{4-4}{-6-6}\implies \cfrac{0}{-12}\implies 0 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-4=0(x-6)\implies y-4=0\implies y=4[/tex]
Answer: [tex]y-4=0[/tex]
Step-by-step explanation:
The equation of line passing through two points (a,b) and (c,d) is given by :-
[tex](y-b)=\dfrac{d-b}{c-a}(x-a)[/tex]
The standard form of equation of a line is given by :-
[tex]Ax+By+C=0[/tex], where A , B , and C are integers.
Then , the equation of line passing through two points K(6,4) and L(-6,4) is given by :-
[tex](y-4)=\dfrac{4-4}{-6-6}(x-6)\\\\\Rightarrow\ y-4=(0)(x-6)\\\\\Rightarrow\ y-4=0[/tex]
what are the roots of the equation
[tex] {x}^{2} - 16x + 89 = 0[/tex]
in simplest a+bi form?
By completing the square,
[tex]x^2-16x+89=x^2-16x+64+25=(x-8)^2+25=0[/tex]
[tex](x-8)^2=-25[/tex]
[tex]x-8=\pm\sqrt{-25}[/tex]
[tex]x=8\pm5i[/tex]
Which ordered pair is a solution of the equation?
y + 5 = 2(2+1)
Choose 1 answer
®
Only (5,10
®
Only (-1,-5)
©
Both (5, 10) and (-1,-5)
0
Neither
Answer:
neither
Step-by-step explanation:
y would 1 but there is no x
Answer:(-1,-5)
Step-by-step explanation:
Because that's how math works. Its also what Khan Academy says soooo...