Whats the temperature -15°F in degrees Celsius?

Answers

Answer 1

Answer:

-26.1111

Explanation:

Answer 2

Hello!

The formula for converting Fahrenheit to Celsius can be written as follows:

C = [tex]\frac{(F-32)(5)}{9}[/tex]

Now let’s insert the value provided for Fahrenheit:

C = [tex]\frac{((-15)-32)(5)}{9}[/tex]

Now simplify the numerator:

C = [tex]\frac{(-235)}{9}[/tex]

Now divide:

C = -26.111

We have now proven that -15 degrees Fahrenheit is equal to -26.111 degrees Celsius.

I hope this helps!


Related Questions

Jeff was riding in a car. Which change demonstrates the GREATEST effect of inertia?

Answers

Answer: The car makes a sudden stop.

Explanation:

Manuel is coasting on his bike. Because he is not pedaling, his bike will come to a stop. Which of these will cause Manuel's bike to stop? - the force of friction.

Hope this helps! enjoy your day.

The emission spectrum of an incandescent light bulb is continuous rather than discrete. This is true even through the filament is made of tungsten, an element. Why do you think this is

Answers

Answer:

This is the property of metals like W (Tungsten) to produce a continuous spectrum.

Explanation:

The molecules of a gas are highly differentiated and single atoms absorb photons instead of bulk like metals and only give line spectrum for example line spectrum given by hydrogen etc. On the other hand, metals like Tungsten gets very hot and emission of every possible wavelength of light is observed. This emission is continuous because the wavelengths of light in the spectrum has no breakages.

A satellite of mass M = 270kg is in circular orbit around the Earth at an altitude equal to the earth's mean radius (6370 km). At this distance, the free-fall acceleration is g/4.

(a) What is the satellite's orbital speed (m/s)?
(b) What is the period of revolution (min)?
(c) What is the gravitational force on the satellite (N) ?

Answers

To solve this problem we will apply the concepts related to Orbital Speed as a function of the universal gravitational constant, the mass of the planet and the orbital distance of the satellite. From finding the velocity it will be possible to calculate the period of the body and finally the gravitational force acting on the satellite.

PART A)

[tex]V_{orbital} = \sqrt{\frac{GM_E}{R}}[/tex]

Here,

M = Mass of Earth

R = Distance from center to the satellite

Replacing with our values we have,

[tex]V_{orbital} = \sqrt{\frac{(6.67*10^{-11})(5.972*10^{24})}{(6370*10^3)+(6370*10^3)}}[/tex]

[tex]V_{orbital} = 5591.62m/s[/tex]

[tex]V_{orbital} = 5.591*10^3m/s[/tex]

PART B) The period of satellite is given as,

[tex]T = 2\pi \sqrt{\frac{r^3}{Gm_E}}[/tex]

[tex]T = \frac{2\pi r}{V_{orbital}}[/tex]

[tex]T = \frac{2\pi (2*6370*10^3)}{5.591*10^3}[/tex]

[tex]T = 238.61min[/tex]

PART C) The gravitational force on the satellite is given by,

[tex]F = ma[/tex]

[tex]F = \frac{1}{4} mg[/tex]

[tex]F = \frac{270*9.8}{4}[/tex]

[tex]F = 661.5N[/tex]

(a) The orbital speed of the satellite is 5591.62 m/s.

(b) The period of revolution is 238.47 minutes.

(c) The gravitational force on satellite 661.5 N.

Orbital Motion

(a) The orbital velocity is given by;

[tex]v_{o}=\sqrt{\frac{GM}{r} }[/tex]

Here, 'M' is the mass of the earth and 'r' is the distance is from the centre of the earth to the satellite.

[tex]v_o = \sqrt{\frac{(6.67 \times 10^{-11})\times (5.972\times 10^{24})}{2\times 6370\times 10^{3}} } =5591.62\,m/s[/tex]

(b) The period of revolution is given by;

[tex]T=\frac{2\pi r}{V_o}=\frac{2\times 3.14\times 2\times 6370\times 10^3}{5591.62} =14308.411\,s = 238.47\,min[/tex]

(c) The gravitational force on the satellite is given by;

[tex]F_g = mg_s[/tex]

Where [tex]g_s[/tex] is the acceleration due to gravity at the satellite's height.

Given that, [tex]g_s = \frac{g}{4}[/tex]

[tex]F_g = \frac{270\times 9.8}{4} =661.5\,N[/tex]

Learn more about orbital motion here:

https://brainly.com/question/22247460

SPEAR is a storage ring at the Stanford Linear Accelerator which has a circulating beam of electrons that are moving at nearly the speed of light (2.998 108 m/s). If a similar ring is about 68.0 m in diameter and has a 0.37 A beam, how many electrons are in the beam

Answers

Answer:

The no. of electron in the beam = [tex]1.64\times10^{12}[/tex]

Explanation:

Given :

The diameter of circular ring = 68 m.

The current flowing in the beam = 0.37 A

Speed of light = [tex]3\times10^{8} ms^{-1}[/tex]

We know that the current is equal to the charge per unit time.

⇒    [tex]I = \frac{Q}{t}[/tex]

∴    [tex]Q=It[/tex]

Here given in the question, electron revolving in a circle with the diameter

[tex]d = 68[/tex]m

⇒ Time take to complete one round [tex](t) =[/tex] [tex]\frac{\pi d }{v}[/tex]

∴    [tex]Q = \frac{I\pi d }{v}[/tex]

     [tex]Q = \frac{0.37 \times 3.14 \times 68}{3 \times 10^{8} }[/tex]

     [tex]Q = 26.33 \times 10^{-8}[/tex]

Now, for finding the no. of electron we have to divide [tex]Q[/tex] to the charge of the electron  [tex]q = 1.6 \times 10^{-19}[/tex]

∴     [tex]n[/tex] =  [tex]\frac{26.33 \times 10^{-8} }{1.6 \times 10^{-19} }[/tex]

      [tex]n = 1.64 \times 10^{12}[/tex]

Thus, the no. of electron in the beam is [tex]1.64 \times 10^{12}[/tex].

Final answer:

To calculate the number of electrons in the beam, first determine the total charge passing a point in one second using the current, then divide by the charge of one electron. Using the given current of 0.37 A, this method reveals the total number of electrons in the beam.

Explanation:

To determine the number of electrons in a beam with a current of 0.37 A, the given data of the SPEAR storage ring can be used. First, recall that the charge of one electron is approximately ‑1.602 × 10⁻¹⁹ C (coulombs).

Current (I) is defined as the rate of charge (Q) flow through a given point, over time (t), expressed as I = Q/t. Therefore, the total charge in the beam can be calculated for one second as the product of the current and time.

To find the number of electrons (N), the total charge is divided by the charge of one electron, mathematically represented as N = Q / e. Substituting the given value of 0.37 A for I and using 1 second for t, the calculation would be N = (0.37 C/s) / (1.602 × 10⁻¹⁹ C/electron). This gives the total number of electrons circulating in the beam.

An ideal gas is compressed isothermally to one-third of its initial volume. The resulting pressure will be _____

(A) three times as large as the initial value.
(B) less than three times as large as the initial value.
(C) more than three times as large as the initial value.
(D) equal to the initial value.

Answers

Answer:

(A) three times as large as the initial value.

Explanation:

Boyle law states that the pressure is inversely proportional to volume if we kept the temperature constant.

[tex]P_{1} V_{1} = P_{2} V_{2}[/tex]        (1)

here [tex]P_{1}[/tex] and [tex]V_{1}[/tex] are the initial pressure and volume.

[tex]P_{2}[/tex] and [tex]V_{2}[/tex] are the final pressure and volume respectively.

now

[tex]P_{1} = p\\V_{1} = v\\P_{2} = ?\\V_{2} = \frac{v}{3}[/tex]

by putting these values in equation 1.

hence it is proved that " if the volume is decreased to one third of its original value then the pressure will be three times larger then its initial value".

A pilot can withstand an acceleration of up to 9g, which is about 88 m/s2, before blacking out. What is the acceleration experienced by a pilot flying in a circle of constant radius at a constant speed of 475 m / s if the radius of the circle is 1790 m

Answers

Answer:

a) centripetal acceleration= v^2/r

=475*475/3080=73.154 m/s^2

b) yes the pilot is okay because 73.154 m/s^2 is less than 9g.

Explanation:

Answer:

the acceleration experienced by a pilot flying in a circle is 126m/s²

Explanation:

Given that,

Speed of pilot, v = 475 m/s

Radius of the circle, r = 1790 m

If the pilot is moving in a circular path, it will experience a centripetal acceleration. It is given by the formula as :

The angular acceleration

a= ω²r

= v²/r.

Where v is tangential velocity and r is the radius.

a = v²/r.

[tex]a=\dfrac{v^2}{r}a=\dfrac{(475\ m/s)^2}{1790\ m}a=126\ m/s^2[/tex]

So, the acceleration experienced by a pilot flying in a circle is 126m/s²

During which month does the sun rise north of due east in New York State?
(1) February (3) October
(2) July (4) December

Answers

Answer:(2) July

Explanation:

We all know the sun rises in the east and sets in the west.

No matter where you are on Earth excluding the North and South Poles, you have a due east and due west point on your horizon. That point marks the intersection of your horizon with the celestial equator, the imaginary great circle above the true equator of the Earth.

This is to say that the sun rises close to due east and sets close to due west, for everyone at the equinox. The equinox sun is on the celestial equator. The celestial equator intersects your horizon at due east and due west irrespective of where you are on earth.

The sun rises due east and sets due west during the spring and fall equinoxes. Other times, the sun rises either north or south due east. There are slight changes in the rising and setting of the sun each day. At summer solstice, the sun rises far to the north east and set to the north west. Everyday, the sun rises a bit in furtherance to the south.

Therefore in Newyork state, during summer in July, the sun rise north of due east.

"The correct answer is (2) July.  To understand why the sun rises north of due east in New York State during the month of July, we need to consider the concept of the solar path and the tilt of the Earth's axis.

The Earth orbits the Sun with an axial tilt of approximately 23.5 degrees. This tilt is the reason we experience seasons. As the Earth orbits the Sun, the direction of sunrise and sunset changes throughout the year for any given location north or south of the tropics.

In the Northern Hemisphere, the sun rises exactly due east on two days of the year: the spring (vernal) equinox and the autumnal equinox. These occur around March 20th and September 22nd, respectively. On these days, the sunrise location is at its southernmost point along the horizon for the year.

After the spring equinox, the sunrise location begins to move northward along the horizon each day, reaching its northernmost point on the summer solstice, which occurs around June 21st. After the summer solstice, the sunrise location starts to move southward again, but it continues to rise north of due east until several weeks after the solstice.

For New York State, which is located in the Northern Hemisphere at a latitude of approximately 43 degrees north, the sun rises north of due east from late March until late September. July is well within this period, confirming that the sun rises north of due east during this month.

By contrast, in February, the sun is still moving northward towards the due east position, and by October, it has already passed its northernmost rising point and is moving back towards due east. In December, the sun rises well south of due east.

Therefore, the correct answer to the question is July, when the sun rises north of due east in New York State."

Two parallel plates have equal and opposite charges. When the space between the plates is evacuated, the electric field is E= 3.40×105 V/m . When the space is filled with dielectric, the electric field is E= 2.20×105 V/m . Part A What is the charge density on each surface of the dielectric?

Answers

Answer:

[tex]\sigma_i=1.06*10^{-6}C[/tex]

Explanation:

When the space is filled with dielectric, an induced opposite sign charge appears on each surface of the dielectric. This induced charge has a charge density related to the charge density on the electrodes as follows:

[tex]\sigma_i=\sigma(1-\frac{E}{E_0})[/tex]

Where E is the eletric field with dielectric and [tex]E_0[/tex] is the electric filed without it. Recall that [tex]\sigma[/tex] is given by:

[tex]\sigma=\epsilon_0E_0[/tex]

Replacing this and solving:

[tex]\sigma_i=\epsilon_0E_0(1-\frac{E}{E_0})\\\sigma_i=8.85*10^{-12}\frac{C^2}{N\cdot m^2}*3.40*10^5\frac{V}{m}*(1-\frac{2.20*10^5\frac{V}{m}}{3.40*10^5\frac{V}{m}})\\\sigma_i=1.06*10^{-6}C[/tex]

When the temperature of 2.35 m^3 of a liquid is increased by 48.5 degrees Celsius, it expands by 0.0920 m^3. What is its coefficient of volume expansion? PLEASE HELPPP MEEEEE

Answers

Coefficient of volume expansion is 8.1 ×10⁻⁴ C⁻¹.

Explanation:

The volume expansion of a liquid is given by ΔV,

ΔV = α V₀ ΔT

ΔT = change in temperature  = 48.5° C

α =  coefficient of volume expansion =?

V₀ = initial volume = 2.35 m³

We need to find α , by plugin the given values in the equation and by rearranging the equation as,

[tex]\alpha=\frac{\Delta \mathrm{V}}{\mathrm{V}_{0} \Delta \mathrm{T}}=\frac{0.0920}{2.35 \times 48.5}=0.00081[/tex]

  = 8.1 ×10⁻⁴ C⁻¹.

Answer:

8.1

Explanation:

If 4.00 ✕ 10−3 kg of gold is deposited on the negative electrode of an electrolytic cell in a period of 2.73 h, what is the current in the cell during that period? Assume the gold ions carry one elementary unit of positive charge.

Answers

Explanation:

Below is an attachment containing the solution.

Final answer:

To calculate the current, we first convert the mass of gold deposited to moles and then use the equivalence of one mole of gold requiring one faraday of charge. We calculate the total charge transferred and then find the average current by dividing this charge by the total time in seconds.

Explanation:

To find the current in the cell during the period when 4.00 × 10⁻³ kg of gold was deposited on the negative electrode, we need to calculate the total charge that resulted in the deposition of gold. First, we will convert the mass of gold to moles using the molar mass of gold, which is approximately 197 g/mol. Since gold ions carry one unit of positive charge, one mole of gold ions will require one faraday (96,485 C) to be reduced and deposited as gold metal.

After calculating the number of moles of gold, we can then determine the number of moles of electrons that moved through the cell using the equivalence of moles of electrons to moles of gold deposited. Multiplying this number by the charge per mole of electrons (1 faraday), we get the total charge moved. To find the current, we divide the total charge by the total time in seconds, and this gives us the average current over the 2.73 hours.

KATZPSEF1 30.P.041. My Notes Ask Your Teacher A charged particle enters a region of space with a uniform magnetic field B = 1.98 i T. At a particular instant in time, it has velocity v = (1.46 ✕ 106 i + 2.42 ✕ 106 j) m/s. Based on the observed acceleration, you determine that the force acting on the particle at this instant is F = 1.60 k N. What are the following?(a) the sign of the charged particle
(b) the magnitude of the charged particle

Answers

Answer: The charge on the particle is positive

While the magnitude = 0.00028C

Explanation:

Please find the attached file for the solution

Assuming that only air resistance and gravity act on a falling object, we can find that the velocity of the object, v, must obey the differential equation dv m mg bv dt   . Here, m is the mass of the object, g is the acceleration due to gravity, and b > 0 is a constant. Consider an object that has a mass of 100 kilograms and an initial velocity of 10 m/sec (that is, v(0) = 10). If we take g to be 9.8 m/sec2 and b to be 5 kg/sec, find a formula for the velocity of the object at time t. Further, find the terminal (or limiting) velocity of the object. Circle your velocity formula and the terminal velocity.

Answers

Answer:

v = 196 - 186*e^( - 0.05*t )      

v-terminal = 196 m/s

Explanation:

Given:

- The differential equation for falling object velocity v in gravity with air resistance is given by:

                                m*dv/dt = m*g - b*v

- The initial conditions and constants are as follows:

                 v(0) = 10 , m = 100 kg , b = 5 kg/s , g = 9.8 m/s^2  

Find:

- Find a formula for the velocity of the object at time t. Further, find the terminal (or limiting) velocity of the object. Circle your velocity formula and the terminal velocity.

Solution:

- Rewrite the differential equation in te form:

                                 dv/dt + (b/m)*v = g

- The integration factor function P(t) = b/m. The integrating factor u(t) is:

                                 u(t) = e^∫P(t).dt

                                 u(t) = e^∫(b/m).dt

                                 u(t) = e^[(b/m).t]

- Solve the differential equation after expressing in form:

                                 v.u(t) = ∫u(t).g.dt    

                                 v.e^[(b/m).t] = g*∫e^[(b/m).t].dt    

                                 v.e^[(b/m).t] = g*m*e^[(b/m).t] / b + C

                                  v = g*m/b + C*e^[-(b/m).t]                

- Apply the initial conditions v(0) = 10 m/s and evaluate C:

                                  10 = 9.8*100/5 + C*e^[-(b/m).0]

                                  10 = 9.8*100/5 + C

                                  C = -186

- The final ODE solution is:

                                  v = 196 - 186*e^( - 0.05*t )

- The Terminal velocity vt can be expressed by a limiting value for v(t), where t ->∞.        

                                  vt = Lim t ->∞ ( v(t) )

                                  vt = Lim t ->∞ ( 196 - 186*e^( - 0.05*t ) )

                                  vt = 196 - 0 = 196 m/s

Fish are hung on a spring scale to determine their mass (most fishermen feel no obligation to truthfully report the mass). (a) What is the force constant of the spring in such a scale if it the spring stretches 8.00 cm for a 10.0 kg load

Answers

Answer:

K= 1226.25 N/m

Explanation:

Given:  mass m = 10 kg, Distance x= 8 cm = 0.08 m, g= 9.81 m/s²

By Hook's Law

F=K x

F=W=mg = 10 kg x 9.8 m/s² = 98.1 N

to Find Spring constant k = F/x  = 98 N /0.08 m

K= 1226.25 N/m

a straight, 2.5-m wire carries a typical household current of 1.5 a (in one direction) at location where the earth's magnetic field i 0.55 gauss from south to north at a location where the earth's magnetic field is 0.55 gauss from south to north. find the magnitude and direction of the force that our planet's magnetic field exerts on this wire if it is oriented so that the current in it is running (a) from west to east, (b) vertically upward, (c) from north to south. (d) is the magnetic force ever large enough to cause significant effects under normal household current of 1.5 A

Answers

Answer:

a) When the current is from west to east and the magnetic field is from south to north the magnitude of the force is 2.1x10⁻⁴N and the direction is upwards.

b) The current is moving vertically upward, the magnitude of the force is 2.1x10⁻⁴N and the direction is west.

c) The force is 0 because the magnetic field and the direction of the current are in parallel.

d) No, the force is less.

Explanation:

Given:

L = length of the wire = 2.5 m

i = current in wire = 1.5 A

B = magnetic field = 0.55x10⁻⁴T

a) The magnitude of magnetic force is equal to:

[tex]F=BiL=0.55x10^{-5} *1.5*2.5=2.1x10^{-4} N[/tex]

b) The same way to a):

F = 2.1x10⁻⁴N

c) F = 0

The magnetic field and the direction of the current are in parallel.

d) The answer is no, the force is less

You throw a rock straight up from the edge of a cliff. It leaves your hand at time t = 0 moving at 13.0 m/s. Air resistance can be neglected. Find both times at which the rock is 4.00 m above where it left your hand. Enter your answers in ascending order separated by a comma. Express your answer in seconds.

Answers

Answer:

0.36s, 2.3s

Explanation:

Let gravitational acceleration g = 9.81 m/s2. And let the throwing point as the ground 0 for the upward motion. The equation of motion for the rock leaving your hand can be written as the following:

[tex]s = v_0t + gt^2/2[/tex]

where s = 4 m is the position at 4m above your hand. [tex]v_0 = 13 m/s[/tex] is the initial speed of the rock when it leaves your hand. g = -9.81m/s2 is the deceleration because it's in the downward direction. And t it the time(s) it take to get to 4m, which we are looking for

[tex]4 = 13t - 9.81t^2/2[/tex]

[tex]4.905 t^2 - 13t + 4 = 0[/tex]

[tex]t= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]

[tex]t= \frac{13\pm \sqrt{(-13)^2 - 4*(4.905)*(4)}}{2*(4.905)}[/tex]

[tex]t= \frac{13\pm9.51}{9.81}[/tex]

t = 2.3 or t = 0.36

Explanation:

Below is an attachment containing the solution.

The goal of this experiment is to investigate quantitatively how the magnetic force that a bar magnet and a current-carrying coil exert on each other depends on the distance between them.

Available equipment: Bar magnet, coil with connecting wires, power supply, digital balance, ring stand, clamp, meter stick, tape

Can you design an experiment with that info.

Answers

Answer:

Answer explained below

Explanation:

magnetic force of charged particle placed in uniform magnetic field is given by

F = iLB sin theta

where i is current

L is length

B = magnetic field

theta is the angle between L and B

so we can design an experiment with the given apparatus

as we have device for measuring length ( meter stick and scale)

magnitude of magnetic field from bar magnetic using magnetic moments principle

Finally from conducting wires and power, we can measure current i using Ammeter

A rectangular block of copper has sides of length 15 cm, 26 cm, and 43 cm. If the block is connected to a 5.0 V source across two of its opposite faces, find the following. (a) What is the maximum current the block can carry?

Answers

Answer:

the case is the one  with the greatest current, L=15 cm ,   i = 2.19 10⁸  A

Explanation:

Ohm's law is

          V = i R

Resistance is

         R = ρ L / A

Where L is the length of the electrons pass and A the area perpendicular to the current

      i = V / R

      i = V (A / ρ L)

      i = V / ρ  (A / L)

We can calculate the relationship between the area and the length to know in which direction the maximum currents

Case 1

      L = 0.15 m

      A = 0.26 0.43 = 0.1118 m2

      A / L = 0.1118 / 0.15

      A / L = 0.7453 m

Case 2

        L = 0.26 m

        A = 0.15 0.43 = 0.0645 m2

        A / L = 0.248 m

Case 3

       L = 0.43 m

       A = 0.15 0.26 = 0.039 m2

        A / L = 0.0907 m

We can see that the case is the one  with the greatest current, L=15 cm

Let's calculate the current

     i = 5 / 1.7 10⁻⁸ (0.7453)

      i = 2.19 10⁸  A

You testify as an expert witness in a case involving an accident in which car A slid into the rear of car B, which was stopped at a red light along a road headed down a hill. You find that the slope of the hill is θ= 12.0°, that the cars were separated by distance d = 24.0 m when the driver of car A put the car into a slide (it lacked any automatic anti-brake-lock system), and that the speed of car A at the onset of braking was Vo= 18.0 m/s.
With what speed did car A hit car B if the coefficient of kinetic friction was (a) 0.60 (dry road surface) and (b) 0.10 (road surface covered with wet leaves)?

Answers

Answer:

Explanation:

a Downward acceleration of car A along the slope

= g sinθ - μ g cosθ

= g ( sinθ - μ  cosθ)

= 9.8 ( sin 12 - .6 x cos 12 )

= 9.8 x ( .2079 - .5869 )

= - 3.714 m / s²

So there will be deceleration

v² = u² - 2 a s

= 18² - 2 x 3.714 x 24

= 324 - 178

= 146

v = 12 .08 m /s

b )

In the second case , kinetic friction changes

downward acceleration

= g ( sinθ - μ  cosθ)

= 9.8 ( sin12 - .1 x cos 12 )

9.8 ( .2079  -  .0978 )

= 1.079 m /s

there will be reduced acceleration

v² = u² - 2 a s

= 18² +2 x1.079 x 24

= 324 + 52

= 376

v = 19.4  m /s

Final answer:

The speed of car A hitting car B can be determined by applying the principles of conservation of mechanical energy and work-energy theorem with different coefficients of kinetic friction.

Explanation:

The speed of car A hitting car B can be calculated using the principle of conservation of mechanical energy along with the work-energy theorem.

For part (a) with a coefficient of kinetic friction of 0.60, the speed of car A hitting car B is approximately 6.57 m/s.

For part (b) with a coefficient of kinetic friction of 0.10, the speed of car A hitting car B is approximately 6.93 m/s.

A dielectric material is inserted between the charged plates of a parallel-plate capacitor. Do the following quantities increase, decrease, or remain the same as equilibrium is reestablished?


1. Charge on plates (plates remain connected to battery)
2. Electric potential energy (plates isolated from battery before inserting dielectric)
3.Capacitance (plates isolated from battery before inserting dielectric)
4. Voltage between plates (plates remain connected to battery)
5. Charge on plates (plates isolated from battery before inserting dielectric)
6. Capacitance (plates remain connected to battery)
7. Electric potential energy (plates remain connected to battery)
8. Voltage between plates (plates isolated from battery before inserting dielectric)

Answers

Answer:

1. increase

2. remain the same

3. increases

4. decreases

5. remain the same

6. increases

7. decreases

8. remain the same

Explanation:

a. the formula for the capacitance of a capacitor relating the capacitor and the dielectric material is express as

[tex]C=e_oA/d[/tex]........equation 1

also the capacitance and the charge is related as

Q=CV.......equation 2

from equation 1 as the dielectric material is introduced, the capacitance increases, the charge also increases

2. from the equation as the dielectric material is introduced, the capacitance increases, the electric potential also remain the same

3. from

[tex]C=e_oA/d[/tex]........equation 1

we conclude that the capacitance increases

4. the voltage between the plates decreases

5. the charge remain the same because capacitance is constant

6. the capacitance increases

7. the electric potential decreases

8. remain the same

Answer 1: the charge on the plates will increase

Explanation: placing a dielectric between two charged plate increases its capacitance

C = Q/V,

If the plates remain connected then the voltage remains the same.

Therefore for an increase in capacitance charge will increase.

Answer 2: electric field potential remains the same.

Explanation: if the plates are disconnected, charge on plates remains contant while voltage varies with change in distance, electric field intensity remains constant and this is proportional to the electric potential energy.

Answer 3: capacitance increases

Explanation: introducing a dielectric between two plates causes opposite charges to be induced on the faces of the dielectric. This also reduces the p.d across the capacitor.

Answer 4: voltage remains constant.

Explanation: A connected plate has a constant voltage across its field.

Answer 5: charge remains contant.

Explanation: capacitance will increase with introduction of dielectric, p.d across the plates will drop, the charge will remain constant.

Answer 6: capacitance increases

Explanation: placing a dielectric between plates always increase the capacitance.

Answer 7: electric potential energy falls.

Answer 8: voltage between plates decreases

The Doppler Effect. In hydrogen, the transition from level 2 to level 1 has a rest wavelength of 121.6 nm. Suppose you see this line at a wavelength of 120.5 nm in star A, at 121.2 nm in Star B, at 121.9 nm in Star C, and at 122.9 nm in Star D. Which stars are coming toward us? Which are moving away? Which star is moving fastest relative to us? What are the speeds of Star B and Star C?

Answers

Answer:

Which stars are coming toward us? Which are moving away?

The Star A and B are moving toward the observer and Star C and D away from the observer.

Which star is moving fastest relative to us?

Star A is moving fastest relative to us.

What are the speeds of Star B and Star C?

The speed of the star B is 986842m/s and the speed of star C is  740131m/s.

Explanation:

Which stars are coming toward us? Which are moving away?  

Spectral lines will be shifted to the blue part of the spectrum if the source of the observed light is moving  toward the observer, or to the red part of the spectrum when is moving away from the observer (that is known as the Doppler effect).

The wavelength at rest is 121.6 nm ([tex]\lambda_{0} = 121.6nm[/tex])

[tex]Redshift: \lambda_{measured}  >  \lambda_{0} [/tex]

[tex]Blueshift: \lambda_{measured}  <  \lambda_{0} [/tex]

Then, for this particular case it is gotten:

Star A: [tex]\lambda_{measured} = 120.5nm[/tex]

Star B: [tex]\lambda_{measured} = 121.2nm[/tex]

Star C: [tex]\lambda_{measured} = 121.9nm[/tex]

Star D: [tex]\lambda_{measured} = 122.9nm[/tex]

Star A:

[tex]Blueshift: 120.5nm  <  121.6nm [/tex]

Star B:

[tex]Blueshift: 121.2nm  <  121.6nm [/tex]

Star C:

[tex]Redshift: 121.9nm  >  121.6nm [/tex]

Star D:

[tex]Redshift: 122.9nm  >  121.6nm [/tex]

Therefore, according to the approach above. The Star A and B are moving toward the observer and Star C and D away from the observer.

Due to that shift the velocity of the star can be determined by means of Doppler velocity.

[tex]v = c\frac{\Delta \lambda}{\lambda_{0}}[/tex] (1)

Where [tex]\Delta \lambda[/tex] is the wavelength shift, [tex]\lambda_{0}[/tex] is the wavelength at rest, v is the velocity of the source and c is the speed of light.

[tex]v = c(\frac{\lambda_{measured}- \lambda_{0}}{\lambda_{0}})[/tex]

Which star is moving fastest relative to us?

Case for the Star A:

[tex]v = (3x10^{8}m/s)(\frac{121.6nm-120.5nm}{121.6nm})[/tex]

[tex]v = 2713815m/s[/tex]

Case for the Star B:

[tex]v = (3x10^{8}m/s)(\frac{121.6nm - 121.2nm}{121.6nm})[/tex]

[tex]v = 986842m/s[/tex]

Hence, Star A is moving fastest relative to us.

What are the speeds of Star B and Star C?

Case for the Star C:

[tex]v = (3x10^8m/s)(\frac{(121.9nm - 121.6nm}{121.6nm})[/tex]

[tex]v = 740131m/s[/tex]

Therefore, The speed of the star B is 986842m/s and the speed of star C is  740131m/s.

Final answer:

Stars with shift towards shorter wavelengths (Star A and B) are moving toward Earth, while those with shift towards longer wavelengths (Star C and D) are moving away, with Star D moving the fastest. The speeds of Star B and Star C can be calculated using the Doppler effect formula. Star A is blue-shifted the most, indicating it is moving towards us the fastest.

Explanation:

The Doppler Effect on Spectral Lines

The observed changes in the wavelength of spectral lines from hydrogen transitions can be explained by Doppler shift, which is the change in frequency or wavelength of a wave in relation to an observer who is moving relative to the wave source. Stars showing a shorter wavelength than the rest wavelength are moving towards us (blue-shifted), while those with a longer wavelength are moving away from us (red-shifted).

For star A with an observed wavelength of 120.5 nm, the shift is towards the blue, indicating it is moving towards us. Star B, with an observed wavelength of 121.2 nm, is also moving towards us but at a slower speed. Star C and Star D, having observed wavelengths of 121.9 nm and 122.9 nm respectively, display a red shift, meaning they are moving away from us. Among these stars, Star D is the one moving away the fastest.

To calculate the velocity of Star B and Star C with respect to Earth, we can use the Doppler effect formula for light:

[tex]v = c × (λ_{observed} - λ_{rest}) / λ_{rest}[/tex]

Where v is the velocity of the star, c is the speed of light, [tex]λ_{observed}[/tex] is the observed wavelength, and [tex]λ_{rest}[/tex] is the rest wavelength of the emission line. By plugging in the values and solving for v, we can determine the velocity for each star.

We would like to use the relation V(t)=I(t)R to find the voltage and current in the circuit as functions of time. To do so, we use the fact that current can be expressed in terms of the voltage. This will produce a differential equation relating the voltage V(t) to its derivative. Rewrite the right-hand side of this relation, replacing I(t) with an expression involving the time derivative of the voltage. Express your answer in terms of dV(t)/dt and quantities given in the problem introduction.

Answers

Answer:

Explanation:

The explanation or solution is given in the attach document

Final answer:

To find the voltage and current as functions of time in a circuit, replace current I(t) with C*dV(t)/dt, and substitute this into Ohm's law V(t)=I(t)R to obtain a differential equation V(t) = (C*dV(t)/dt)*R.

Explanation:

To rewrite the relation V(t)=I(t)R by replacing I(t) with an expression involving the time derivative of the voltage, first understand that the current I(t) is the rate of change of charge Q with respect to time, that is I(t) = dQ/dt. However, since Q is related to the voltage across a capacitor by the equation Q=CV(t), where C is the capacitance, the current can also be expressed in terms of the voltage as I(t) = C*(dV(t)/dt). Replacing this into the original equation gives us V(t) = (C * dV(t)/dt) * R, which is a first-order differential equation relating the voltage to its time derivative.

From the top of a cliff overlooking a lake, a person throws two stones. The two stones have identical initial speeds of v0 = 13.4 m/s and are thrown at an angle θ = 30.1°, one below the horizontal and one above the horizontal. What is the distance between the points where the stones strike the ground?

Answers

Answer:

X = 15.88 m

Explanation:

Given:

Initial Velocity V₀ = 13.4 m/s

θ = 30.1 °

g = 9.8 m/s²

To Find horizontal distance let "X" we have to time t first.

so from motion 2nd equation at Height h = 0

h = V₀y t + 1/2 (-g) t ²                                (ay = -g)

0 = 13.4 sin 30.1° t - 0.5 x 9.81 x t²           (V₀y = V₀ Sin θ)

⇒  t = 1.37 s

Now For Horizontal distance  X, ax =0m/s²

X = V₀x t + 1/2 (ax) t ²

X = 13.4 m × cos 30.1° x 1.37 s + 0

X = 15.88 m

Final answer:

To find the distance between the points where the stones strike the ground, analyze the motion of each stone separately and find the horizontal displacements.

Explanation:

To find the distance between the points where the stones strike the ground, we can analyze the motion of each stone separately. For the stone thrown below the horizontal, we can use the equations of motion in the x and y directions to find the time of flight and the horizontal displacement. For the stone thrown above the horizontal, we can use the same approach. Finally, we can subtract the two horizontal displacements to find the distance between the points where the stones strike the ground.

Learn more about Stones thrown from a cliff here:

https://brainly.com/question/35866733

#SPJ3

A mass is hanging on the end of a spring and oscillating up and down. There are three forces acting on the mass, the force of the spring, the force of gravity and the force of air resistance. Which of these forces can be associated with potential energy function? a. The spring force only. b. Gravity only. c. Air resistance only. d. The spring force and gravity. e. The spring force and air resistance. f. Gravity and air resistance. g. All three forces.

Answers

Answer:

d. The spring force and gravity.

Explanation:

The forces that can be associated with a potential energy function are only the conservative forces. These are the forces whose work done on an object by the force does not depend on the path taken, but only on the initial and final position of the object.

The only two conservative forces in this problem are:

- Gravity

- The spring force

While the air resistance is a non-conservative force.

The potential energy associated with the gravitational force is:

[tex]U=mgh[/tex]

where

m is the mass of the object

g is the acceleration due to gravity

h is the position of the object with respect to a reference level (e.g. the ground)

The potential energy associated to the spring force is

[tex]U=\frac{1}{2}kx^2[/tex]

where:

k is the spring constant

x is the elongation of the spring with respect to the equilibrium position

A motor has an armature resistance of 3.75 Ω . Part A If it draws 9.10 A when running at full speed and connected to a 120-V line, how large is the back emf?

Answers

Back emf is 85.9 V.

Explanation:

Given-

Resistance, R = 3.75Ω

Current, I = 9.1 A

Supply Voltage, V = 120 V

Back emf = ?

Assumption - There is no effects of inductance.

A motor will have a back emf that opposes the supply voltage, as the motor speeds up the back emf increases and has the effect that the difference between the supply voltage and the back emf is what causes the current to flow through the armature resistance.

So if 9.1 A flows through the resistance of 3.75Ω then by Ohms law,

The voltage across the resistance would be

v = I x R

  = 9.1 x 3.75

  = 34.125 volts

We know,

supply voltage = back emf + voltage across the resistance

By plugging in the values,

120 V = back emf + 34.125 V

Back emf = 120 - 34.125

                = 85.9 Volts

Therefore, back emf is 85.9 V.

In another experiment, the intensity of the incident light and the temperature of the metal are held constant. Assuming that the initial light incident on the metal surface causes electrons to be ejected from the metal, what happens if the frequency of the incident light is increased?

Answers

Answer:

Explanation:

Answer:

Explanation:

The intensity and the temperature of metal is constant so the number of photo electrons remains constant. As the number of photo electrons remains same so the photo electric remains constant.

As the frequency is increased, the kinetic energy of the photo electrons increases and thus, the speed of photo electrons increases.

When the frequency of the incident light is increased above a certain threshold, electrons will start being ejected from the metal's surface, with their maximum velocity increasing linearly with the frequency.

As the frequency of the incident light is increased beyond a certain threshold frequency, electrons will begin to be ejected from the surface of the metal. However, their kinetic energy will not increase proportionally with the frequency, rather the maximum velocity of the ejected electrons will increase linearly with the frequency of the incident light.

What is an ideal diode? a. The ideal diode acts as an open circuit for forward currents and as a short circuit with reverse voltage applied. b. The ideal diode acts as an open circuit regardless of forward voltage or reverse voltage applied. c. The ideal diode acts as a short circuit regardless of forward voltage or reverse voltage applied. d. The ideal diode acts as a short circuit for forward currents and as an open circuit with reverse voltage applie

Answers

Answer:

d.  The ideal diode acts as a short circuit for forward currents and as an open circuit with reverse voltage applied.

Explanation:

Ideal diode acts like an ideal conductor. In case of forward voltage it acts like an ideal conductor. However when it is reverse biased then it behaves like an ideal insulator. You can understand it bu considering a switch. When the voltage is forward then ideal diode acts like a closed switch. When the voltage is reverse biased then ideal diode behaves like an open switch.

        That is why we can say that the ideal diode acts as a short circuit (higher conduction) for forward currents and as an open circuit ( zero conduction) with reverse voltage applied.

a 1-kg discus is thrown with a velocity of 19 m/s at an angle of 35 degrees from the vertical direction. calculate the vertical and horizontal velocity components.

Answers

Answer:

Vx =  10.9 m/s ,  Vy = 15.6 m/s

Explanation:

Given velocity V= 19 m/s

the angle 35 ° is taken from Y-axis so the angle with x-axis will be 90°-35° = 55°

θ = 55°

to Find Vx = ? and Vy= ?

Vx = V cos θ

Vx = 19 m/s  × cos 55°

Vx =  10.9 m/s

Vx = V sin θ

Vy = 19 m/s  × sin 55°

Vy = 15.6 m/s

Answer:

15.56m/s and 10.90m/s respectively

Explanation:

The vertical and horizontal components of a given vector, say A, are given by

[tex]A_{Y}[/tex] = A sin θ                  ----------------(i)

[tex]A_{X}[/tex] = A cos θ                 ----------------(ii)

Where;

[tex]A_{Y}[/tex] is the vertical component of the vector A

[tex]A_{X}[/tex] is the horizontal component of the vector A

A is the magnitude of the vector A

θ is the angle the vector makes with the positive x-axis (horizontal direction).

Now, from the question;

The vector is the velocity of the 1-kg discus. Lets call it vector V

The magnitude of the velocity vector V = V = 19m/s

The angle that the vector makes with the positive x-axis = θ

To calculate θ;

Notice that the velocity vector makes an angle of 35° from the vertical direction rather than the horizontal direction.

Therefore, to get the horizontal direction of the velocity vector, we subtract 35° from 90° as follows;

θ = 90° - 35° = 55°

Now, the vertical and horizontal components of the velocity vector, V, are given by

[tex]V_{Y}[/tex] = V sin θ              --------------------(iii)

[tex]V_{X}[/tex] = V cos θ             ------------------------(iv)

Substitute all the necessary values into equations(iii) and (iv) as follows;

[tex]V_{Y}[/tex] = 19 sin 55° = 19m/s x 0.8192 = 15.56m/s

[tex]V_{X}[/tex] = 19 cos 55° = 19m/s x 0.5736 = 10.90m/s

Therefore, the vertical and horizontal velocity components are respectively 15.56m/s and 10.90m/s.

Steam enters a well-insulated turbine operating at steady state at 4 MPa with a specific enthalpy of 3015.4 kJ/kg and a velocity of 10 m/s. The steam expands to the turbine exit where the pressure is 0.07 MPa, specific enthalpy is 2400 kJ/kg, and the velocity is 90 m/s. The mass flow rate is 30 kg/s. Neglecting potential energy effects, determine the power developed by the turbine, in kW.

Answers

Answer:

power developed by the turbine = 18342 kW  

Explanation:

given data

pressure = 4 MPa

specific enthalpy h1 = 3015.4 kJ/kg

velocity v1 = 10 m/s

pressure = 0.07 MPa

specific enthalpy h2 =   2400 kJ/kg

velocity v2 = 90 m/s

mass flow rate = 30 kg/s

solution

first we apply here  thermodynamic equation that is express as energy equation is  

[tex]h1 + \frac{v1}{2} + q = h2 + \frac{v2}{2} + w[/tex]      .......................1

we know turbine is insulated so q is  0

put here value we get

[tex]3015.4 \times 1000 + \frac{10^2}{2} = 2400 \times 1000 + \frac{90^2}{2} + w[/tex]    

w =  611400 J/kg = 611.4 kJ/kg  

and  now we get power developed by the turbine W is

W = mass flow rate × w     ................2

put here value

W = 30 × 611.4

W = 18342 kW  

power developed by the turbine = 18342 kW  

Only a small amount of the energy used in an incandescent light bulb (regular bulbs commonly used in households) is actually converted into light. What happens to the rest of the energy

Answers

Answer:

It's converted into heat.

Explanation:

Most of the rest of the energy is converted into heat, as can be verified by touching an incandescent lamp that has been turned on for a while. This happens because the light itself is generated by heating the filament with an electric current (Joule heating) until it glows.

An avant-garde composer wants to use the Doppler effect in his new opera. As the soprano sings, he wants a large bat to fly toward her from the back of the stage. The bat will be outfitted with a microphone to pick up the singer's voice and a loudspeaker to rebroadcast the sound toward the audience. The composer wants the sound the audience hears from the bat to be, in musical terms, one half-step higher in frequency than the note they are hearing from the singer. Two notes a half-step apart have a frequency ratio of 2⁽¹/¹²⁾ = 1.059.
With what speed must the bat fly toward the singer?

Answers

Answer:

     v’= 9.74 m / s

Explanation:

The Doppler effect is due to the relative movement of the sound source and the receiver of the sound, in this case we must perform the exercise in two steps, the first to find the frequency that the bat hears and then the frequency that the audience hears that also It is sitting.

Frequency shift heard by the murciela, in case the source is still and the observer (bat) moves closer

        f₁ ’= f₀ (v + v₀)/v

         

Frequency shift emitted by the speaker in the bat, in this case the source is moving away from the observer (public sitting) that is at rest

         f₂’= f₁’ v/(v - vs)

           

Note that in this case the bat is observant in one case and emitter in the other, called its velocity v’

            v’= vo = vs

Let's replace

           f₂’= f₀   (v + v’)/v   v/(v -v ’)

           f₂’= f₀   (v + v’) / (v -v ’)

           (v –v’ ) f₂’ / f₀ = v + v ’

           v’ (1+ f₂’ /f₀) = v (f₂’/fo - 1)

           v’ (1 + 1.059) = 340 (1.059 - 1)

           v’= 20.06 / 2.059

           v’= 9.74 m / s

Other Questions
When fighting began in the Korean War in 1950, what major advantage did North Korea possess?North Korea had a huge number of troops.North Korea had the support of the United Nations.North Korea was led by Douglas MacArthur.North Korea was led by Syngman Rhee. the frequencies 10, 12, 23 and 45 Hz. (a) What is the minimum sampling rate required to avoid aliasing? (b) If you sample at 40 sps, which frequency components will be aliased? You have been asked to write a two-page report that explains the extent to which the IT department can configure the cryptographic features of Word 2010. What is the process involved in configuring encryption? From the perspective of the consumer, the factory system meant ________. Group of answer choices cheaper manufactured goods fewer choices in manufactured goods acute shortages of many manufactured items lower quality manufactured goods manufactured goods priced beyond the means of many consumers Why was the myth of Romulus and Remus important to the ancient Romans Which of the following would not be a basis for misrepresentation? a. These shrubs will survive in direct sunlight. b. This lawnmower has a safety turn-off switch. c. This soft water system will add five years to the life of your washing machine. d. All of the above are a basis for misrepresentation. Six is one hundred times ??????????? e the letters of the correct answers on the lines at left.1.it kinds of mixtures at school. Whilelan has been learning about different kinds of mixtures at sohe was helping prepare dinner for his family, he noticed that some othe food they were making were different kinds of mixtures. What kindof mixture was their dinner if they were having spaghetti and meatballsA. heterogeneousB. homogeneousC. soluteD. suspension Calculate the nth triangular number. A triangular number counts the objects that can form an equilateral triangle. The nth triangular number is the number of dots composing a triangle with n dots on a side, and is equal to the sum of the n natural numbers from 1 to n. Kawasaki Company incurred the following unit costs in manufacturing digital cameras: Direct Materials $14 Indirect Materials (variable) $4 Direct Labor $8 Indirect Labor (variable) $6 Other Variable Factory Overhead $10 Fixed Factory Overhead $28 Variable Selling Expenses $20 Fixed Selling Expenses $14 During the period, the company produced and sold 1,000 units. What is the inventory cost per unit using variable costing What is one of the primary reasons for the growth of trucking after World War II? a. Trucks became larger and faster b. Shippers liked the door to door service which trucks could provide c. The Interstate Highway System was constructed which allowed trucks to give faster service over longer distances. d. The railroads gave up on truck type freight and stopped seeking it. A paper clip will be suspended from a string inside a Styrofoam cup surrounded by aluminum foil. Predict what will happen to the paperclip when a charged rod is brought near the cup. Which image shows a reflection of triangle ABC over the x-axis?CLEAR CHECKMath item response imageMath item response imageMath item response image When an organization is able to get and stay ahead in the four areas of (1) being responsive to customers, (2) innovating, (3) quality, and (4) effectiveness, that company can develop You bike 5 miles the first day of your training, 5.4 miles the second day, 6.2 miles the third day, and 7.8 miles the fourth day. If you continue this pattern, how many miles do you bike the seventh day? PLEAE HELP QUICK!!determine the slope of a line perpendicular to the given. F(x)=5x-7 The Patriot Act requires that telecommunications carriers and manufacturers of telecommunications equipment modify and design their equipment, facilities, and services to ensure that they have built-in surveillance capabilities.1. True2. False There are numerous line coding techniques used today, with each technique having advantages and disadvantages regarding bandwidth efficiency, complexity, and timing. Which line coding technique represents logical data as electrical voltage transitions (i.e., high-to-low or low-to-high voltage transitions) in the middle of the clock pulse Jeff is in a relationship in which he has unrealistic expectations of how his girlfriend must act in order to be worthy of his love. He is unwilling to share his thoughts and feelings when she tries to discuss the situation with him. According to the Coreys, Jeff is most likely to be a person whose love is_____________. This graph shows a population of mice in an ecosystem in which mice are not allowed to enter or leave.Which statement best describes the population at point C?A.) its death rate is higher than its birthdate.B.) it is at its carrying capacity.C.) it is decreasing in size.D.) its growing rate is slowing down. Steam Workshop Downloader