Paul is riding his bike 48 miles to the beach. His average rate of speed is 13.8 miles per hour. Paul stopped for a snack after 3 hours. How many miles does he have to go after his snack? Round your answer to the nearest tenth if necessary.

Answers

Answer 1
the answer is 6.6 miles 
Answer 2

13.8 miles per hour x 3 hours = 41.4 miles ( what he already rode)

48 - 41.4 = 6.6 more miles to go


Related Questions

write 25 x 10^6 in standard from

Answers

It is 25,000,000 :)
=25,000,000x
JIMIN!!!!!!! IT'S JIMIN'S BIRTHDAY TODAY!!! ≧ω≦

True or False?
When rainfall increases, the water level in the lake goes up. Rainfall is the independent variable in this situation.

Answers

False. Rainfall would not increase the amount of water in the lake.

Answer:

It is true, this person was wrong. True was the right answer on the test

Step-by-step explanation:

When circuit boards used in the manufacture of compact disc players are tested, the long-run percentage of defectives is 5%. suppose that a batch of 250 boards has been received and that the condition of any particular board is independent of that of any other board.
a. what is the approximate probability that at least 10% of the boards in the batch are defective?
b. what is the approximate probability that there are exactly 10 defectives in the batch?

Answers

Final answer:

The probability that at least 10% of the boards are defective can be approximated using a normal distribution, while the exact probability of having 10 defectives in the batch can be calculated using the binomial formula. For large samples, normal approximation can be used for convenience.

Explanation:

To find the probability that at least 10% of the boards are defective, we can use the binomial distribution since each board's condition is independent of the other boards. The formula for binomial probability is P(X = k) = (n choose k) * pk * (1-p)(n-k), where n is the number of trials, p is the probability of success on each trial, and k is the number of successes. However, for large sample sizes and when the sample proportion is close to the population proportion, we can approximate the binomial distribution with a normal distribution.

To use the normal approximation, we calculate the mean and standard deviation with the formulas μ = n * p and σ = √(n * p * (1-p)). For the batch of 250 boards with 5% defective rate, μ = 250 * 0.05 = 12.5 and σ = √(250 * 0.05 * 0.95) ≈ 3.4641. We then convert the problem into a z-score and use standard normal distribution tables or software to find the probability that Z > (25 - 12.5)/3.4641.

To find the exact probability of having exactly 10 defectives in the batch, we use the binomial formula since the normal approximation is less accurate for exact probabilities. The calculation would be P(X = 10) = (250 choose 10) * 0.0510 * 0.95240.

Pablo bought a desktop computer and a laptop computer. Before finance charges, the laptop cost $250 more than the desktop. He paid for the computers using two different financing plans. For the desktop the interest rate was 8.5% per year, and for the laptop it was 5% per year. The total finance charges for one year were $296 . How much did each computer cost before finance charges?

Answers

a = price of the desktop

b = price of the laptop

now, we know the laptop was more expensive than the desktop by 250 bucks, thus b = a + 250.

for "a", he paid 8.5% in interest, for "b", he paid 5% in interest.

how much is 8.5% of a?  well (8.5/100) * a, or 0.085a.

how much is 5% of b?  well, (5/100) * b, or 0.05b.

now, we know the total charges for financing were $296, that means the interest paid in total was 296, thus whatever "a" or "b" are, we know that  0.085a + 0.05b = 296.

[tex]\bf \begin{cases} \boxed{b}=a+250\\ 0.085a+0.05b=296\\ ----------\\ 0.085a+0.05\left( \boxed{a+250} \right)=296 \end{cases} \\\\\\ 0.085a+0.05a+12.5=296\implies 0.135a=283.5 \\\\\\ a=\cfrac{283.5}{0.135}\implies a=2100[/tex]

how much did the laptop cost?  well, b = a + 250.

Use the equation v=10/p to determine the pressure when the volume is 12 liters

Answers

v = 10/p
12 = 10/p
10/12 = 5/6 or 0.83 (3 repeating)
so p = 5/6 or 0.83 (3 repeating)

Sent a pic of the solution (s).

At the beginning of the day the stock market goes up 30 1/2 points. At the end of the day, the stock market goes down 100 3/4 points. what is the change from the high to the end of the day?

Answers

well, is namely their difference, so, let's first convert the mixed fractions to "improper", and subtract.

[tex]\bf \stackrel{mixed}{30\frac{1}{2}}\implies \cfrac{30\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{61}{2}} \\\\\\ \stackrel{mixed}{100\frac{3}{4}}\implies \cfrac{100\cdot 4+3}{4}\implies \stackrel{improper}{\cfrac{403}{4}}\\\\ -------------------------------\\\\ \cfrac{61}{2}-\cfrac{403}{4}\impliedby \textit{so our \underline{LCD is 4}}\implies \cfrac{(2\cdot 61)~-~(1\cdot 403)}{4} \\\\\\ \cfrac{122-403}{4}\implies \cfrac{-281}{4}\implies -70\frac{1}{4}[/tex]

The stock market changed by a net -70.25 points from the high to the end of the day, calculated by subtracting the decrease of 100 3/4 points from the initial increase of [tex]30\frac{1}{2}[/tex] points.

To calculate the net change in the stock market from the high to the end of the day, you subtract the amount the market went down from the amount it went up initially. First, convert the mixed numbers to improper fractions. 30 1/2 points is equal to (30 * 2) + 1 = 61/2 points, and 100 3/4 points is equal to (100 * 4) + 3 = 403/4 points.

Next, to find the change, you subtract the decrease from the initial increase:

61/2 - 403/4 = (61 * 4) / (2 * 4) - (403 * 2) / (4 * 2)

= 244/8 - 806/8

= (244 - 806) / 8

= -562/8

Finally, simplify the fraction:

= -70.25

So, the stock market changed by a net -70.25 points from the high to the end of the day. This means the market ended lower by 70.25 points from its highest point that day.

Are all rectangles similar

Answers

Yes all rectangles are similar but not all are equal, (geometry)
yes. All rectangles are similar no matter how big or small they are (of course, they have to stay as a rectangle)

hope this helps

When Irving was done, he checked his account balance and found he had a total of $95.06. How much money was in Irving’s account to begin with? a. $56.43 b. $151.49 c. $38.63 d. $142.36

Answers

This question is incomplete. The first part of the question says that Irving went shopping and he bought novel, shirt, lunch and potted plant for $8.75, $21.66, $9.13 and $16.89 respectively. After this, he had $95.06 in his account.
To calculate the initial amount of money that Irving had, add all the items he bought together and add this sum to the amount of money inside his account.
Amount of items bought = 8.75 + 21.66 +9.13 + 16.89 = $56. 43
$56.42 + $95.06 = $151.49.
Thus, the correct option is B.

For the data in the table does y vary directly with x? X=16,32,48-Y=4,16,36

Answers

Data:

x          y

16        4

32      16

48      36

Direct relation means that the ratio y / x is constant.

So, let's examine this ratio:

Ratio y / x

4/16 = 1/4

16/32 = 1/2

36/48 = 3/ 4

Given that the ratio y/x is not constant, the conclusion is that  y does not vary directly with x.
I'm doing the same test.. what are the answers ?

Find the slope of the line through p and q. p(5, −9), q(−5, 6)

Answers

Answer: slope = -1,5

Step-by-step explanation:

We can use slope formula to find the slope of a line that passes through two points (x₁ , y₁) and (x₂ , y₂)

m = ∆y/∆x = (y₂ - y₁)/(x₂ - x₁)

Given points are: p(x₁ , y₁) = (5 , −9) and q(x₂ , y₂) = (−5 , 6)

Substituting these two known points in the slope formula, we have:

m = (6-(-9))/(-5-5) = 15/-10 = -1,5

Therefore, the slope of this line = -1,5  

Answer: slope = -1,5

Spymore

What is the rule for the following sequence of numbers: 2, 7, 17, 37, ?

Answers

It should be C
The sequence goes 2, 7, 17, 37
2 * 2 = 4 + 3 = 7
7 * 2 = 14 + 3 =17
17 * 2 = 34 + 3 =37
and so on.
YOU'RE WELCOME :D

Consider a paint-drying situation in which drying time for a test specimen is normally distributed with σ = 9. the hypotheses h0: μ = 73 and ha: μ < 73 are to be tested using a random sample of n = 25 observations.

Answers

Part A:

The z score of the hypothesis testing of n samples of a normally distributed data set is given by:

[tex]z= \frac{x-\mu}{\sigma/\sqrt{n}} [/tex]

Given that the population mean is 73 and the population standard deviation is 9, then the number of standard deviation below the null value of x = 72.3 is given by the z score:

[tex]z= \frac{72.3-73}{9/\sqrt{25}} \\ \\ = \frac{-0.7}{9/5} = \frac{-0.7}{1.8} \\ \\ =-0.39[/tex]

Therefore, 72.3 is 0.39 standard deviations below the null value.



Part B:

The test statistics of the hypothesis testing of n samples of a normally distributed data set is given by:

[tex]z= \frac{x-\mu}{\sigma/\sqrt{n}} [/tex]

Thus given that x = 72.3, μ = 73, σ = 9 and n = 25,

[tex]z= \frac{72.3-73}{9/\sqrt{25}} \\ \\ = \frac{-0.7}{9/5} = \frac{-0.7}{1.8} \\ \\ =-0.39[/tex]

The p-value is given by:

P(-0.39) = 0.3483

Since α = 0.005 and p-value = 0.3483, this means that the p-value is greater than the α, ant thus, we will faill to reject the null hypothesis.

Therefore, the conclussion is do not reject the null hypothesis. there is not sufficient evidence to conclude that the mean drying time is less than 73.



Part C:

In general for the alternative hypothesis, [tex]H_a :\mu\ \textless \ \mu_0[/tex]

[tex]\beta(\mu') = P\left(X \ \textgreater \ \mu_0-z_{1-\alpha}\frac{\sigma}{\sqrt{n}}|\mu'\right) \\ \\ = 1-P\left(-z_{1-\alpha}+\frac{\mu_0-\mu'}{\sigma/\sqrt{n}}\right) [/tex]

So for the test procedure with α = 0.005

[tex]\beta(70) = 1 - P\left(-z_{0.995}+\frac{73-70}{9/5}\right) \\ \\ =1 - P(-2.5755+1.6667)=1-P(-0.9088) \\ \\ =1-0.1817\approx\bold{0.8183 }[/tex]



Part D:

For α = 0.005, and a general sample size n we have that

[tex]\beta(70) = 1 - P\left(-z_{0.995}+\frac{73-70}{9/\sqrt{n}}\right) \\ \\ =1 - P\left(-2.5755+ \frac{3}{9/\sqrt{n}} \right)[/tex]

Since, we want n so that β(70) = 0.01, thus

[tex]1 - P\left(-2.5755+ \frac{3}{9/\sqrt{n}} \right)=0.01 \\ \\ \Rightarrow P\left(-2.5755+ \frac{3}{9/\sqrt{n}} \right)=1-0.01=0.99 \\ \\ \Rightarrow P\left(-2.5755+ \frac{3}{9/\sqrt{n}} \right)=P(2.3262) \\ \\ \Rightarrow -2.5755+ \frac{3}{9/\sqrt{n}}=2.3262 \\ \\ \Rightarrow \frac{3}{9/\sqrt{n}}=4.9017 \\ \\ \Rightarrow \frac{9}{\sqrt{n}} = \frac{3}{4.9017} =0.6120 \\ \\ \Rightarrow \sqrt{n}= \frac{9}{0.6120} =14.7051 \\ \\ \Rightarrow n=(14.7051)^2=216.2[/tex]

so we need n = 217.



Part E

[tex]P-value=P(\bar{X}\leq\bar{x}) \\ \\ =P(\bar{X}\leq72.3)=P\left(z\leq \frac{72.3-76}{9/10} \right) \\ \\ =P\left(z\leq \frac{-3.7}{0.9} \right)=P(z\leq-4.111) \\ \\ =\bold{0.00002}[/tex]

3.5 x 10^4 write the following number in standard form (decimal).

Answers

Answer:

35,000

Step-by-step explanation:

Find dy/dx by implicit differentiation and evaluate the derivative at the given point.xy = 12, (-4, -3)

Answers

xy=12
xdy/dx + y = 12
xdy/dx = 12 - y
dy/dx= (12-y) /x
dy/dx | x=-4 ,y=-3 = (12-(-3))/(-4)
= (12+3)/-4 = -15/4

Find the surface area of the surface given by the portion of the paraboloid z=3x2+3y2 that lies inside the cylinder x2+y2=4. (hint: convert to polar coordinates after setting up the integral)

Answers

Parameterize the part of the paraboloid within the cylinder - I'll call it [tex]S[/tex] - by

[tex]\mathbf r(u,v)=\langle x(u,v),y(u,v),z(u,v)\rangle=\left\langle u\cos v,u\sin v,3u^2\right\rangle[/tex]

with [tex]0\le u\le2[/tex] and [tex]0\le v\le2\pi[/tex]. The region's area is given by the surface integral

[tex]\displaystyle\iint_S\mathrm dS=\int_{u=0}^{u=2}\int_{v=0}^{v=2\pi}\|\mathbf r_u\times\mathbf r_v\|\,\mathrm du\,\mathrm dv[/tex]
[tex]=\displaystyle\int_{v=0}^{v=2\pi}\int_{u=0}^{u=2}u\sqrt{1+36u^2}\,\mathrm du\,\mathrm dv[/tex]
[tex]=\displaystyle2\pi\int_{u=0}^{u=2}u\sqrt{1+36u^2}\,\mathrm du[/tex]

Take [tex]w=1+36u^2[/tex] so that [tex]\mathrm dw=72u\,\mathrm du[/tex], and the integral becomes

[tex]=\displaystyle\frac{2\pi}{72}\int_{w=1}^{w=145}\sqrt w\,\mathrm dw[/tex]
[tex]=\displaystyle\frac\pi{36}\frac23w^{3/2}\bigg|_{w=1}^{w=145}[/tex]
[tex]=\dfrac\pi{54}(145^{3/2}-1)\approx101.522[/tex]
Final answer:

To find the surface area of the specified area in the paraboloid, convert the original cartesian coordinates to polar coordinates. Then set up and solve the appropriate double integral over the region defined by the circle in polar coordinates.

Explanation:

To find the surface area of a paraboloid z=3x²+3y² inside the cylinder x²+y²=4, you first set up the integral and then convert to polar coordinates. As per the given paraboloid equation, we know that dz/dx = 6x and dz/dy = 6y. Therefore, the differential of surface area in polar coordinates can be given as √(1+(6r*cosø)²+(6r*sinø)²) rdrdø.

Next, integrate this over the area of a circle in polar coordinates, from r=0 to r=2 and ø=0 to ø=2π. The limits of 2 and 2π come from the given cylinder equation x²+y²=4, which represents a circle of radius 2 in polar coordinates.

The final integral in terms of r and ø should yield the desired surface area of the paraboloid which lies inside the cylinder.

Learn more about Surface Area of Paraboloid here:

https://brainly.com/question/14103961

#SPJ2

Megan Mei is charged 2 points on a $120,000 loan at the time of closing. The original price of the home before the down payment was $140,000. How much do the points in dollars cost Megan? A. $4,200 B. $2,800 C. $8,200 D. $2,400

Answers

1 point  = 1% of the loan.
The loan is $120,000.
Therefore 2 points cost 0.02*$120,000 = $2,400

Answer: D. $2,400

Answer:  Option 'A' is correct.

Step-by-step explanation:

Since we have given that

Amount of original price of the home before the down payment = $140000

Amount of loan at the time of closing = $120000

Megan Mei is charged 2 points on that amount means

[tex]2\%\ on\ \$120000\\\\=\frac{2}{100}\times 120000\\\\=0.02\times 120000\\\\=\$2400[/tex]

Hence, Option 'A' is correct.

7x300=7x blank hundreds

Answers

Hello There!

7 x 300 = 7 x three hundreds

Hope This Helps You!
Good Luck :) 

- Hannah ❤
Hey there!

7 x 300 = 7x three hundreds

Hope this helps! :)

What is the slope and y intercept of y=-27.4x

Answers

[tex]y = mx + b[/tex]

This is slope intercept form, where m is the slope and b is the y - intercept. If we compare the to our equation:

[tex]y = -27.4x + 0[/tex] (we can add a 0, because 0 dosen't change the value)

In this case:

[tex]m(slope) = -27.4 ; b(y-inter) = 0[/tex]

Hope this helps!

Find the line of symmetry for the parabola whose equation is y = 2x 2 - 4x + 1.

Answers

Answer:

The axis of symm. is x = 1.

Step-by-step explanation:

When faced with a quadratic equation (or formula for a parabola), we can find the equation of the axis of symmetry using the following:

       -b

x = -------

       2a

Please use " ^ " to denote exponentiation:  y = 2x^2 - 4x + 1.

Here, a = 2, b = -4 and c = 1.

Thus, the axis of symmetry of this parabola is

       -(-4)

x = --------- = 1              or    x = 1

       2(2)

What is 120.571 in expanded form?

Answers

Hi there,

 100 +20 +0 + 0.5+ 0.07+ 0.001

Hope this helps :)

A jar contains 8 marbles numbered 1 through 8. an experiment consists of randomly selecting a marble from the jar, observing the number drawn, and then randomly selecting a card from a standard deck and observing the suit of the card (hearts, diamonds, clubs, or spades). how many outcomes are in the sample space for this experiment? how many outcomes are in the event "an even number is drawn?" how many outcomes are in the event "a number more than 2 is drawn and a red card is drawn?" how many outcomes are in the event "a number less than 3 is drawn or a club is not drawn?"

Answers

There are 8 possible outcomes for a marble being drawn and numbered. 
{1,2,3,4,5,6,7,8}
There are 4 possible outcomes for a card being selected from a standard deck.
{ hearts, diamonds, clubs, spades}
So the number of outcomes in the sample space would be 8 x 4 = 32.

In the event "an even number is drawn", there are only 4 possible outcomes for a marble being drawn, {2,4,6,8}, whereas there are still 4 possible outcomes for a suit. So the number of outcomes in the event is 4 x 4 = 16.

In the event "a number more than 2 is drawn and a red card is drawn", there are 6 possible outcomes for the marble being drawn, {3,4,5,6,7,8}, whereas there are only two possible suits for a card being selected as red, {heart, diamond}. So the number of outcomes in this event is 6 x 2 = 12.

In the event "a number less than 3 is drawn or a club is not drawn", the number drawn could be 1 or 2 whereas a spade/heart/diamond could be selected. So the number of outcomes is 2 x 3 = 6.

The number of outcomes in the sample space is 32. There are 16 outcomes for drawing an even number, 12 outcomes for drawing a number more than 2 and a red card, and 30 outcomes for drawing a number less than 3 or not drawing a club.

To determine the number of outcomes in the sample space for the described experiment, one can use the fundamental counting principle. In this case, there are 8 possible marbles that can be drawn and 4 possible suits from a card in a standard deck. So, the total number of outcomes in the sample space is the product of these possibilities, which is 8 marbles × 4 suits = 32 outcomes.

The event "an even number is drawn" corresponds to drawing one of the even-numbered marbles (2, 4, 6, or 8) and any of the 4 suits from the deck. There are 4 even-numbered marbles and 4 suits, resulting in 4 marbles × 4 suits = 16 possible outcomes.

For the event "a number more than 2 is drawn and a red card is drawn," we consider only marbles numbered 3 to 8 (6 possibilities) and the 2 red suits (hearts and diamonds) from the deck, resulting in 6 marbles × 2 red suits = 12 outcomes.

Finally, the event "a number less than 3 is drawn or a club is not drawn" includes two scenarios. The first is drawing marble number 1 or 2 (2 possibilities) and any of the 4 suits (8 outcomes). The second scenario includes drawing any of the 8 marbles and any of the 3 non-club suits (24 outcomes). Since the two scenarios are mutually exclusive, you add the outcomes: 8 + 24 = 32 outcomes. However, you must subtract the overlapping outcomes of drawing 1 or 2 with non-club suits (2 outcomes), resulting in 32 - 2 = 30 distinct possible outcomes for this event.

you are lying 120 ft away from a tree that is 50 feet tall you look up at the top of the tree approxmaelty how far is your head from the top of the tree in a straight line

Answers

check the picture below.

help me..please help.

Answers

i dont know this one srry

The high temperature in Fairbanks, Alaska was 15.7 °F one day. That night, the temperature fell 38.4 degrees. What was the low temperature for the night? Enter your answer as a decimal in the box

Answers

Answer:

-22.7

Step-by-step explanation:

Since the temperature fell, that would means that it's was cooler outside.

Hotter = Temperature goes up

Colder = Temperature goes down

15.7 - 38.4 = -22.7

Answer:

-22.7

Step-by-step explanation:

did the test

You have 900-grams of an an unknown radioactive substance that has been determined to decay according to

D(t)=900e−0.002415⋅t

where t is in years. How long before half of the initial amount has decayed?

It will take ____ years for half of the initial amount to decay. (Round to 1 decimal place)

Answers

The initial amount is 900, half of this is 450. So set the equation equal to 450 and solve for t.

[tex] 450=900e^{-0.002415t} \\ \\ \frac{450}{900} = e^{-0.002415t} [/tex]

Natural logarithm (ln) is base "e" Euler's number

[tex]ln( \frac{450}{900} = ln( e^{-0.002415t} ) \\ \\ln( \frac{450}{900} ) = -0.002415t \\ \\ \frac{ln( \frac{450}{900}) }{-0.002415} = t \\ \\ t = 287.0 yrs[/tex]

It will take approximately 286.8 years for half of the initial amount (900 grams) to decay.

To find the time it takes for half of the initial amount to decay, we need to find the value of t when D(t) is half of the initial amount (900 grams).

Half of the initial amount = 900 grams / 2 = 450 grams

Now, set D(t) equal to 450 and solve for t:

[tex]450 = 900 * e^{-0.002415 * t}[/tex]

Divide both sides by 900:

[tex]e^{-0.002415 * t} = 0.5[/tex]

To find t, take the natural logarithm (ln) of both sides:

[tex]ln(e^{-0.002415 * t}) = ln(0.5)[/tex]

Now, use the property that [tex]ln(e^x) = x:[/tex]

-0.002415 * t = ln(0.5)

Now, solve for t:

t = ln(0.5) / -0.002415

Using a calculator, we get:

t ≈ 286.8 years

So, it will take approximately 286.8 years for half of the initial amount (900 grams) to decay.

To know more about amount:

https://brainly.com/question/21429142

#SPJ2

Find the value of x. Round the length to the nearest 10th the diagram is not shown to scale

Answers

In the given diagram:
measure angle DAB + measure angle BAC = 90 degrees
we are given that measure angle DAB = 10 degrees
Therefore:
measure angle BAC = 90 - 10 = 80 degrees

Now, triangle ABC is a right-angled triangle which means that we can use the trigonometric functions.
The function that we will use is:
cos theta = (adjacent) / (hypotenuse) where
theta = 80 degrees
adjacent = 500
hypotenuse is "x" that we want to calculate.

Substitute to get x as follows:
cos 80 = 500 / x
x = 500 / cos 80 = 500 / 0.1736 = 2879.4 m

Can you please help me. When you answer can you show work on piece of paper and take picture.

Answers

[tex]\bf \textit{difference of squares} \\ \quad \\ (a-b)(a+b) = a^2-b^2\qquad \qquad a^2-b^2 = (a-b)(a+b)\\\\ -------------------------------\\\\[/tex]

[tex]\bf \cfrac{x^2}{x^2-4}-\cfrac{x+1}{x+2}\implies \cfrac{x^2}{x^2-2^2}-\cfrac{x+1}{x+2}\implies \cfrac{x^2}{(x-2)(x+2)}-\cfrac{x+1}{x+2} \\\\\\ \textit{so our LCD is then }(x-2)(x+2) \\\\\\ \cfrac{[x^2]~~-~~[(x+1)(x-2)]}{(x-2)(x+2)}\implies \cfrac{[x^2]~~-~~[x^2-x-2]}{(x-2)(x+2)} \\\\\\ \cfrac{[\underline{x^2}]~~\underline{-x^2}+x+2}{(x-2)(x+2)}\implies \cfrac{\underline{x+2}}{(x-2)\underline{(x+2)}}\implies \cfrac{1}{x-2}[/tex]

Choose the equation below that represents the line passing through the point (−3, −1) with a slope of 4. (1 point) y = 4x − 11 y = 4x + 11 y = 4x + 7 y = 4x – 7 y − 3 = 4(x + 1) y + 3 = 4(x − 1)

Answers

To find the answer, we can use the equation y-y1=a(x-x1), since we already have a point that the line passes through and we know the slope of the line. So, we can plug in our known values into the equation, making it y+1=4(x+3) since the double negatives end up making our values positive. Then, we can continue solving it by distributing the 4, which makes our equation y+1=4x+12. Then, we can subtract 1 from both sides, making the answer y=4x+11.

To evaluate the expression 25x-400, what would x need to be if the result must be at least 200?

Answers

Formula:
[tex]25x - 400 \geqslant 200[/tex]
Add 400:
[tex]25x \geqslant 600[/tex]
Divide by 25:
[tex]x \geqslant 24[/tex]
x must at least be 24

the lines below are parallel. if the slope of the green line is -3 what is the line of the red line

Answers

Since they are parallel they have the same slope, thus the slope of the red line is -3.
If two lines are parallel, their slopes are equal.  Thus, the slope of the red line is also -3.
Other Questions
what terrible thing do the boys realize about what is happening inside the church? What do they do about it? What do their actions say about their character? what effect did the great war have on flappers Which two characters are detained by the watchmen after juliets death Read the dictionary entry. widow (wid), n. a woman who has outlived her husband. What does the symbol () indicate?theois a short vowelthe syllable least emphasizedtheois a long vowelthe syllable most emphasized If theirs 50 questions on a test how many do you have to get wrong to get the lowest grade What are the two numbers less than 20 with the most factors Write the quadratic equation whose roots are 6 and 2 , and whose leading coefficient is 5 . (use the letter x to represent the variable.) WILL GIVE A BRAINLESTGrasses can withstand the fires common to grasslands because grasses _____.are full of moisturestore water in their leavesgrow thickly togetherhave extensive root systems Having a low BMI is associated with an increased risk for which of the following diseases or conditions? (Select all that apply.)bone fracturesbone disorders/diseasesanxietydiabetesdepressionstrokelack of menstruationheart irregularitiesanemia In his speech On the Cult of Personality, Khrushchev spoke against Stalins policy of The first settlers to try to move west were form the colony of Europe what is 107,609 divided by 72 with a remainder with no decimal? 8 French Questions? 7) Remplis le blanc avec (ce) qui, (ce) que, ou qu': Dis-moi _____ est arrive 8) Quelle phrase est correcte?Je veux etre une prof Je veux etre prof What led to the rise of townsites around rail towns? A. Settlers were able to buy land more cheaply directly from the railroad. B. Settlers entering the Unassigned Lands on trains grabbed land near the tracks. C. Settlers knew the land near railroads was worth less and therefore was cheaper. D. Settlers could gain a stake in the railroads by leasing claimed land to them. The release of insulin from the pancreatic beta cells can inhibit its further release from the same cells. this is an example of which type of hormone action Which of the following make up the nucleus of an atom? The type of vegetarian who eats vegetables, grains, fruits, eggs, and milk but excludes all other types of animal proteins is called a What is the difference between classical economics and behavioral economics? The ratio of the height to the width of a packaging label is 5 to 19. If the height of the label is 2 inches, what is its width? HINT: Set up and solve as a proportion and find x. what is the tarsals function? Steam Workshop Downloader