Solve the inequality for x. Show each step of the solution. 12 x>9(2x-3)-15 (I'm having trouble with this one spefically)

Answers

Answer 1
download photomath and it will give u step by step instructions
Answer 2
12x > 9(2x - 3) - 15

12x > 18x - 27 - 15

-6x > -42

Divide by -6  and as we are dividing by a negative the inequality sign flips:-

x < 7  Answer


Related Questions

And 1. if a person bought 1 share of google stock within the last year, what is the probability that the stock on that day closed at less than the mean for that year? hint: you do not want to calculate the mean to answer this one. the probability would be the same for any normal distribution.

Answers

.5
The graph would be bell shaped. So the odds are 50/50

The probability that the stock closed at less than the mean for that year is approximately 0.5, assuming a normal distribution.

1. In a normal distribution, the mean divides the distribution into two equal halves, with 50% of the data falling below the mean and 50% above it.

2. Therefore, the probability that a randomly chosen data point (in this case, the closing price of  stock) is below the mean is 0.5 or 50%.

Now, let's dive into the step-by-step calculation to illustrate this:

1. Identify the Mean and Standard Deviation: While you mentioned not to calculate the mean, it's important to understand that for a normal distribution, the mean is at the center and separates the distribution into equal probabilities on either side. However, we do need to know the standard deviation, which measures the spread of data points around the mean. Let's assume the mean closing price for stock over the past year is $X, and the standard deviation is $Y.

2. Use the Standard Normal Distribution: Since we're dealing with a normal distribution, we can use the standard normal distribution to find probabilities. This distribution has a mean of 0 and a standard deviation of 1.

3. Standardize the Data: To work with the standard normal distribution, we need to standardize the data point we're interested in. Let's denote the closing price of  stock on the chosen day as $Z. We standardize this value using the formula:

  [tex]\[ Z = \frac{{Z - X}}{{Y}} \][/tex]

  Here, ( Z ) is the standardized value.

4. Find the Probability: Once we have the standardized value ( Z ), we can look it up in a standard normal distribution table or use software/tools to find the probability that a randomly chosen value from a standard normal distribution is less than ( Z ). This probability will be the same as the probability that the stock closed at less than the mean for that year.

5. Conclusion: Based on the properties of a normal distribution, the probability that a randomly chosen data point (stock closing price) is below the mean is always 0.5 or 50%. This holds true regardless of the specific mean or standard deviation values for  stock.

complete question

And 1. if a person bought 1 share of  stock within the last year, what is the probability that the stock on that day closed at less than the mean for that year? hint: you do not want to calculate the mean to answer this one. the probability would be the same for any normal distribution.

The heights of a group of 5 people are measured. Four of the people have the following heights: 64 inches, 67 inches, 72 inches, and 65 inches. If the average height of the group is 66 inches, how tall is the fifth person?

Answers

The fifth person is 62 inches tall. I hope it helped.

Devin brought his snails collection to school. He has 10 snails. How could he put them into 2 tanks so two classes could see them?
Write equation for all the possible ways.
One of the ways is given.
Explain how you know you have found all the ways.

Answers

10 divided by 2 = 5 is one of the equations

-3 1/2 * 0.5 help please

Answers

Convert -3 1/2 into an improper fraction.  That fraction is -7/2.  Mult. this by 1/2.
Result is -7/4 (answer)
Let -3 1/2 = -7/2.

Let 0.5 = 1/2.

(-7/2)(1/2) = -7/4

Done.

On a town map, each unit of the coordinate plane represents 1 mile. Three branches of a bank are located at A(−3, 1), B(4, 3), and C(2, −1). A bank employee drives from Branch A to Branch B and then drives halfway to Branch C before getting stuck in traffic. What is the minimum total distance the employee may have driven before getting stuck in traffic? Round to the nearest tenth of a mile if necessary.

Answers

distance formula : sqrt ((x2 - x1)^2 + (y2 - y1)^2)
(-3,1)...x1 = -3 and y1 = 1
(4,3)...x2 = 4 and y2 = 3
now we sub
d = sqrt ((4 - (-3)^2 + (3 - 1)^2)
d = sqrt ((4 + 3)^2 + (2^2))
d = sqrt (7^2 + 2^2)
d = sqrt (49 + 4)
d = sqrt 53
d = 7.28 ...so its 7.28 miles from A to B

d = sqrt ((x2 - x1)^2 + (y2 - y1)^2)
(4,3)...x1 = 4 and y1 = 3
(2,-1)...x2 = 2 and y2 = -1
now we sub
d = sqrt ((2 - 4)^2 + (-1 - 3)^2)
d = sqrt (-2^2) + (-4^2)
d = sqrt (4 + 16)
d = sqrt 20
d = 4.47....but the employee only drives halfway....so this trip was 4.47/2 = 2.235

so the minimum total distance is : 7.28 + 2.235 = 9.515  rounds to 9.5 miles


Which is the solution to the equation 2.6a + 18.4 = 28.8 round the nearest tenth if necessary. 1.4, 4, 18.2, 27

Answers

You would subtract 18.4 from 28.8 then divide that answer by 2.6. The answer would therefor be 4.

Answer:

Your answer is B=4

Step-by-step explanation:

hope it helps once again

There are 10 apples in the fridge and 2 of them are bad. if you grab 3 apples, what is the expected number of bad apples

Answers

2 there should still be the 2 bad apples

The expected number of bad apples is [tex]\( \frac{2}{10} \times 3 = 0.6 \) bad apples.[/tex]

The expected number of bad apples when grabbing 3 apples from a pool of 10, of which 2 are bad, can be calculated using probability.

To calculate this, follow these steps:

1. Calculate the probability of picking a bad apple:

  The probability of picking a bad apple is the ratio of the number of bad apples to the total number of apples. In this case, it's [tex]\( \frac{2}{10} = 0.2 \) or 20%.[/tex]

2. Multiply the probability by the number of apples picked:  

  Multiply the probability of picking a bad apple by the number of apples you're picking.  

 [tex]\( 0.2 \times 3 = 0.6 \)[/tex]

When you pick 3 apples randomly from a pool of 10, you're essentially conducting a sampling experiment. The probability of picking a bad apple on any given pick is[tex]\( \frac{2}{10} \),[/tex]  which simplifies to 0.2 or 20%.

Since you're picking 3 apples, you multiply the probability of picking a bad apple by 3 to find the expected number of bad apples. This is because in expectation, you would expect that proportion of bad apples in your sample. So, [tex]\( 0.2 \times 3 = 0.6 \)[/tex], which means you would expect to pick approximately 0.6 bad apples when picking 3 from the pool of 10, assuming the picking is random.

So, the final answer is that you would expect about 0.6 bad apples when picking 3 apples from a pool of 10, of which 2 are bad.

complete question

There are 10 apples in the fridge and 2 of them are bad. if you grab 3 apples, what is the expected number of bad apples

how does a model help me multiply decimals

Answers

it helps by showing you the exact numbers and it is showing each factor of each answer and in this case numbers

which is the smallest number? 3/4,1/5,10/23,2/31

Answers

A quick and easy way to do this particular question is to think all of these numbers are close to 1/2 except 2/31. So, the lowest is 2/31.

H O P E T H I S H E L P S!
3333333333333333333333

A guidance counselor has 2 3/6 hours to meet with students. If she meets with each student for 1/6 hour how many students can she see

Answers

well, is just the quotient of 2 and 3/6 divided by 1/6, that many students.

let's convert the mixed fraction to "improper", and divide then.

[tex]\bf \stackrel{mixed}{2\frac{3}{6}}\implies \cfrac{2\cdot 6+3}{6}\implies \stackrel{improper}{\cfrac{15}{6}}\\\\ -------------------------------\\\\ \cfrac{\quad \frac{15}{6}\quad }{\frac{1}{6}}\implies \cfrac{15}{6}\cdot \cfrac{6}{1}\implies \cfrac{15}{1}\implies \stackrel{students}{15}[/tex]
2 3/6 = 15/6

15/6  / 1/6  = 15 * 6 / 6  = 15 answer

From 2003 onward, the number of daily visitors to a website increased by 200% every two years. So, for example, the number of visitors in 2011 was 200% more than the number of visitors in 2009.

In what year was the number of daily visitors 800% more than the number of daily visitors in 2003?

Answers

2003-2005 : 200%
2005-2007: 200%
2007-2009: 200%
2009-2011: 200%
answer = 2011

Kevin and randy Muise have a jar containing 41 coins all of which are either quarters or nickels . The total value of coins in the jar is 7.45 how many of each type of coin do they have

Answers

Final answer:

To find the number of quarters and nickels, we can set up a system of equations using the total number of coins and the total value of the coins. Solving this system of equations, we find that Kevin and Randy have 27 quarters and 14 nickels.

Explanation:

To solve this problem, we can set up a system of equations. Let's use the variables q (number of quarters) and n (number of nickels). We know that there are a total of 41 coins, so we can write the equation q + n = 41. We also know that the total value of the coins is $7.45, so we can write the equation 0.25q + 0.05n = 7.45.

Now we can solve this system of equations using substitution:

Isolate one variable in one of the equations. Let's isolate q in the first equation: q = 41 - n.Substitute this expression for q in the second equation: 0.25(41 - n) + 0.05n = 7.45.Simplify and solve for n: 10.25 - 0.25n + 0.05n = 7.45. Simplifying further, we get 0.20n = 2.80. Dividing by 0.20, we find that n = 14.Substitute this value of n back into the first equation to find q: q = 41 - 14 = 27.

Therefore, Kevin and Randy have 27 quarters and 14 nickels in their jar.

The probability of a basketball player's making a free throw successfully at any time in a game is 1/2. if the player attempts ten free throws in a game, what is the probability that exactly six are made?

Answers

This is a problem in binomial probability.  Either the player is successful or he is not.  Here the number of "experiments" is 10, and the probability of "success" is 0.5.  

What is the probability that exactly six successes?

On my TI-83 Plus calculator, I've entered binompdf(10,0.5,6).  The result is 0.01898, or, rounded off, approx 0.019.  The chances that the player will score 6 times out of 10 is about 1.9%.

jamal has a box with some toy cars in it. he puts 3 more toy cars into the box now there are 22 toy cars in the box how many toy cars were in the box before

Answers

For short X + 3 = 22, so work it backwords 22 - 3 = X so 22 - 3 = 19 Your answer should be 19

a construction company charges $500 for the plans plus $600 per square foot to build a new home. Write an equation that shows this relationship

Answers

x = square feet

total cost = 500 + 600x


Let c be the curve of intersection of the parabolic cylinder x2 = 2y, and the surface 3z = xy. find the exact length of c from the origin to the point 2, 2, 4 3 . step 1

Answers

Parameterize the curve [tex]C[/tex] by [tex]\mathbf r(t)=\left\langle t,\dfrac{t^2}2,\dfrac{t^3}6\right\rangle[/tex] (essentially replacing [tex]x=t[/tex] and finding equivalent expressions for [tex]y,z[/tex] in terms of [tex]t[/tex].

The length of [tex]C[/tex] is given by the line integral

[tex]\displaystyle\int_C\mathrm dS=\int_{t=0}^{t=2}\|\mathbf r'(t)\|\,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^2\left\|\left\langle1,t,\dfrac{t^2}2\right\rangle\right\|\,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^2\sqrt{1+t^2+\dfrac{t^4}4}\,\mathrm dt[/tex]
[tex]=\displaystyle\frac12\int_0^2\sqrt{4+4t^2+t^4}\,\mathrm dt[/tex]
[tex]=\displaystyle\frac12\int_0^2\sqrt{(t^2+2)^2}\,\mathrm dt[/tex]
[tex]=\displaystyle\frac12\int_0^2(t^2+2)\,\mathrm dt[/tex]
[tex]=\dfrac12\left(\dfrac{t^3}3+2t\right)\bigg|_{t=0}^{t=2}[/tex]
[tex]=\dfrac12\left(\dfrac83+4\right)[/tex]
[tex]=\dfrac{10}3[/tex]

Approximate, to the nearest 0.1°, all angles θ in the interval [0°, 360°) that satisfy the equation. (Enter your answers as a comma-separated list.)
(a) sin θ = 0.9263 θ = °
(b) cos θ = −0.6909 θ = °
(c) tan θ = −1.5416 θ = °
(d) cot θ = 1.3952 θ = °
(e) sec θ = 1.4293 θ = °
(f) csc θ = −2.3174

Answers

(a) sin θ = 0.9263 θ = 67.9°, 112.1° (b) cos θ = â’0.6909 θ = 133.7°, 226.3° (c) tan θ = â’1.5416 θ = 123.0°, 303.0° (d) cot θ = 1.3952 θ = 35.6°, 215.6° (e) sec θ = 1.4293 θ = 45.6°, 225.6° (f) csc θ = â’2.3174 θ = 205.6°, 334.4° This is simply a matter of knowing how to use the trig identities and reflections. I am going to assume that you have access to an arctangent function (the ability to get the angle from the tangent of the angle) and that you have no other inverse trig functions available. The arctangent function is assumed to only work for positive tangents and returns a value between 0 and 90 degrees. (a) sin θ = 0.9263 θ = 67.9°, 112.1° The cos will be sqrt(1-0.9263^2) = 0.3768 The tan will be 0.9263/0.3768 = 2.4583 atan(2.4583) = 67.9° Since the sin is positive, there are 2 angles, one in quadrant 1 and another in quadrant 2. The angle for quadrant 2 will be 180° - 67.9° = 112.1° (b) cos θ = â’0.6909 θ = 133.7°, 226.3° The cos is negative, but we'll use the positive value for the basic angle calculations. sin = sqrt(1-0.6909^2) = 0.7230 tan = 0.7230/0.6909 = 1.0465 atan(1.0465) = 46.3° Since the cos is negative, the angles are in quadrants II and III. The angles will be 180° - 46.3° = 133.7° 180° + 46.3° = 226.3° (c) tan θ = â’1.5416 θ = 123.0°, 303.0° atan(1.5416) = 57.0° Since the tangent is negative, the angles are in quadrants II and IV. 180° - 57.0° = 123.0° 360° - 57.0° = 303.0° (d) cot θ = 1.3952 θ = 35.6°, 215.6° tan = 1/1.3952 = 0.7167 atan(0.7167) = 35.6° Since the cot is positive, the angles are in quadrants I and III 180° + 35.6° = 215.6° (e) sec θ = 1.4293 θ = 45.6°, 225.6° cos = 1/1.4293 = 0.6996 sin = sqrt(1-0.6996^2) = 0.7145 tan = 0.7145/0.6996 = 1.0213 atan(1.0213) = 45.6° Since the sec is positive, the angles are in quadrants I and III 180° + 45.6° = 225.6° (f) csc θ = â’2.3174 θ = 205.6°, 334.4° sin = 1/2.3174 = 0.4315 cos = sqrt(1-0.4315^2) = 0.9021 tan = 0.4315/0.9021 = 0.4783 atan(0.4783) = 25.6° Since the csc is negative, the angles are in quadrants III and IV 180° + 25.6° = 205.6° 360° - 25.6° = 334.4°

a) [tex]\[ \theta = 67.9^\circ, 112.1^\circ \][/tex], b) [tex]\[ \theta = 133.7^\circ, 226.3^\circ \][/tex], c) [tex]\[ \theta = 122.7^\circ, 302.7^\circ \][/tex], d) [tex]\[ \theta = 35.8^\circ, 215.8^\circ \][/tex], e) [tex]\[ \theta = 45.5^\circ, 314.5^\circ \][/tex] and f) [tex]\[ \theta = 154.4^\circ, 334.4^\circ[/tex].

Let's solve each part:

(a) [tex]\(\sin \theta = 0.9263\)[/tex]

1. Find the reference angle using [tex]\(\theta = \sin^{-1}(0.9263)\)[/tex]:

[tex]\[ \theta \approx 67.9^\circ \][/tex]

2. Since [tex]\(\sin \theta\)[/tex] is positive, the angles are in the first and second quadrants:

[tex]\[ \theta_1 \approx 67.9^\circ \][/tex]

[tex]\[ \theta_2 \approx 180^\circ - 67.9^\circ = 112.1^\circ \][/tex]

So, the solutions are:

[tex]\[ \theta = 67.9^\circ, 112.1^\circ \][/tex]

(b) [tex]\(\cos \theta = -0.6909\)[/tex]

1. Find the reference angle using [tex]\(\theta = \cos^{-1}(-0.6909)\)[/tex]:

[tex]\[ \theta \approx 133.7^\circ \][/tex]

2. Since [tex]\(\cos \theta\)[/tex] is negative, the angles are in the second and third quadrants:

[tex]\[ \theta_1 \approx 133.7^\circ \][/tex]

[tex]\[ \theta_2 \approx 360^\circ - 133.7^\circ = 226.3^\circ \][/tex]

So, the solutions are:

[tex]\[ \theta = 133.7^\circ, 226.3^\circ \][/tex]

(c) [tex]\(\tan \theta = -1.5416\)[/tex]

1. Find the reference angle using [tex]\(\theta = \tan^{-1}(-1.5416)\)[/tex]:

[tex]\[ \theta \approx -57.3^\circ \][/tex]

2. Adjust the reference angle to fall within the interval [tex]\([0^\circ, 360^\circ)\)[/tex]:

[tex]\[ \theta_1 = 360^\circ - 57.3^\circ = 302.7^\circ \][/tex]

3. Since [tex]\(\tan \theta\)[/tex] is negative, the angles are in the second and fourth quadrants:

[tex]\[ \theta_2 = 180^\circ + (-57.3^\circ) = 122.7^\circ \][/tex]

So, the solutions are:

[tex]\[ \theta = 122.7^\circ, 302.7^\circ \][/tex]

(d) [tex]\(\cot \theta = 1.3952\)[/tex]

1. Find the reference angle using [tex]\(\theta = \cot^{-1}(1.3952)\)[/tex]:

[tex]\[ \theta \approx 35.8^\circ \][/tex]

2. Since [tex]\(\cot \theta\)[/tex] is positive, the angles are in the first and third quadrants:

[tex]\[ \theta_1 \approx 35.8^\circ \][/tex]

[tex]\[ \theta_2 \approx 180^\circ + 35.8^\circ = 215.8^\circ \][/tex]

So, the solutions are:

[tex]\[ \theta = 35.8^\circ, 215.8^\circ \][/tex]

(e) [tex]\(\sec \theta = 1.4293\)[/tex]

1. Convert to [tex]\(\cos \theta\)[/tex]:

[tex]\[ \cos \theta = \frac{1}{1.4293} \approx 0.6996 \][/tex]

2. Find the reference angle using [tex]\(\theta = \cos^{-1}(0.6996)\)[/tex]:

[tex]\[ \theta \approx 45.5^\circ \][/tex]

3. Since [tex]\(\cos \theta\)[/tex] is positive, the angles are in the first and fourth quadrants:

[tex]\[ \theta_1 \approx 45.5^\circ \][/tex]

[tex]\[ \theta_2 \approx 360^\circ - 45.5^\circ = 314.5^\circ \][/tex]

So, the solutions are:

[tex]\[ \theta = 45.5^\circ, 314.5^\circ \][/tex]

(f) [tex]\(\csc \theta = -2.3174\)[/tex]

1. Convert to [tex]\(\sin \theta\)[/tex]:

[tex]\[ \sin \theta = \frac{1}{-2.3174} \approx -0.4316 \][/tex]

2. Find the reference angle using [tex]\(\theta = \sin^{-1}(-0.4316)\)[/tex]:

[tex]\[ \theta \approx -25.6^\circ \][/tex]

3. Adjust the reference angle to fall within the interval [tex]\([0^\circ, 360^\circ)\)[/tex]:

[tex]\[ \theta_1 = 360^\circ - 25.6^\circ = 334.4^\circ \][/tex]

4. Since [tex]\(\sin \theta\)[/tex] is negative, the angles are in the third and fourth quadrants:

[tex]\[ \theta_2 = 180^\circ + (-25.6^\circ) = 154.4^\circ \][/tex]

So, the solutions are:

[tex]\[ \theta = 154.4^\circ, 334.4^\circ[/tex]

The complete question is:

Approximate, to the nearest 0.1°, all angles θ in the interval [0°, 360°) that satisfy the equation. (Enter your answers as a comma-separated list.)

(a) sin θ = 0.9263

θ = °

(b) cos θ = −0.6909

θ = °

(c) tan θ = −1.5416

θ = °

(d) cot θ = 1.3952

θ = °

(e) sec θ = 1.4293

θ = °

(f) csc θ = −2.3174

θ = °

which of the following shows a strategy to use to find 4x275 (4x300)+(4x25)
(4x300)-(4x25) (4x275)-100 (4x200)+75

Answers

[tex]4*275 (4x^3^0^0)+(4x^2^5) (4x^3^0^0)-(4x^2^5) (4x^2^7^5)-100 (4x^2^0^0)+75[/tex] 


The correct strategy is (4x275) - 100. So option (3) is correct.

To find 4 multiplied by 275 using the given strategies, let's go through each one:

1. (4x300) + (4x25):

First, calculate (4x300) = 1200. Then, calculate (4x25) = 100. Finally, add these results together: 1200 + 100 = 1300.

2. (4x300) - (4x25):

Calculate (4x300) = 1200. Then, calculate (4x25) = 100. Now, subtract the second result from the first: 1200 - 100 = 1100.

3. (4x275) - 100:

Simply multiply 4 by 275 to get 1100. Then, subtract 100: 1100 - 100 = 1000.

4. (4x200) + 75:

Calculate (4x200) = 800. Then, add 75: 800 + 75 = 875.

The correct strategy is the third one: (4x275) - 100.

Detailed Calculation:

1. [tex]\(4 \times 275 = 1100\)[/tex]

2. [tex]\(1100 - 100 = 1000\)[/tex]

So, using the strategy of (4x275) - 100, the result is 1000.

A scanner scanned 56 photos in 7 minutes. If it scans photos at a constant rate, it can scan _____ photos in 27 minutes. Numerical Answers Expected! PLEASE HELP

Answers

It can scan 216 photos in 27 minutes since the rate is 8 photos per minute.
Writing and solving an equation of two ratios would be one of the easier ways to solve this problem.

56 photos          x
-------------- = ------------
  7 min            27 min

x is found as follows:  (56 photos)(27 minutes) = (7 min)(x)

Divide both sides by (7 min) to get the answer, x, which is measured in "photos."

Which angle has a measure equal to the sum of the m∠SQR and the m∠QRS?

Answers

Answer: 180° - m∠RSQ

Proof:
Refer to the diagram shown below.
Let
x = m∠SQR
y = m∠QRS
z = m∠RSQ

w =  the external angle (supplement) of m∠RSQ

Because the sum of angles in a triangle is 180°, therefore
x + y + z = 180°
x + y = 180° - z
That is,
m∠SQR + m∠QRS = 180° - z        (1)

Because the sum of angles on one side of straight line is 180°, therefore
w + z = 180°
or
w = 180° - m∠RSQ        (2)

Equate equations (1) and (2) to obtain
m∠SQR + m∠QRS = completes∠RSQ
This completes the proof.

Find the quotient 4/6÷4/12

Answers

Keep Change Flip is the way to think about dividing fractions.
First-  4/6 divided by 4/12
Next- Change the division sign to multiplecation   4/6 time 4/12
Then- Flip the second number    4/6 times 12/4
Now multiply

48/24   this simplifies down to 2

Standard 6 sided die is weighted so that the probabilities of rolling 2,3,4,5 or 6 are equal and the probability of rolling 1 is three times the probability of rolling a 2. if the die is thrown twice, what is the probability that the sum of the numbers thrown will be 4

Answers

There are 6 sides of the die, let us say that side 1 is S1, side 2 is S2 and so on.

Assigning a value of 3 to S1, so the probabilities are:

                                          Probability

S1 = 3                                    3/8

S2 = 1                                    1/8

S3 = 1                                    1/8

S4 = 1                                    1/8

S5 = 1                                    1/8

S6 = 1                                    1/8

total = 8                               

 

The combinations that the sum of the two rolls will be 4 are:

S1 and S3

S3 and S1

S2 and S2

 

So the total probability is:

P = (3/8) * (1/8) + (1/8) * (3/8) + (1/8) * (1/8)

P = 0.1094 = 10.94%

 

So there is about 0.1094 or 10.94% probability that the sum will be 4.

Answer: [tex]\frac{1}{4}[/tex]

Step-by-step explanation: If this is from a quiz from Buzz (Acceleration Education) Then this is the answer.

Hope This Helps You!

The radius r of a circle is increasing at a rate of 8 centimeters per minute. find the rate of change of the area when r = 39 centimeters

Answers

dr/dt= 8cmM-¹
dA/dt = ?
but A= πr²
so dA/dr =2πr
but recall
dA/dt = dA/dr • dr/dt
dA/dt = 2πr • 8cmM-¹
dA/dt = 2×π×39 ×8 = 624cm²M-1
Final answer:

The rate of change of the area of the circle when the radius is 39 centimeters is 1976π cm²/min. This uses the concept of related rates in calculus and the area formula A = πr².

Explanation:

The problem deals with the concept of related rates in calculus. In this problem, we're looking at how the rate of change of the radius of a circle impacts the rate of change of the area of the circle. The formula for the area of a circle is A = πr².

Differentiating both sides with respect to time(t) gives dA/dt = 2πr(dr/dt). In this case, dr/dt (the rate of change of the radius) is given as 8 cm/min. To find dA/dt (the rate of change of the area) when r = 39 cm, we substitute these values into the differentiated equation: dA/dt = 2π(39cm)(8 cm/min) = 1976π cm²/min

So, the rate of change of the area when r = 39 centimeters is 1976π cm²/min. As the radius increases, the area of the circle increases at a rate directly proportional to the radius.

Learn more about Related Rates here:

https://brainly.com/question/33509029

#SPJ11

14.4% of what number is 10.44

Answers

im not sure but i rounded 1.50336 and i got 1.5 so i think that would be your answer. 

will award 40 points if you answer correctly

Bottles of water sell for 1.50$ each.
Graph the relationship between the number of bottles sold and the total cost.

Answers

see picture for the graph

equation: y = 1.50x

Answer:

Step-by-step explanation:

took the test (k12) and its halfway to 50 if you see in the picture

If the circumference of a circle is 201 centimeters what is the radius of the circle (to the nearest whole number)? Use 3.14 for pi



A) 32 centimeters
B) 128 centimeters
C) none
D) 16 centimeters
E) 64 centimeters

Answers

Final answer:

The radius of a circle with a circumference of 201 centimeters is approximately 32 centimeters, found by dividing the circumference by 2 times pi (π), using 3.14 as the value of pi. The correct answer is A) 32 centimeters.

Explanation:

The question asks us to find the radius of a circle when its circumference is given to be 201 centimeters. We use the circumference formula of a circle, which is C = 2πr, where C stands for circumference, π (pi) is a constant approximately equal to 3.14, and r represents the radius of the circle.

To find the radius, we rearrange this formula to solve for r:

Divide both sides of the equation by 2π to isolate r.

Plug in the given circumference value, C = 201 cm, and the approximate value of pi, π = 3.14, into the rearranged formula.

So the calculation would be r = C / (2π) = 201 / (2 * 3.14) = 201 / 6.28. When we compute this, we get r ≈ 32 centimeters to the nearest whole number.

Therefore, the correct answer is A) 32 centimeters.

Suppose 5 days before the day after tomorrow is Monday. What day of the week was yesterday?

Answers

Wednesday was yesterday.
Wednesday was yesterday

Lucy deposits $7000 into an account that pays simple interest at a rate of 3% per year. How much interest will she be paid in the first 6 years?

Answers

7000*.03*6=??  Step 1. multiply 7000*.03=210 Step 2. multiply 210*6=1260. the answer is $1,260.00 
Final answer:

Lucy will be paid $1260 in interest in the first 6 years.

Explanation:

To calculate the interest Lucy will be paid in the first 6 years, we will use the simple interest formula:

Interest = Principal x Rate x Time

Given:

Principal (P) = $7000Rate (R) = 3% per yearTime (T) = 6 years

Plugging in the values, we get:

Interest = $7000 x 0.03 x 6 = $1260

Therefore, Lucy will be paid $1260 in interest over the first 6 years.

Learn more about Simple interest here:

https://brainly.com/question/22621039

#SPJ2

Write an explicit formula for the sequence (3,7,11,15,19,23,27,...)

Answers

Final answer:

The explicit formula for the given sequence is a_n = 3 + 4(n-1).

Explanation:

The given sequence is (3, 7, 11, 15, 19, 23, 27, ...).

To find the explicit formula for this sequence, we can observe that each term is obtained by adding 4 to the previous term. So, the formula can be written as:

an = 3 + 4(n-1)

where n represents the position of the term in the sequence.

please help me with this problem

Answers

129.95 * 0.55 = 71.4725

71.4725 * .06 = 4.28835

71.4725 + 4.28835 = $75.76

Answer = $75.76
Other Questions
Write the following inequality in slope-intercept form.5x 5y 70a.)y x 14b.)y x 14c.)y x + 14d.)y x + 14 Find the value of k if it is known that the graph of y=kx goes through: B(30, 3) Answer: k=_____ If Goofy and Pluto are both dogs, why is Goofy superior to Pluto? Fish in the class Chondrichthyes have skeletons of cartilage and powerful jaws. Which fish do not belong to this group? How did the position of women change in early Muslim society- they lost the ability to get an education-they gained the ability to easily obtain divorcesthey gained the ability to inherit propertythey lotst the ability to turn down a marriage offe are these points correct?? In 1789, congress ordered the creation of ____ departments of the cabinet. Find (18 106) + (5 104). A) 1.8005 106 B) 1.8005 107 C) 1.805 106 D) 1.805 107 I really need help... please?...Two towns have accumulated different amounts of snow. In Town 1, the snow depth is increasing by 3 1/2 inches every hour. In Town 2, the snow depth is increasing by 2 1/4 inches every hour. In how many hours will the snowfalls of the towns be equal? Show your work. Describe a real or made up but possible example of a product that went through a time of scarcity. What was likely to happen to the price of the product when it was scarce, and why? A gallon of water has a mass of 3.79 kg. how many moles of water (18.02 g/mol) is this? How many dna molecules are present in a synapsed pair of homologous chromosomes? Which topic is likely to be the central subject of a comedy? when a kindergarten teacher squats so she can be on the same level as her students, she is most likely trying to establish?1) language and communication2) power and authority3) sympathy and support4) approachability and trust.I think it's 4 but i'm not sure. If the perimeter of the rectangle is 28 cm, find the value(s) for x. Which descriptions are matched with the appropriate colony CHOOSE ALL THAT ARE CORRECT A: Roanoke - colony renowned for the quality of its indigo B: Jamestown - colony that prospered after the introduction of tobacco as cash crop C: Rhode Island - colony formed to escape the harsh Puritan religion of Massachusetts D: Massachusetts - colony that expanded voting rights to non-church members E: Connecticut - colony formed by Puritans who wished to practice their religion free from persecution What data do GIS and light detection and ranging (LIDAR) technologies provide to Portland city officials? What is the product of 5 and 1/2 times 1/8? I Want see if Im right. Which six cities in the roman empire had both jewish and christian communities by 300a.d? Line g bisects line segment BC at Point H. BH = 4x and HC = 24. Find BC. Steam Workshop Downloader