give two ways in which the water vapour changes as it passes down the glass tube in the condenser

Answers

Answer 1
It changes from a liquid into a solid which means it is changing states. It also is changing temperature due to the condenser increasing or decreasing the temperature in order for the vapor to be transformed in liquid.
Answer 2
Final answer:

Water vapor in a condenser tube changes by losing heat energy and condensing from the gaseous to the liquid phase, while releasing latent heat of vaporization.

Explanation:

As water vapor passes down the condenser tube, there are two primary changes that occur due to the process of condensation. First, the water vapor loses heat energy to the surrounding cooler surfaces of the condenser tube. This loss of energy decreases the kinetic energy of the water vapor molecules, causing them to slow down and become less spread out. Second, as the molecules lose energy, they begin to collect together due to the intermolecular forces between them, resulting in the transition from the gaseous phase to the liquid phase. Throughout this process, the latent heat of vaporization is released into the environment, which can be calculated using the formula Q = mLy, wherein 'Q' is the energy involved in the phase change, 'm' is the mass of the substance, and 'Ly' is the latent heat of vaporization.

Learn more about Condensation here:

https://brainly.com/question/34705758

#SPJ3


Related Questions

In which of the Earth's layers are diamonds formed?

Answers

In which of the Earth's layers are diamonds formed? -
Diamonds form in the Earth's mantle, a thick layer between the thin crust and Earth's  metal core.

A 1000-kg car traveling at 70 m/s takes 3 m to stop under full braking. the same car under similar road conditions, traveling at 140 m/s, takes ______________ m to stop under full braking.

Answers

We assume [tex]a=const[/tex] (acceleration is constant. We apply the equation
[tex]v^2=v0^2+2as[/tex] where s is the distance to stop [tex]v=0(m/s)[/tex]. We find the acceleration from this equation
[tex]a=-v0^2/(2s)=-70^2/(2*3) =-816.7 (m/s^2) [/tex]
We know the acceleration, thus we find the distance necesssary to stop when initial speed is [tex]v=140 (m/s)[/tex]
[tex]s=-v0^2/(2a) =140^2/(2*816.7)=12 (m)[/tex]

Final answer:

This physics problem involves the principle of kinetic energy and work-energy. Given the situation presented, the increase in the car's kinetic energy due to a doubling of initial speed means that the braking stopping distance quadruples from 3 meters to 12 meters.

Explanation:

This Physics problem concerns the relationship between velocity, mass, and stopping distance under braking conditions. It's dealing with the principle of kinetic energy (1/2*m*v²) and the work-energy principle, which states that the work done on an object is equal to the change in its kinetic energy.

If the initial speed is doubled, as it is in this case from 70 m/s to 140 m/s, the kinetic energy (and thus the work needing to be done to stop the vehicle) quadruples, assuming the mass stays constant. This means, due to the direct relationship between work done and distance when force is held constant, the stopping distance will also quadruple from the original 3 meters.

Therefore, the 1000-kilogram car, when moving at 140 m/s, will take 12 meters to stop under full braking in similar conditions.

Learn more about Kinetic Energy and Stopping Distance here:

https://brainly.com/question/13135781

#SPJ11

What is the change in the ball's position from t=0s to t=1.0s? express your answer using two significant figures?

Answers

The change in position is the change of the position of the ball from initial to final. In this problem, we are given the initial position of the ball which is t=0s and the final position which is t=1.0s. Thus, the change in the ball's position from 0 to 1 second is 4.0 m 

Part a consider a bird that flies at an average speed of 10.7 m/s and releases energy from its body fat reserves at an average rate of 3.70 w (this rate represents the power consumption of the bird). assume that the bird consumes 4.00g of fat to fly over a distance db without stopping for feeding. how far will the bird fly before feeding again?

Answers

436 km The conversion factor between kilocalorie/hour and watts is 1.163 (1 kcal/hr = 1.163 watt). So let's convert the energy consumption of the bird from watts to kcal/hr 3.7 w / 1.163 w hr/kcal = 3.18 kcal /hr 1 gram of fat has 9 kcal, so the total number of kcals consumed will be 4 * 9 = 36. So the bird can fly for 36/3.18 = 11.32 hours The distance traveled will be 11.32 h * 3600 s/h * 10.7 m/s / 1000 m/km = 436 km

Renee is on Spring Break and pulling her 21-kg suitcase through the airport at a constant speed of 0.47 m/s. She pulls on the strap with 120 N of force at an angle of 38° above the horizontal. Determine the normal force and the total resistance force (friction and air resistance) experienced by the suitcase.

Answers

Final answer:

The normal force is calculated by adding the weight of the suitcase and the vertical component of pulling force, while total resistance force is equal to the horizontal component of pulling force. Both forces play a significant role in Renee's effort to move the suitcase at a constant speed.

Explanation:

Here's how to find the normal force and the total resistance force for Renee's suitcase:

Normal Force: The normal force is the force exerted by a surface that supports the weight of an object resting on it. It acts perpendicular to the surface. In this case, there are two components to Renee's force - the horizontal and the vertical. The vertical component of the force can be calculated using the formula F = F_pull*sin(angle), where F_pull is the force with which Renee pulls the suitcase (120 N) and the angle is 38°. After calculating the vertical component of the force, you subtract it from the weight of the suitcase (mass*gravity) to get the normal force. Total Resistance Force: The total resistance force is the force that opposes the motion of the suitcase. In this case, at constant speed, the total resistance force is equal to the horizontal component of the pulling force. This can be calculated using the formula F = F_pull*cos(angle).

Remember, while calculating remember to convert the angle to radians if your calculator is set to radian mode.

Learn more about Forces and Motion here:

https://brainly.com/question/14662717

#SPJ12

Final answer:

To find the normal force on Renee's suitcase, we resolve the pulling force into its components and subtract the vertical component from the suitcase's weight. As the suitcase is moving at a constant speed, the horizontal component equals the resistance force, which includes both friction and any air resistance.

Explanation:

Renee is pulling her 21-kg suitcase at a constant speed of 0.47 m/s through the airport. To determine the normal force acting on the suitcase, we need to consider the components of the pulling force. The force has a magnitude of 120 N and is exerted at an angle of 38° above the horizontal. We must resolve this force into vertical and horizontal components. The vertical component (Fy) helps support the weight of the suitcase and is calculated as Fy = 120 N × sin(38°). The weight of the suitcase is W = m × g, where m is the mass of the suitcase and g is the acceleration due to gravity (9.8 m/s²).

The normal force is given by N = W - Fy since the vertical component of the pulling force acts upwards, reducing the normal force exerted by the ground. As the suitcase is moving at a constant speed, the net horizontal force must be zero. Therefore, the horizontal component of the pulling force, which is Fx = 120 N × cos(38°), must be equal to the total resistance force (friction + air resistance).

The equations to find the normal force and resistance force are:

N = (21 kg × 9.8 m/s²) - (120 N × sin(38°))resistance force = 120 N × cos(38°)

Learn more about Resolving Forces here:

https://brainly.com/question/32037721

#SPJ3

List three reasons why knowing how to graph movement can help you on a practical level.

Answers

Final answer:

Knowing how to graph motion helps in understanding kinematics properties by deriving motion characteristics from the graph, visualizing equations in a comprehendible form, and revealing underlying relationships between physical quantities.

Explanation:

Knowing how to graph movement can be practically beneficial for several reasons, these include:

Deriving motion characteristics: By graphing displacement versus time, velocity versus time, and acceleration versus time, you can derive specific and general characteristics of kinematics. For example, the slope of a displacement versus time graph is velocity whereas the slope of a velocity versus time graph represents acceleration. Visualizing Equations: Graphs are an excellent tool to visualize and understand equations. Rather than dealing with complex mathematical expressions, you can express the same information visually through graphs and get a better comprehension of the phenomena. Understanding Underlying Relationships: Graphs do not only present numerical information but also reveal the relationship between different quantities. Hence, they offer a way to interpret and understand the physics underlying the motion.

Learn more about Graphing Motion here:

https://brainly.com/question/26231576

#SPJ3

A baseball m=.34kg is spun vertically on a massless string of length l=.52m. the string can only support a tension of tmax=9.9n before it will break. what is the max possible speed of the ball at the top of the loop in m/s?

Answers

The maximum possible speed of the ball at the top of the loop is 4.50 m/s

Further explanation

Acceleration is rate of change of velocity.

[tex]\large {\boxed {a = \frac{v - u}{t} } }[/tex]

[tex]\large {\boxed {d = \frac{v + u}{2}~t } }[/tex]

a = acceleration (m / s²)

v = final velocity (m / s)

u = initial velocity (m / s)

t = time taken (s)

d = distance (m)

Centripetal Acceleration of circular motion could be calculated using following formula:

[tex]\large {\boxed {a_s = v^2 / R} }[/tex]

a = centripetal acceleration ( m/s² )

v = velocity ( m/s )

R = radius of circle ( m )

Let us now tackle the problem!

Given:

mass = m = 0.34 kg

length of string = R = 0.52 m

maximum tension = Tmax = 9.9 N

Unknown:

v = ?

Solution:

[tex]mg + T = ma[/tex]

[tex]mg + T = m\frac{v^2}{R}[/tex]

[tex]0.34 \times 9.8 + 9.9 = 0.34 \times \frac{v^2}{0.52}[/tex]

[tex]13.232 = \frac{0.34}{0.52} \times v^2[/tex]

[tex]v^2 = 20.2372[/tex]

[tex]\large {\boxed {v \approx 4.50 ~ m/s} }[/tex]

Learn moreVelocity of Runner : https://brainly.com/question/3813437Kinetic Energy : https://brainly.com/question/692781Acceleration : https://brainly.com/question/2283922The Speed of Car : https://brainly.com/question/568302Uniform Circular Motion : https://brainly.com/question/2562955Trajectory Motion : https://brainly.com/question/8656387

Answer details

Grade: High School

Subject: Physics

Chapter: Circular Motion

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle , Speed , Time , Rate , Circular , Ball , Centripetal

Final answer:

The maximum possible speed of the baseball at the top of the loop is approximately 3.17 m/s. This is calculated by using the maximum tension the string can support, and the gravitational force acting on the baseball.

Explanation:

To find the maximum possible speed of the baseball at the top of the loop without breaking the string, we need to consider the forces acting on the baseball. Two key forces are at play here: the gravitational force pulling the ball downward and the tension in the string that counteracts this pull. At the top of the loop, for minimum speed, the tension in the string can be zero because the gravitational force provides the necessary centripetal force. However, the question states that the string can only support a maximum tension (Tmax) before breaking which means we must find the speed where the tension does not exceed Tmax.

The maximum tension is the sum of the centripetal force needed to keep the ball moving in a circular path and the force due to gravity. Mathematically, this is expressed as Tmax = m * v^2 / l + m * g, where v is the velocity, m is the mass of the baseball, l is the length of the string, and g is the acceleration due to gravity (9.8 m/s^2).

Rearranging the formula to solve for v gives us v = sqrt((Tmax - m * g) * l / m). Plugging in the values Tmax = 9.9 N, m = 0.34 kg, l = 0.52 m, we get:

v = sqrt((9.9 N - (0.34 kg * 9.8 m/s^2) * 0.52 m) / 0.34 kg)

Calculating the above expression, we find the maximum velocity:

v = sqrt((9.9 - 3.332) * 0.52 / 0.34)

v = sqrt(6.568 * 0.52 / 0.34)

v = sqrt(3.4152 / 0.34)

v = sqrt(10.0447)

v ≈ 3.17 m/s

Learn more about Maximum speed of baseball on string here:

https://brainly.com/question/29112246

#SPJ3

Does a person standing motionless in the aisle of a moving bus have kinetic energy

Answers

I believe so, yes.
 (i am just writing this so that it will allow me to post the answer
 
NO it would NOT  have kinetic energy  because he is not moving he is motionless :)

hope i helped :) 

Which is brighter in our sky, a star with apparent magnitude 5 or a star with apparent magnitude 10 ?

Answers

the answer to that would be a magnitude of 5

The brighter object has the lower magnitude number.

The dimmest stars that can be seen with naked normal eyes are about magnitude 6, but the apparent magnitude of the sun in a clear sky is negative 27 !

Twenty students were surveyed to find out how many hours of tv they watch during a school week

Answers

Based on the survey of twenty students, the average number of hours watched during a school week is four.

Step 1: Gather Data

- Let's assume we have the following data from the survey:

| Student | Hours of TV watched (per week) |

|---------|--------------------------------|

| 1       | 3                              |

| 2       | 2                              |

| 3       | 4                              |

| ...     | ...                            |

| 20      | 5                              |

Step 2: Calculate the Total Hours of TV Watched

- Add up all the hours reported by each student.

Total Hours = 3 + 2 + 4 + ... + 5

Step 3: Calculate the Average Hours

- Divide the total hours by the number of students surveyed.

Average Hours = Total Hours / Number of Students

Now, let's perform the calculations.

Given:

Number of students surveyed (N) = 20

Hours of TV watched by each student:

Student 1: 3 hours

Student 2: 2 hours

Student 20: 5 hours

Step 2: Calculate the Total Hours

Total Hours = 3 + 2 + 4 + ... + 5

Total Hours = (3 + 2 + 4 + ... + 5) (20 times)

We can simplify this by realizing that we're adding the same number (the hours of TV watched by each student) 20 times:

Total Hours = (3 + 2 + 4 + ... + 5) (20 times)

           = (3 + 2 + 4 + ... + 5) * 20

Step 3: Calculate the Average Hours

Average Hours = Total Hours / Number of Students

             = (Total Hours) / 20

Now, let's find the sum of the hours:

Sum of hours = 3 + 2 + 4 + ... + 5

To find the sum, we can use the formula for the sum of an arithmetic series:

[tex]\[S = \frac{n}{2}(a_1 + a_n)\][/tex]

where:

- (S) is the sum of the series,

- (n) is the number of terms in the series,

- (a_1) is the first term in the series, and

- (a_n) is the last term in the series.

In our case:

(n = 20 (number of students surveyed),

a_1 = 3 (hours of TV watched by the first student), and

a_n = 5 (hours of TV watched by the last student).

[tex]\[S = \frac{20}{2}(3 + 5)\][/tex]

S = 10(8)

S = 80

Now, let's plug this sum into the formula for the average:

Average Hours = Total Hours / Number of Students

             = 80 / 20

             = 4

So, on average, the students surveyed watch 4 hours of TV during a school week.

complete question :

Twenty students were surveyed to determine the number of hours they watch TV during a school week. The data collected from the survey are as follows (in hours):

3, 5, 8, 2, 4, 6, 7, 5, 3, 9, 10, 1, 4, 7, 8, 6, 5, 2, 3, 7.

A head-on, elastic collision between two particles with equal initial speed v leaves the more massive particle (mass m1) at rest. find the ratio of the particle masses

Answers

1/3 The key thing to remember about an elastic collision is that it preserves both momentum and kinetic energy. For this problem I will assume the more massive particle has a mass of 1 and that the initial velocities are 1 and -1. The ratio of the masses will be represented by the less massive particle and will have the value "r" The equation for kinetic energy is E = 1/2MV^2. So the energy for the system prior to collision is 0.5r(-1)^2 + 0.5(1)^2 = 0.5r + 0.5 The energy after the collision is 0.5rv^2 Setting the two equations equal to each other 0.5r + 0.5 = 0.5rv^2 r + 1 = rv^2 (r + 1)/r = v^2 sqrt((r + 1)/r) = v The momentum prior to collision is -1r + 1 Momentum after collision is rv Setting the equations equal to each other rv = -1r + 1 rv +1r = 1 r(v+1) = 1 Now we have 2 equations with 2 unknowns. sqrt((r + 1)/r) = v r(v+1) = 1 Substitute the value v in the 2nd equation with sqrt((r+1)/r) and solve for r. r(sqrt((r + 1)/r)+1) = 1 r*sqrt((r + 1)/r) + r = 1 r*sqrt(1+1/r) + r = 1 r*sqrt(1+1/r) = 1 - r r^2*(1+1/r) = 1 - 2r + r^2 r^2 + r = 1 - 2r + r^2 r = 1 - 2r 3r = 1 r = 1/3 So the less massive particle is 1/3 the mass of the more massive particle.

The ratio of the particle masses is \boxed{\frac{1}{3}} or \boxed3 .

Further explain:

We have to calculate the ratio of the particle masses.

As we know, in the elastic collision between two masses the momentum and the energy both are conserved.

Here, the collision between the masses the head-on it means head to head.

For head on head collision the masses will travel parallel but opposite in the direction.

We have two masses one is heavier and another is lighter.

The mass of massive or heavier particle is [tex]{m_1}[/tex].  

The mass of the lighter particle is [tex]{m_2}[/tex].  

From the conservation of linear momentum total initial momentum is equal to the total final momentum.

Therefore,

[tex]\boxed{\left( {{m_1}v - {m_2}v} \right) = \left( {{m_1}{v_1} + {m_2}{v_2}} \right)}[/tex]

Here, after the collision the massive particle comes into rest.

So, final expression will be,

[tex]\left( {{m_1}-{m_2}}\right)v={m_2}{v_2}[/tex]                                   …… (1)

From the conservation of the energy,

Total kinetic energy before collision is equal to the total kinetic energy after collision.

Therefore,

[tex]\begin{aligned}\frac{1}{2}{m_1}{v^2}+\frac{1}{2}{m_2}{v^2}&=\frac{1}{2}{m_2}{\left( {{v_2}} \right)^2}\\{m_1}{v^2}+{m_2}{v^2}&={m_2}{\left( {{v_2}}\right)^2}\\\left( {{m_1}+{m_2}}\right){v^2}&={m_2}{\left( {{v_2}}\right)^2}\\\end{aligned}[/tex] 

Simplify the above equation,

[tex]\begin{aligned}{m_2}{\left( {{v_2}} \right)^2}&=\frac{{\left( {{m_1}+{m_2}} \right){v^2}}}{{{m_2}}}\\{v_2}&=\left( {\sqrt {\frac{{\left( {{m_1}+{m_2}} \right)}}{{{m_2}}}} }\right)v\\\end{aligned}[/tex]

 

Substitute the value of [tex]{v_2}[/tex] in equation (1).

[tex]\begin{aligned}\left( {{m_1} - {m_2}} \right)v&={m_2}\left( {\sqrt {\frac{{\left( {{m_1} + {m_2}}\right)}}{{{m_2}}}} } \right)v \\\left( {{m_1} - {m_2}} \right)&=\sqrt {{m_2}\left( {{m_1} + {m_2}}\right)}\\{m_2}\left( {\frac{{{m_1}}}{{{m_2}}} - 1}\right)&={m_2}\sqrt {\left( {\frac{{{m_1}}}{{{m_2}}} + 1} \right)}\\\left( {\frac{{{m_1}}}{{{m_2}}}-1}\right)&=\sqrt {\left( {\frac{{{m_1}}}{{{m_2}}}+ 1}\right)}\\\end{aligned}[/tex]

 

Substitute [tex]x[/tex] for[tex]\dfrac{{{m_1}}}{{{m_2}}}[/tex] in above equation.

[tex]\left( {x - 1} \right)=\sqrt {\left( {x + 1} \right)}[/tex]

 

Squaring both the sides in above equation,

[tex]\begin{aligned}{\left( {x - 1} \right)^2}&=\left( {x + 1}\right)\\{x^2} - 2x + 1&=x + 1\\{x^2}-3x&=0\\\end{aligned}[/tex]

 

Taking [tex]x[/tex] as a common in the above equation.

[tex]x\left( {x - 3} \right)=0[/tex]

On solving above equation

We get,

[tex]x = 3[/tex]

Replace the value of [tex]x[/tex]  

[tex]\boxed{\frac{{{m_1}}}{{{m_2}}} = 3}[/tex]

 

Or,

[tex]\boxed{\frac{{{m_2}}}{{{m_1}}} = \frac{1}{3}}[/tex]  

Learn more:

1. Average kinetic energy: https://brainly.com/question/9078768

2. Broadcast wavelength of the radio station: https://brainly.com/question/9527365

3. Motion under force https://brainly.com/question/7031524.

Answer details:

Grade: Senior School

Subject: Physics

Chapter: Impulse and Momentum

Keywords:

Head on collision, two particles, equal speed, ratio of particle masses, momentum, conservation of momentum, energy, conservation of energy, masses, ratio.

A small smooth object slides from rest down a smooth inclined plane inclined at 30 degrees to the horizontal. What is (i) the acceleration

Answers

I believe it would be F*sin(30)/m

Is the 3 in the molecule a coefficient, subscript, or element? 3H₂O₂

Answers

coefficient
       
Let's look at the 3 possibilities and see what they are for 3H₂O₂ coefficient - This is used to indicate that multiple molecules are used for the formula. In 3H₂O₂ that indicates that we are talking about 3 molecules of H₂O₂ subscript - This is a small number set in a smaller font and placed low to the elements. It indicates the number of each type of atom in the compound. For the formula 3H₂O₂ there are 2 subscripts. Both of them being the number "2" set small and low just after the letters H and O. Those subscripts indicate that there are 2 hydrogen and 2 oxygen atoms per molecule. element - This is the abbreviation for the elements used in the compound. In 3H₂O₂ there are 2 different elements. H to indicate hydrogen, and O to indicate oxygen.

People watching their team lose important games often make faces, yell at the screen, and demonstrate general agitation. Although they aren't playing the game themselves, they may be able to experience the frustration felt by the players because of ________________ activity in the brain

Answers

The premotor cortex of the brain is responsible for this type of behavior.  Mirror neurons are activated during these times. The mirror neuron situated in the premotor cortex copies the behaviors or feelings observed, therefore, people watching exhibit the same behavior and feelings as the player itself when they lose a game.

What is the wavelength of a photon whose energy is twice that of a photon with a 600 nm wavelength?

Answers

Planck's equation states that
E = hf
where
E =  the energy,
h = Planck's constant
f =  the frequency

Because
c = fλ
where
c =  velocity of light,
λ = wavelength
therefore
E = h(c/λ)

Photon #1:
The wavelength is λ₁ = 60 nm.
The energy is
E₁ = (hc)/λ₁

Photon #2:
The energy is twice that of photon #1, therefore its energy is
E₂ = 2E₁ = (hc)/λ₂.

Therefore
[tex] \frac{E_{2}}{E_{1}}= \frac{(hc)/\lambda_{2}}{(hc)/60 \, nm} =2\\ \frac{60}{\lambda_{2}} =2 \\ \lambda_{2} = \frac{60}{2} =30 \, nm [/tex]

Answer:  30 nm

The wavelength of the photon having twice the energy as that of the photon of wavelength [tex]600\,{\text{nm}}[/tex] is [tex]\boxed{300\,{\text{nm}}}[/tex] .

Further Explanation:

The photons are the small packets of energy that move at the speed of light. The photons are considered to remain always in motion. The energy associated with a moving photon is given by:

[tex]E = \dfrac{{hc}}{\lambda }[/tex]

Here,  [tex]E[/tex]  is the energy associated with the photon, [tex]h[/tex] is the Planck’s constant, [tex]c[/tex] is the speed of light and [tex]\lambda[/tex] is the wavelength of the moving photon.

The value of the Planck’s constant is [tex]6.6 \times {10^{ - 34}}\,{\text{J}} \cdot {\text{s}}[/tex] .

The wavelength of the photon is [tex]600\,{\text{nm}}[/tex] .

The energy associated with the photon of wavelength [tex]600\,{\text{nm}}[/tex] is:

[tex]\begin{aligned}{E_1}&=\frac{{\left( {6.6 \times {{10}^{ - 34}}} \right) \times \left( {3 \times {{10}^8}} \right)}}{{600 \times {{10}^{ - 9}}}}\\&=\frac{{1.98 \times {{10}^{ - 25}}}}{{6 \times {{10}^{ - 7}}}}\\&= 3.3 \times {10^{ - 19}}\,{\text{J}}\\\end{aligned}[/tex]

The wavelength of photon having energy double of this:

[tex]\begin{aligned}E' &= 2{E_1}\\&= 2 \times\left( {3.3 \times {{10}^{ - 19}}} \right)\,{\text{J}}\\&{\text{ = 6}}{\text{.6}} \times {\text{1}}{{\text{0}}^{ - 19}}\,{\text{J}}\\\end{aligned}[/tex]

The new wavelength of the photon will be:

 [tex]\lambda ' = \dfrac{{hc}}{{E'}}[/tex]

Substitute [tex]6.6 \times {10^{ - 19}}\,{\text{J}}[/tex] for [tex]E'[/tex] in above expression.

[tex]\begin{aligned}\lambda ' &= \frac{{\left( {6.6 \times {{10}^{ - 34}}} \right) \times \left( {3 \times {{10}^8}} \right)}}{{6.6 \times {{10}^{ - 19}}}}\\&=\frac{{1.98 \times {{10}^{ - 25}}}}{{6.6 \times {{10}^{ - 19}}}}\,{\text{m}}\\&= 3.0 \times {10^{ - 7}}\,{\text{m}}\\&= 300\,{\text{nm}}\\\end{aligned}[/tex]

The wavelength of the photon having twice the energy as that of the photon of wavelength [tex]600\,{\text{nm}}[/tex] is [tex]\boxed{300\,{\text{nm}}}[/tex].

Learn More:

1.Which of the following statements about electromagnetic radiation are true https://brainly.com/question/1619496

2.To find the number of neutrons in an atom you would subtracthttps://brainly.com/question/1983390

3.What is the frequency of light for which the wavelength is 7.1*10^2 nmhttps://brainly.com/question/9559140

Answer Details:

Grade: Senior School

Subject: Physics

Chapter: Photon and Energy

Keywords:  Wavelength, photon, energy, E=hc/lamda, 600nm, twice the energy, Planck’s constant, small packets of energy, 300nm, speed of light.

A fan that can provide air speeds up to 55 m/s is to be used in a low-speed wind tunnel with atmospheric air at 23ºc. if one wishes to use the wind tunnel to study flatplate boundary layer behavior up to reynolds numbers of rex= 108, what is the minimum plate length that should be used? at what distance from the leading edge would transition occur if the critical reynolds number were rex,c= 5 à 105?

Answers

b is the correct answer

How are stars important to the Milky Way

Answers

Stars are a source of light and heat. They recycle all the matter, gas, and dust and process them into new material. They were created as a major driving force of evolution of the universe. 
stars are the light and heat of the milky way the stars work with the milky way like the sun works with the earth the stars keep the milky way lit up and semi  warm like how the sun (which is a star of the milky way )  keeps the earth warm. Just remember that stars r just very big balls of gas burning in the sky :)

A 500 lb steel beam is lifted up by a crane to a height of 100 ft and is held there.
A) How much work is being done to hold the beam in place?
B) How much work was done to lift the beam?
C) How much work would it take if the steel beam were raised from 100 ft to 200ft?

Answers

A. How much work is being done to hold the beam in place?

Work is the product of Force and Displacement. Since there is no Displacement involved in just holding the beam in place, hence the work is zero.

 

B. How much work was done to lift the beam?

In this case, force is simply equal to weight or mass times gravity. Hence the work is:

Work = weight * displacement

Work = 500 lbf * 100 ft

Work = 50,000 lbf * ft

 

C. How much work would it take if the steel beam were raised from 100 ft to 200ft?

The displacement is still 100 ft since 200 – 100 = 100 ft, hence the work done is still similar in B which is:

Work = 50,000 lbf * ft

If a baseball pitch leaves the pitcher's hand horizontally at a velocity of 150 km/h by what percent will the pull of gravity change the magnitude of the velocity when the ball reaches the batter, 18 m away? for this estimate, ignore air resistance and spin on the ball.

Answers

0.52% First, let's convert that speed into m/s. 150 km/h * 1000 m/km / 3600 s/h = 41.667 m/s Now let's see how much time gravity has to work on the ball. Divide the distance by the speed. 18 m / 41.667 m/s = 0.431996544 s Now multiply that time by the gravitational acceleration to see what the vertical component to the ball's speed that gravity adds. 0.431996544 s * 9.8 m/s^2 = 4.233566131 m/s Use the pythagorean theorem to get the new velocity of the ball. sqrt(41.667^2 + 4.234^2) = 41.882 m/s Finally, let's see what the difference is (41.882 - 41.667)/41.667 = 0.005159959 = 0.5159959% Rounding to 2 figures, gives 0.52%

What is the frequency of radiation whose wavelength is 2.40 x 10-5 cm?

Answers

To begin, the formula for finding frequency when wavelength is known is "f = c / w" when c is the constant velocity (3 * 10^8 m/s). To convert the wavelength into a common form (m/s), it will have to be multiplied by 10^-2. This leaves the equation as "f = 3.0 * 10^8 / (2.4 * 10^-5 * 10^-2), or 2.4 * 10^-7. This gives 1.25 * 10^15 m/s as the frequency.

For questions 1-10, match the term with the correct phrase it corresponds to, by filling in the blank with the letter of the correct phase

A - Hormone that helps the body control the level of glucose in yhe blood.

B - The main cause of Type 2 Diabetes

C - Condition that makes it hard for the body to control the level of glucose in the blood

D - Damage to the pancreas caused by ones own antibodies

E - The elevation of glucose levels in the blood

F - Found to help with treatment of clinical depression

G - Organ where insulin is produced

H - "Good" cholesterol

I - 90% to 95% of the case of diabetes in America

J - Hardening of the arteries caused by a build up of fatty materials

1 - diabetes
2 - Atherosclerosis
3 - Hyperglycemia
4 - HDL
5 - Obesity
6 - Type 1
7 - Insulin
8 - Type 2
9 - Pancreas
10 - Regular aerobic exercise

Answers

A. 7
B. 5
C. 1
D. 6
E. 3
F. 10
G. 9
H. 4
I. 8
J. 2

These are your answers:

A is Insulin (7)

B is Obesity (5)

C is Diabetes (1)

D is Type 1 (6)

E is Hyperglycemia (3)

F is Regular aerobic exercise (10)

G is Pancreas (9)

H is HDL (4)

I is Type 2 (8)

J is atherosclerosis(2)

Here is why:

A. Hormone that helps the body control the level of glucose in the blood.

Insulin is a hormone. It helps regulate the levels of glucose in the blood by turning glucose into energy. This is why it plays an important role in metabolism. This hormone is produced by the pancreas.

B. Main cause of Type 2 Diabetes

Obesity is the main cause of Type 2 diabetes. Unhealthy eating and lack of exercise are often listed as causes of Diabetes 2, and this kind of lifestyle collectively leads to obesity.

C. Condition that makes it hard for the body to control the level of glucose in the blood.

Diabetes is a condition where the levels of glucose in the blood is high. This happens because the body cannot produce enough insulin, which is the hormone that controls glucose levels.

D. Damage to the pancreas caused by ones own antibodies.

In Diabetes Type 1, the immune system attacks the panceatic beta cells, which produce insulin. Unlike Type 2, Type 1 Diabetes is unavoidable and hereditary. So if you have it, you have it.

E. The elevation of glucose levels in the blood.

Hyperglycemia - Hyper means high or elevated. Gly means glucose or sugar. -cemia means blood. Put together, elevated glucose in the blood.  

F. Found to help with treatment of clinical depression

Studies have shown that aerobic exercise can help with clinical depression. It helps elevate moods and lessen tension. This helps relieve stress.

G. Organ where insulin is produced

Like mentioned above, insulin is produced by the pancreas.

H. "Good" Cholesterol

HDL is High-density Lipoprotein. HDL is considered as good cholesterol because it actually assists in removing other forms of cholesterol from the blood.

I. 90% to 95% of the case of diabetes in America

Studies have shown that in America Diabetes 2 is the most common case. Like mentioned above, cause of Diabetes type 2 is eating habits and lack of exercise and many foods today are full of processed sugars and are consumed in great amounts because of convenience.

J. Hardening of the arteries caused by a build up of fatty materials.

Fatty materials create plaque and they accumulate in the blood vessels. This leads to constriction and hardening in arteries specifically. This constriction makes the vessel more narrow and it can limit the flow of oxygen to the other organs of the body.

A mirror faces a cliff located some distance away. mounted on the cliff is a second mirror, directly opposite the first mirror and facing toward it. a gun is fired very close to the first mirror. the speed of sound is 336 m/s. how many times does the flash of the gunshot travel the round-trip distance between the mirrors before the echo of the gunshot is heard?

Answers


The speed of light is  299,792,468 m/s .

The speed of sound is  336 m/s .

The speed of light is (299,792,458 / 336) = 892,239 times the speed of sound.

By the time the sound has reached the side of the cliff and echoed
back to the shooter's position, the flash of the shot has made the same
round trip  892,239 times.

(Maybe possibly perhaps only 892,238 times, since the speed of light
is slightly slightly slightly slightly less in air.)

The flash travels the round-trip distance approximately 1,000,000 times.

The speed of sound is 336 m/s, and the speed of light (which represents the speed at which the flash travels) is approximately [tex]3\times 10^8 m/s[/tex].

Let's denote the distance between the mirrors as d. The time it takes for the sound to travel the round trip (to the cliff and back) is [tex]2d/336[/tex]seconds. During this time, the flash of light travels at [tex]3\times10^8m/s.[/tex]

To find out how many times the flash of light can travel the round-trip distance before the sound is heard, we calculate:

[tex]\text{Number of round trips}=(3\times10^8\times2d/336)/2d=(3\times10^8)/336\approx1000,000[/tex]

Thus, the flash of the gunshot travels the round-trip distance approximately 1,000,000 times before the echo of the gunshot is heard.

A flowerpot falls off a balcony 85m above the street how long does it take to hit the ground

Answers

The distance a falling object falls in some amount of time is

        D = 1/2  a  T²

If this flowerpot falls off a balcony on Earth, then 'a' is the
acceleration of gravity on Earth, and we can write

      85 m  =  1/2 (9.8 m/s²) T²

Divide each side by  4.9 m/s² :

      85/4.9  s²  =  T²

Square root each side:

      T  =  √(85/4.9)  seconds

          =      4.165 seconds .

It will take 4.12 s for the flowerpot to fall to the ground.

From the question given above, the following data were obtained:

Height (h) = 85 m

Time (t) =?

NOTE: Acceleration due to gravity (g) = 10 m/s²

The time taken for the flowerpot to fall to the ground can be obtained as follow:

H = ½gt²

85 = ½ × 10 × t²

85 = 5 × t²

Divide both side by 5

[tex]t^{2} = \frac{85}{5}\\\\t^{2} = 17[/tex]

Take the square root of both side

[tex]t = \sqrt{17}[/tex]

t = 4.12 s

Therefore, it will take 4.12 s for the flowerpot to fall to the ground.

Learn more: https://brainly.com/question/627043

Which characteristic does an object with a constant acceleration always have?

Answers

it always has changing velocity

Explanation:

By definition, the word acceleration is equal to the rate of change of velocity. Mathematically, it is given by :

[tex]a=\dfrac{dv}{dt}[/tex]

[tex]dv=a.dt[/tex]

[tex]v=\int\limits^t_0 {a.dt}[/tex]

Since, it is given that acceleration is constant

[tex]v=at+v_o[/tex]

v₀ is the constant of integration and it corresponds to initial velocity

From above equation, it is clear that when acceleration is constant the speed varies linearly. Hence, when an object move with constant acceleration, it always changes its velocity.

a hockey player has an acceleration of -3.1m/s2 how long does it take him come to a complete stop from a speed of 13m/s

Answers

Since his acceleration is not changing AND the acceleration is negative, we know that the hockey player is slowing down at a regular rate (i.e losing 3.1m/s, every second).

It's simple to then see that you just need to work out how many times 3.1 goes in to the starting velocity of 13m/s.

13 / 3.1 = 4.19 seconds

What is tarzan's speed vf just before he reaches jane? express your answer in meters per second to two significant figures?

Answers

Before swinging, T has only potential energy, (no speed)
Ui = mgh
Where h is the vertical displacement of T
From the laws of geometry,
cos45 = (L-h)/L
cos45 = 1-h/L
h/L = 1-cos45
h = L(1-cos45)

Therefore
Ui = mgL(1-cos45)

Proceeding the same way,
Twill raise to aheight of h' due to swing
h' = L(1-cos30)
The PE of T after swing is
Uf = mgh'
Uf = mgL(1-cos30)

Along with the PE , T has some kinetic energy results due to the moment.
Tf = 0.5*mv^2

According to the law of conservation of energy,
Ui = Uf+Tf
mgL(1-cos45) = mgL(1-cos30) + 0.5*mv^2
gL(co30-cos45) = 0.5*v^2
9.8*20*(co30-cos45) = 0.5*V^2
v = 7.89 m/s

The speed f T after swing is 7.89 m/s

The speed of sound in water is measured to be 1485 m/s. what is this in mph?

Answers

it will bw ugh 3500mph in 

Answer:

v =  3321.85 mph

Explanation:

Equivalences :

1 mile = 1609.34 m

1 hour = 3600 seconds

Data

v= 1485 m/s : speed of sound in water

Problem Development

To calculate the speed of sound in mph (mile / hour), we multiply by the conversion factors using the equivalences:

[tex]v= (1485 \frac{m}{s} )*(\frac{1mile}{1609.34 m} )*(\frac{3600s}{hour})[/tex]

We cancel the units in seconds (s) and meters (m) to get the answer in miles per hour (miles / hour or mph)

[tex]v=\frac{1485*3600}{1609.34} \frac{mile}{hour}[/tex]

v= 3321.85 mile/hour

v =  3321.85 mph

Communications satellites are placed in a circular orbit where they stay directly over a fixed point on the equator as the earth rotates. these are called geosynchronous orbits. the radius of the earth is 6.37 * 106 m, and the altitude of a geosynchronous orbit is 3.58 * 107 m 1â22,000 miles2. what are (a) the speed and (b) the magnitude of the acceleration of a satellite in a geosynchronous orbit?

Answers

Refer to the diagram shown below.

Given:
R = 6.37 x 10⁶ m, the radius of the earth
h = 3.58 x 10⁷ m, the height of the satellite above the earth's surface.
Therefore
R + h = 4.217 x 10⁷ m

In geosynchronous orbit, the period of rotation is 1 day.
Therefore the period is
T = (24 h)*(60 min/h)*(60 s/min) = 86400 s

The angular velocity is
ω = (2π rad)/(86400 s) = 7.2722 x 10⁻⁵ rad/s

Part (a)
The tangential speed is
v = (R+h)*ω
   = (4.217 x 10⁷ m)*(7.2722 x 10⁻⁵ rad/s) 
   = 3066.7 m/s
   = 3.067 km/s

Part (b)
The centripetal acceleration is
a = v²/(R+h)
   = (3066.7 m/s)²/(4.217 x 10⁷ m)
   = 0.223 m/s²

Answers:
(a) The speed is 3.067 km/s
(b) The acceleration is 0.223 m/s²

Final answer:

The speed of a satellite in a geosynchronous orbit is approximately 2.98 km/s, and the magnitude of the acceleration is approximately 1.92 x 10^-3 m/s^2.

Explanation:

To determine the speed of a satellite in a geosynchronous orbit, we can use the formula:

speed = 2 x π x radius / period

Given that the radius of the Earth is 6.37 * 10^6 m and the altitude of a geosynchronous orbit is 3.58 * 10^7 m, we can use the formula to calculate the speed:

speed = 2 x 3.14 x (6.37 * 10^6 + 3.58 * 10^7) / (24 x 60 x 60)

The magnitude of the acceleration of a satellite in a circular orbit can be calculated using the formula:

acceleration = (velocity)^2 / radius

Using the calculated speed and the radius of the orbit, we can find the magnitude of the acceleration:

acceleration = (2.98 x 10^3)^2 / (6.37 * 10^6 + 3.58 * 10^7)

Therefore, the speed of a satellite in a geosynchronous orbit is approximately 2.98 km/s and the magnitude of the acceleration is approximately 1.92 x 10^-3 m/s^2.

A common small-molecular weight (and therefore fast diffusing for an organic molecule) ingredient in perfumes is vanillin, the primary component of vanilla bean extract (molecular weight = 152). the d for vanillin in air is 0.114 cm2/s. if i open a bottle of vanilla on the other side of the room 3 meters away, and the air is still so there is no convection, about how long would i have to wait before i could expect to smell the vanilla?

Answers

Using Fick's Law of Diffusion, it would take about 394,737 seconds for the scent of vanilla (vanillin) to travel 3 meters in still air, considering its diffusivity in the given conditions.

The time it takes for a scent to travel through air can be estimated using Fick's Law of Diffusion, which relates diffusion time to the diffusivity of the substance, the distance it needs to travel, and the area through which it diffuses.

Diffusion time = (Distance^2) / (2 * Diffusivity)

Given that the distance is 3 meters and the diffusivity (D) of vanillin in air is 0.114 cm^2/s, we need to convert the distance to centimeters before applying the formula:

Diffusion time = (300 cm)^2 / (2 * 0.114 cm^2/s)

Diffusion time ≈ 90,000 cm^2 / 0.228 cm^2/s

Diffusion time ≈ 394,737 seconds

So, it would take approximately 394,737 seconds for the smell of vanilla to reach you from a distance of 3 meters in still air.

a toy projectile is fired from the ground vertically upward with an initial velocity of 26.5 m/s. The project arrives at its maximum altitude in 2.7s.

Determine the greatest height the projectile reaches. How do you know?

Answers

To work with projectile motion equations, it’s best to solve the equations in terms of x and y. In this problem, we know that we are working with only the y-axis because the projectile is launched vertically upwards with no angle. We can exclude working with our equations for the x-axis and look at the variables and equations we have for the y-axis.

Known variables along the y-axis
Viy = 26.5 m/s (initial velocity)
Vfy = 0 m/s (final velocity at max height)
ay = -g = 9.8m/s²
Siy = 0 m (toy launched from ground)
Sfy = ? = max height when t=2.7s
t = 2.7s

We can use equation Sfy = (Viy•t) - 1/2gt²
= (26.5•2.7) - 1/2(9.8)(2.7)²
= 35.83 m

Therefore, the greatest height the projectile reaches when launched from the ground with a velocity of 26.5m/s is 35.83m

Hope this helps!

Answer:

35.8 m

Explanation:

Given:

Initial Velocity u = 26.5 m/s

Time period t = 2.7 s

To find:

Maximum height H = ?

Solution:

The toy is projected vertically upward. So the motion is happening in y axis

When a projectile reaches its maximum height, at that point its velocity vill be zero

Using equations of motion we can find the height

[tex]v^{2} =u^{2} -2gH\\\\0^{2} =26.5^{2} -2\times 9.8 \times H\\\\19.6H = 702.25\\\\H = 35.8 m[/tex]

Verification

[tex]H = ut - \frac{1}{2} gt^{2}\\\\H = 26.5 \times 2.7- 0.5 \times 9.8 \times 2.7^{2}\\\\H = 35.8 m[/tex]

Other Questions
Use implicit differentiation to find the points where the circle defined by x^2+y^26x4y=-4 has horizontal and vertical tangent lines. List your answers as points in the form (a,b). You are returning from a trip to England with 100 euro. The exchange rate is USD/EUR 1.3847 . How much in US dollars should you receive WORTH 40 POINTS!What is the value of the expression All of 2.6 multiplied by 10 to the power 9 over all of 1.3 multiplied by 10 to the power 2?1.3 1072.0 1071.3 10112.0 1011Which shows the expressions in the order they would appear on a number line from least to greatest2 to the power of 3, square root of 5, square root of 20, square root of 11, 11 over 92 to the power of 3, square root of 11, 11 over 9, square root of 20, square root of 1111 over 9, square root of 5, square root of 11, square root of 20, 2 to the power of 311 over 9, 2 to the power of 3, square root of 5, square root of 20, square root of 11Which rational number equals 0 point 1 with bar over 1?1 over 111 over 101 over 91 over 8 The most common type of electronic evidence is A manager at a food production company, for example, could use ____ to check on the status of any customer order.A. SpywareB. A decision support systemC groupwareD Enterprise resource planning What did John and Abigail Adams think of Thomas Paine's Common Sense? What are four things the delegates to the convention had in common?A. They wanted a government that was representative of the will of the people but would be structured in such a way that it would not collapse into mob rule.B. They wanted to reunite with the British.C.They knew that the nation needed a stronger central government, though they were not willing to give up the sovereignty and autonomy of their states.D. They wanted a representative government that was divided into executive, legislative, and judicial branches.E. They wanted peace with the other states. Help with number 2 pleaseBest answer I will mark as brainliest All the different plant populations make up the plant ___________ in this swamp. The plants are part of the bigger __________, that contains many biotic and abiotic factors.A) community:biome B) community:ecosystem C) ecosystem:biosphere D) population:community Hace dos anos yo no (poder) nadar pero ahora puedo.A. puedoB. podiaC. pudeD. pueda The delegate responsible for taking extensive notes on government to the convention, speaking numberous times, and recording the events of the conventions was __________.A.George WashingtonB.Alexander HamiltonC.James MadisonD.Benjamin Franklin If the velocity of a moving object decreases from 60 m/s to 30 m/s, what happens to its momentum? It is reduced by half It stays the same It doubles It quadruplesIll mark as brainliest The Supreme Court ruled in Gideon v. Wainwright (1963) that Gideon had been denied his rights because he had Reform rulers who restored chinese power in east asia How would the formation of states in the Michigan, Arkansas, and florida territories probably affect the balance of power that the Missouri compromise tried to maintain? Which sentence is grammatically incorrect? A zoom lens control is typically labeled T and W. What do those two letters mean, and what happens when each button is pressed? Why did Northern strategists view the Mississippi River and its tributaries as vital to a Union victory in the Civil War?It kept the South from invading the North.Control of it would split the South in half.It would stop supplies from reaching the South.It would provide a safe route to Western states. Type: Telephone interviewSelect the best answer choice.a.Rick James: Contacted via telephone, September 17, 1984b.Telephone interview: conducted 17 September 1984. Rick Jamesc.James, Rick. Telephone Interview. 17 September 1984d.James, Rick: interviewed 17 September 1984 A scientist observes two cells. cell 1 and cell 2 both contain dna (genetic material) and ribosomes. however, cell 1 contains a nucleus and other membrane-bound organelles, which cell 2 does not. Steam Workshop Downloader