The owner wants people to believe that dance classes are popular so that they sign up for classes. Therefore, option C is the correct answer.
What is the probability?Probability can be defined as the ratio of the number of favourable outcomes to the total number of outcomes of an event.
The most likely reason the owner of the dance studio chain releases the report is to demonstrate the success of their business. By highlighting the fact that participation in dance classes has increased by 5% in each of the past three years, the owner is showing the public that the business is doing well and that they are providing a valuable service. This report may also be used to encourage potential customers to join the studio's classes, which would further increase their profits.
Therefore, option C is the correct answer.
To learn more about the probability visit:
https://brainly.com/question/11234923.
#SPJ3
In triangle ABC, m?BAC = 50°. If m?ACB = 30°, then the triangle is triangle. If m?ABC = 40°, then the triangle is triangle. If triangle ABC is isosceles, and AB = 6 and BC = 4, then AC =
Answer: B.) an obtuse, C.) a right , C.) 4 or 6
Step-by-step explanation: i hope this helps :)
Which is the equation of the line with slope 5 that contains point (−2, −3)?
A. y – 2 = 5(x – 3)
B. y + 2 = 5(x – 3)
C. y + 3 = 5(x + 2)
D. y – 3 = 5(x – 2)
Answer:
Option C. [tex]y+3=5(x+2)[/tex]
Step-by-step explanation:
we know that
The equation of the line into point slope form is equal to
[tex]y-y1=m(x-x1)[/tex]
In this problem we have
[tex]m=5[/tex]
[tex](x1,y1)=(-2,-3)[/tex]
substitute the given values
[tex]y+3=5(x+2)[/tex]
Final answer:
The equation of the line with slope 5 that contains the point (-2, -3) is y + 3 = 5(x + 2), which corresponds to answer choice C.
Explanation:
To find the equation of the line with a given slope that contains a specific point, we can use the point-slope form of a linear equation, which is y - y1 = m(x - x1). In this equation, m is the slope and (x1, y1) is the point the line passes through. Given the slope is 5 and the point is (
-2, -3), we substitute these values into the formula: y - (-3) = 5(x - (-2)), which simplifies to y + 3 = 5(x + 2). Therefore, the correct answer is C.
Alex is planning to have a snack during his break from class. He needs to eat 8 grams of fiber and 12 grams of protein. In the vending machine, he finds three types of packaged snacks: crackers that have 1 g of fiber and 2 g of protein, cookies that have 1 g of fiber and 1 g of protein, and nuts that have 3 g of fiber and 4 g of protein. How many packages of each snack can he eat to obtain his goal?
8g fiber....12g protein
1.Crackers--->1g fiber....2g protein
2.Cookies--->1g fiber....1g protein
3.Nuts--->3g fiber....4g protein
-3 packaged of crackers
-2 packaged of cookies
-1 package of nuts
3g+2g+3g=8g fiber
6g+2g+4g=12g protein
Answer:
3 packages of crackers
, 2 packages of cookies
, 1 package of nuts
Step-by-step explanation:
Types of packaged snacks :
Crackers
Quantity of fibre = 1 gram
Quantity of protein = 2 grams
Cookies
Quantity of fibre = 1 gram
Quantity of protein = 1 gram
Nuts
Quantity of fibre = 3 grams
Quantity of protein = 4 grams
Required quantity of fibre = 8 grams
Required quantity of protein = 12 grams
To find : Number of packages of each snack that he can eat to obtain his goal
Now 3 packages of crackers contain 3×1=3 grams of fiber and 3×2=6 grams of proteins .
2 packages of cookies contain 2×1=2 grams of fiber and 2×1=2 grams of proteins .
1 package of nuts contain 3×1=3 grams of fiber and 1×4=4 grams of proteins
So, total quantity of fibres that he get from three types of packaged snacks = 3g+2g+3g = 8g fiber
Total quantity of protein that he get from three types of packaged snacks =
6g+2g+4g = 12g proteins
1.)Find the volume of a cylinder that has a radius of 1/2 and a height of 1.
2.) What is the volume of a sphere with a diameter of 11ft? Round your answer to the nearest cubic foot.
2786 cubic feet
5572 cubic feet
8359 cubic feet
6193 cubic feet
3.) Find the volume of a cone that has a radius of 1/2 and a height of 1.
answer choices :
1/12pie
3/2pie
3/4pie
1/6pie
Answer:
1) 0.785 cubic units
2) 696.91 cu feet - see explanation.
3) π/12
Step-by-step explanation:
1) Volume of a cylinder with radius 1/2 and height of 1.
A cylinder is a circular prism. For any prism, to calculate its volume, we calculate the area of the shape of the prism, then multiply by its height. We all know how to calculate the area of a circle: A = π r², we have r (1/2). So...
A = π r² = π (1/2)² = π / 4 = 0.785 sq units
Now, we multiply this area by the height of the prism (h = 1):
V = A * h = 0.785 * 1 = 0.785 cubic units
2) Volume of a sphere, diameter of 11 ft
Since the diameter is 11 feet, that means the radius is 5.5 feet.
The sphere volume formula is:
V = (4/3)π r³, now that we have the radius, we can proceed:
V = (4/3)π r³ = V = (4/3)π (5.5)³ = V = (4/3)π * 166.375 = 221.833 π = 696.91 cu ft
However, that doesn't match any of your choices for answer.. so either you made an error in copying the answer choices or there was an error in the question... if we take a radius of 11 (instead of a diameter, we have 5575 cu ft, which is very close to one of your possible answers (5572).
3) Volume of a cone, radius of 1/2 and height of 1
The volume of a cone is found out with the formula:
V = (1/3)π r² h
We have all we need to calculate it:
V = (1/3)π (1/2)² (1) = (1/3) (1/4) π = (1/12) π = π/12
Prisms with a height of one are weird because it's basically like if they're a shape without height.
Answer:
5575.28
Step-by-step explanation:
Please help me asap!
Hint: the answer is negative.
(m^2 •n^3)^ -3 =m^-6 •n^ -9;
Answer is -3
The answer is -3. To make sure, you can substitute it into the equation with values for the variables, and you will get the same answer on both sides.
A 22m ladder and a 20m ladder were leaned against a building. The bottom of the longer ladder was 4m farther from the building than the bottom of the shorter ladder, but both ladders reached the same distance up the building. Find this distance to the nearest tenth.
12.2m
15.3m
18.1m
19.2m
Answer:
Both ladder reaches 18.1 m up the building ⇒ 3rd answer
Step-by-step explanation:
* Lets study the information to solve the problem
- There are two ladders
- The lengths of them are 22 m and 20 m
- The bottom of the longer was 4 m farther than the bottom of the
shorter from the building
- Both of them reached the same distance up the building
* Lets solve the problem
- Let the distance between the bottom of the shorter ladder to the
building is x
∵ The bottom of the longer ladder is farther by 4
∴ The distance between the bottom of the longer ladder and the
building is x + 4
- Let the ladders reached the distance h up the building
* Now we have two right triangles
# Their hypotenuses are 22 and 20
# Their heights are h
# Their bases are x + 4 , x
- Lets find h in each triangle using the rule of Pythagoras
∵ (hypotenuse)² = (leg 1)² + (leg 2)²
# The longer ladder
∵ hypotenuse = 22
∵ leg 1 = x + 4
∵ leg 2 = h
∴ (22)² = (x + 4)² + h² ⇒ simplify
∴ 484 = (x + 4)² + h² ⇒ subtract (x + 4)² from both sides
∴ h² = 484 - (x + 4)² ⇒ (1)
# The shorter ladder
∵ hypotenuse = 20
∵ leg 1 = x
∵ leg 2 = h
∴ (20)² = (x )² + h² ⇒ simplify
∴ 400 = x² + h² ⇒ subtract x² from both sides
∴ h² = 400 - x² ⇒ (2)
- Equate (1) , (2) to find x
∴ 484 - (x + 4)² = 400 - x² ⇒ Add (x + 4)² and subtract 400 in both sides
∴ 84 = (x + 4)² - x² ⇒ open the bracket
∴ 84 = x² + 2(4)(x) + 4² - x² ⇒ simplify
∴ 84 = 8x + 14 ⇒ subtract 16 from both sides
∴ 68 = 8x ⇒ divide both sides by 8
∴ x = 8.5
- Substitute this value of x in (1) or (2) to find h
∵ h² = 400 - x²
∴ h² = 400 - (8.5)² = 327.75 ⇒ take √ for both sides
∴ h = 18.1
* Both ladder reaches 18.1 m up the building
What is the volume of an equilateral triangular pyramid with a side length of 8 cm and an altitude of 12 cm?
Answer:
256 cm³
Step-by-step explanation:
Here, V = (1/3)(area of base)(height), and the numbers here are
V = (1/3)(64 cm²)(12 cm) = 256 cm³
The sum of three squared and five squared
Answer:
34
Step-by-step explanation:
The sum of the 3rd and 5th square numbers is calculated by squaring 3 and 5, and then adding the results together, which gives us a total of 34.
The sum of the 3rd and 5th square numbers can be found by adding the squares of 3 and 5. A square number, or a perfect square, is a number that can be expressed as the product of an integer with itself. For example, to find the 3rd square number, we square 3 (3²), and for the 5th square number, we square 5 (5²).
So, calculating these we get:
3² = 3 * 3 = 95² = 5 * 5 = 25Now, to find the sum of the squares, we just add these two results together:
9 + 25 = 34
Therefore, the sum of the 3rd and 5th square numbers is 34.
The question is:
What is the sum of the 3rd and 5th square numbers?
what is the classification for this polynomial -3a^2b^5+2a
[tex]\bf \stackrel{\stackrel{degree}{\stackrel{2+5=7}{\downarrow }}}{-3a^2b^5}+\stackrel{\stackrel{\stackrel{degree}{1}}{\downarrow }}{2a^1}\impliedby \begin{array}{llll} \textit{highest degree of any term is 7}\\ \textit{so is a 7 degree polynomial}\\ \textit{or called a "septic"} \end{array}[/tex]
bear in mind that the degree of a polynomial comes from the highest degree of any of its terms, and the degree of a term is the sum of all exponents in the variables.
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
(5 - 3i)(6 + 2i)
Multiply and simplify.
Your answer is D. 36 - 8i
I'm only a few Brainliests away from ranking up, so one would be much appreciated. Thank you, and good luck!
Answer: D) 36 - 8i
Step-by-step explanation:
(5 - 3i)(6 + 2i)
= 5(6 + 2i) -3i(6 + 2i)
= 30 + 10i -18i - 6i²
= 30 - 8i -6(-1) reminder that i² = -1
= 30 - 8i + 6
= 36 - 8i
Identify m∠ACD. HELP ASAP!!
Answer:
<ACD = 35 degrees
Step-by-step explanation:
An intercepted angle is an arc segment of a circle whose endpoints connect at a point on the opposite side of the circle to create an angle. In this case arc AD is the intercepted arc of <ACD.
The measure of angle is half the measure of its intercepted arc.
AD measures 70 degrees, so divide this by 2.
70/2 = 35
<ACD = 35 degrees
HELPPPPPPPPPPPPPPPPPPPPPPPPPP create a proportion using the form %/100 is/of = to represent the following word problem.15 is 1 1/2 % of what number ?/? = ?/?
Answer:
11/2 is equal to 5.5
Take 15 and divide it by that decimal, 5.5 and I believe the answer should be 2.72.
15 is 11/2% larger than 2.72
I am 99.9% sure that is the correct answer but I could be wrong.
To represent the word problem '15 is 1 1/2% of what number?' using a proportion, we can set up the form %1 1/2/100 = 15/n. By cross multiplying and solving for 'n', we find that 15 is 1 1/2% of 1000.
Explanation:To represent the word problem '15 is 1 1/2% of what number?' using a proportion, we can use the form %0/100 = is/of. Let's assign 'n' to represent the unknown number. We can set up the proportion as follows:
%1 1/2/100 = 15/n
Now, we can solve for 'n' by cross multiplying and then dividing. First, convert 1 1/2% to a decimal by dividing 1 1/2 by 100 to get 0.015. The proportion becomes:
0.015 = 15/n
To solve for 'n', we can multiply both sides of the equation by 'n':
0.015n = 15
Finally, divide both sides of the equation by 0.015 to isolate 'n':
n = 15/0.015 = 1000
Therefore, 15 is 1 1/2% of 1000.
Learn more about Proportions here:https://brainly.com/question/34018947
#SPJ3
The complete question is here:
Create a proportion using the form %0/100 = is/of to represent the following word problem
15 is 1 (1/2)% of what number?
- =
60 100 20 78 1 (1/2) 15 42 n 30 7
Find the MAD of this set of data.
6, 12, 10, 9, 8, 6, 2, 4, 8, 15
8
9
2.8
3.5
Answer:
2.8
Step-by-step explanation:
The given data set is;
6, 12, 10, 9, 8, 6, 2, 4, 8, 15
The mean of this set is;
[tex]\bar X=\frac{\sum x}{n}[/tex]
[tex]\bar X=\frac{6+12+10+9+8+6+2+4+8+15}{10}[/tex]
[tex]\bar X=\frac{80}{10}=8[/tex]
The mean absolute deviation is given by
[tex]M.A.D=\frac{\sum |x-\bar X|}{n}[/tex]
[tex]M.A.D=\frac{|6-8|+|12-8|+|10-8|+|9-8|+|8-8|+|6-8|+|2-8|+|4-8|+|8-8|+|15-8|}{10}[/tex]
[tex]M.A.D=\frac{2+4+2+1+0+2+6+4+0+7}{10}[/tex]
[tex]M.A.D=\frac{28}{10}[/tex]
[tex]M.A.D=2.8[/tex]
Josie rolls a six-sided die 18 times. What is the estimated number of times she rolls a two?
Answer:
3
Step-by-step explanation:
You have a 1 in 6 chance to roll a two. This means that every six times you roll a dice 1 of those should be a two (Obviously in the real world this wouldn't happen)
You roll the dice 18 TIMES and your chances are 1 in 6 so you take
[tex]18 \times \frac{1}{6} [/tex]
Answer:
the answer is 3
Find the axis of symmetry for this parabola:
y=-5x^2-10x-13
The axis of symmetry for the parabola [tex]y = -5x^2 - 10x - 13[/tex] is the line x = -1.
To find the axis of symmetry for the parabola given by the equation [tex]y = -5x^2 - 10x - 13[/tex], we need to use the formula x = -b/(2a), where a and b are the coefficients of x² and x respectively from the standard form of a quadratic equation [tex]ax^2 + bx + c.[/tex]
In this case, a is -5 and b is -10. Plugging these values into the formula, we get:
x = -(-10)/(2*(-5))
x = 10/(-10)
x = -1
Therefore, the axis of symmetry for the parabola y = -5x² - 10x - 13 is the line x = -1.
The measure of the space inside a 2d figure is called
Answer:
an area
Step-by-step explanation:
A two-dimensional (2D) figure is like drawing on a sheet of paper. It has some width and some length, but no height.
So, you cannot calculate its volume, since it has only 2 dimensions, a volume requires 3 dimensions.
The only spacial measure you can do on a two-dimensional figure is its area (basically length * width, if we talk about a rectangle, other forms have different calculation methods).
Answer:
A tree dimensional solid object bounded by six square faces
Polygon D is a scaled copy of Polygon C using a scale factor of 6. How many times larger is the area of Polygon D than the area Polygon C? i need answers FAST PLEASEEEEEEEEEEEE
I need a more detailed question, but I think the answer is 6.
Please help me out!! :)
Answer:
3.1 ft
Step-by-step explanation:
The segment from the centre of the circle to the chord is a perpendicular bisector.
Thus the third side of the right triangle is half of x
let the third side be a then x = 2a
Applying Pythagoras' identity to the right triangle with hypotenuse 2.1 then
a² + 1.4² = 2.1²
a² + 1.96 = 4.41 ( subtract 1.96 from both sides )
a² = 2.45 ( take the square root of both sides )
a = [tex]\sqrt{2.45}[/tex]
Hence x = 2 × [tex]\sqrt{2.45}[/tex] ≈ 3.1 ft
Eva and Dulcina have 82 pins together. Dulcina has 34 more pins than Eva. How many pins are in Dulcinas collection? How many pins are in Eva's collection?
Answer:
Eva has 24 pins
Step-by-step explanation:
D = 34 + E
E + D = 82
34 + E + E = 82
2E = 48
E = 24
D = 24 + 34
D = 58
Sure! Let's solve it step by step.
1. We know from the problem that Dulcina has 34 more pins than Eva does. This means that Dulcina's collection is Eva's collection plus 34 pins.
2. Together, Eva and Dulcina have a total of 82 pins. This means that if we add the number of pins in both collections, it should total 82.
3. If we represent the number of pins in Eva's collection as 'x', the above two steps could be represented in equation as: x + (x + 34) = 82.
4. Simplifying this equation gives us 2x + 34 = 82. To isolate the term with 'x', we subtract 34 from both sides of the equation, resulting in 2x = 48.
5. To find the value for 'x', which represents the number of pins in Eva's collection, we then divide both sides of the equation by 2, which gives us x = 24.
6. So, Eva has 24 pins in her collection.
7. Now, since Dulcina has 34 more pins than Eva, we add 34 to Eva's total to find the number of pins in Dulcina's collection. This gives us Dulcina's total as 24 + 34 = 58.
Therefore, Eva has 24 pins and Dulcina has 58 pins in their collections.
Find the probability of drawing a red ace, then a red king from a standard deck of cards without replacement.
a. 2/51 or about 0.0392
b. 4/663 or about 0.0060
c. 1/26 or about 0.0385
d. 1/663 or about 0.0015
The answer is d. 1/663 or about 0.0015
Answer:
(d): 0.0015
Step-by-step explanation:
Red ace: 1 chance in 52.
Red king, after that: 1 chance in 51
Joint probability: red ace and then red king, without replacement:
2 2
------ * ----- = 1/663, or about 0.0015 (Answer d)
52 51
There are 5 seniors on student council. Two of them will be chosen to go to an all-district meeting. How many ways are there to choose the students who will go to the meeting? Decide if this is a permutation or a combination, and then find the number of ways to choose the students who go
Answer:
combination, number of ways 10
Step-by-step explanation:
The surface area of a cone is 16.8pi inches^2. The radius is 3 inches. What is the slant height?
[tex]\bf \textit{surface area of a cone}\\\\ SA=\pi rs+\pi r^2~~ \begin{cases} r=&radius\\ s=&slant\\ &height\\ \cline{1-2} SA=&16.8\pi \\ r=&3 \end{cases}\implies 16.8\pi =\pi (3)s+\pi (3)^2 \\\\\\ 16.8\pi =3\pi s+9\pi\implies 16.8\pi -9\pi =3\pi s\implies 7.8\pi =3\pi s \\\\\\ \cfrac{7.8\pi }{3\pi }=s\implies 2.6=s[/tex]
Identify the area of sector GLM in terms of π and rounded to the nearest hundredth. HELP ASAP!!
Answer:
28.8π ft² ≅ 90.48 ft²
Explanation:
Use the formula area of a sector.
Answer:
≈ 28.8π ft2 ≈ 90.48 ft2
Step-by-step explanation:
A random selection of plants receiving two different types of treatments is measured for growth. The growth of the plants in each group is represented on the comparative box plot.
Two box-and-whisker plots. The first is titled, Treatment A, with left whisker 6, right whisker 11.25, left hand side of box 8, right hand side of box 9.5, and median 8.5. The second is titled, Treatment B, with left whisker 2, right whisker 7.5, left hand side of box 3.5, right hand side of box 6, and median 4.75.
What inference can be made from this sample data?
The range in growth for treatment B is much greater than the range in growth for treatment A.
Plants with treatment A in general grow more than plants with treatment B.
Both treatments have almost identical results in growth.
Plants with treatment B in general grow more than plants with treatment A.
Plant with treatment A in general grow more than plants with treatment B.
Picture below.
Answer:
Plants with treatment B in general grow more than plants with treatment A.Step-by-step explanation:Treatment A:
Least value or minimum value= 6
Maximum value= 11.25
First quartile or lower quartile i.e. [tex]Q_1[/tex]= 8
Middle quartile or Median i.e. [tex]Q_2[/tex]= 8.5
Upper quartile or third quartile i.e. [tex]Q_3[/tex]= 9.5
Range= Maximum value-Minimum value
= 11.25-6
= 5.25
Interquartile range ( IQR)= [tex]Q_3-Q_1[/tex]
= 9.5-8
= 1.5
Treatment B:
Least value or minimum value= 2
Maximum value= 7.5
First quartile or or lower quartile i.e. [tex]Q_1[/tex] = 3.5
Middle quartile or Median i.e. [tex]Q_2[/tex]= 4.75
Upper quartile or third quartile i.e. [tex]Q_3[/tex]= 6
Range= Maximum value-Minimum value
= 7.5-2
= 5.5
Interquartile range ( IQR)= [tex]Q_3-Q_1[/tex]
= 6-3.5
= 2.5
The range in growth for treatment B is not much greater than the range in growth for treatment A.
( since there is a very less difference in range
5.5-5.25=0.25)
Since, the IQR as well range of treatment B is greater than treatment A.
Hence, Plants with treatment B in general grow more than plants with treatment A.
This week Kyara worked x + 4 hours. She is paid x - 4 dollar per hour. Write a polynomial for the amount that Kyara earned this week . Then calculate her pay if x = 12.
Answer:
Polynomial equation is x² - 16
Her pay if x = 12 is $128
Step-by-step explanation:
This week, Kyara worked x + 4 hours
She is paid x - 4 dollars per hour
She earned (x + 4)(x - 4) = x² - 16 dollars this week
Her pay if x - 12 is;
12² - 16 = $128
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
What is the value of x?
The Answer:
C. x=-1/2
Answer: [tex]\bold{C)\quad -\dfrac{1}{2}}[/tex]
Step-by-step explanation:
[tex]\dfrac{x+2}{15}=\dfrac{x+1}{5}\\\\\\\underline{\text{Multiply both sides by the LCD (15) to eliminate the denominator:}}\\x+2=3(x+1)\\x+2=3x+3\\.\quad \ 2=2x+3\\.\quad -1=2x\\\\.\quad \large\boxed{-\dfrac{1}{2}=x}[/tex]
On equal intervals, the y-values of a quadratic function have a common _________
Answer:
second difference
Step-by-step explanation:
The differences of the y-values will differ by a common amount.
Example:
y = x^2 for x = 2, 4, 6, 8
y-values are 4, 16, 36, 64
differences of these are 12, 20, 28
differences of these differences are 8 and 8, a common value.
Answer:
For reference
Step-by-step explanation:
The point A is at –2 and the point B is at 7. Marissa would like to divide this line segment in a 4:3 ratio, and she would like to use the formula x = (x2 – x1) + x1.What values should she substitute into the formula?
Answer:
Step-by-step explanation:
Note that the distance, along a straight line, from A: -2 to B: 7 is 9 units.
This is found by subtracting -2 from 7, so x2 = 7 and x1 = -2.
Then x = (x2 – x1) + x1 becomes x = (7 - [-2] ) + [-2], or x = 7. This does not make sense.
If we ignore this x = (x2 – x1) + x1, and focus instead on finding the division point in this line segment:
4 + 3 = 7, so the longer part of this 9-unit distance will be (4/7)(9), or 36/7 units long, or 5 1/7 units long. The shorter part will be (3/7)(9), or 27/7 units long.
To check: determine whether the ratio 36/7 to 27/7 comes out to 4:3, as it must:
36 4*9
---- = --------- = 4/3. YES
27 3*9
Answer:
1). a = 4
2). a + b = 7
3). x1 = -2
4). x2 = 7
Step-by-step explanation:
I just did the assignment on Edge and it's 100% correct... Hope this helps!!
Also heart and rate if you found this answer helpful!!
What is the solution to the system of equations? y = –3x – 2 5x + 2y = 15 (–40, 19) (–19, 55) (19, –40) (55, –19)
Step-by-step Answer:
What is the solution to the system of equations?
y = –3x – 2 ..............(1)
5x + 2y = 15..............(2)
Substitute (1) in (2) to give
5x + 2(-3x-2) = 15
5x-6x-4 = 15
-x-4=15
solve for x:
-4-15 = x
x=-19
Now substitute x=-19 into equation (1)
y = -3x-2 = 57-2 = 55
Therefore the solution is (-19, 55)
The solution of system of equations are (-19, 55)
The given system of equations are,
[tex]y=-3x-2..........(1)\\\\5x+2y=15........(2)[/tex]
Substituting the value of y from equation 1 into equation 2.
[tex]5x+2(-3x-2)=15\\\\5x-6x-4=15\\\\x=-4-15=-19[/tex]
Substituting the value of x in equation 1
[tex]y=-3(-19)-2\\\\y=57-2=55[/tex]
Thus, the solution of system of equations are (-19, 55)
Learn more:
https://brainly.com/question/12526075
30 points to whoever can answer this please!
Complete the general form of the equation of a sinusoidal function having an amplitude of 6, a period of 2pi/3, and a phase shift to the left 1 unit.
Answer:
y=6sin3(x+1)
Step-by-step explanation: