Which substance can not be broken down by a chemical change?
a.ammonia
b.methanol
c.propane
d.phosphorus?

Answers

Answer 1
The substance that can not be broken down by a chemical change are phosphorus.

Related Questions

Describe the quantum model of an atom in terms of energy levels, sublevels, and orbitals. (Any atom is acceptable)

Answers

Quantum mechanic model is based on mathematics. As per this theory the exact position and momentum of electron is impossible to understand. It uses complex shapes of orbitals called electron clouds. n describes the energy of an electron. Larger the value of n larger the distance of electron from the nucleus and larger the orbital. l describles the shape of orbital. Orbitals having same of value of n and different values for l are called subshells.

Which of the following is not likely to appear on a map? A. Legend B. Compass rose C. Scale D. Latitude lines E. Horizon

Answers

Answer;

E. Horizon

Explanation;

A map is a symbolic representation of selected characteristics of a place or a given location. It present information about the world in a simple, visual way.

Several key features must be included on a map to aid the viewer in understanding the communication of a given map. They include;

Legend; it serves as the decoder for the symbology in the data frame.Scale; explains the relationship of the date frame compared to the real world.Tittle; It instantly gives the viewer a succinct description of the subject matter of the map.Compass rose or North arrowData frame, and Citation among others.

What happens to the reaction rate as the supply of toothpicks runs out?

Answers

For a reversible reaction:
At equilibrium, the rate of the forward reaction should be equal to the rate of the backwards reaction.

Increasing the amount of reactants would shift the equilibrium towards the formation of new products, so the rate of the forward reaction would increase until the equilibrium balance is reached again.
On the other hand, decreasing the amount of reactants would shift the equilibrium towards the formation of reactants, so the rate of the reverse reaction would increase until equilibrium is reached again.

Based on this, decreasing the supply of toothpicks (reactants) would shift the equilibrium towards the formation of reactants (towards the left) and the rate of the reverse reaction would increase until equilibrium is reached again.

If 1.00 mol of n2 has a volume of 47.0 l under the reaction conditions, how many liters of gas can be formed by heating 38.0 g of nan3? the reaction is: 2nan3→3n2(g)+2na

Answers

From the periodic table:
mass of sodium = 23 grams
mass of nitrogen = 14 grams
molar mass of NaN3 = 23 + 3(14) = 65 grams
molar mass of N2 = 2(14) = 28 grams

From the balanced chemical equation:
2 moles of NaN3 produces 3 moles of N2.
This means that 130 grams of NaN3 produces 84 grams of N2.
To know the amount of N2 produced from 38 grams of NaN3, we will just do a cross multiplication as follows:
amount produced = (38 x 84) / (130) = 24.55 grams

number of moles = mass/molar mass = 24.55 / 28 = 0.876 moles

one mole occupies 47 liters, therefore:
volume = 0.876 x 47 = 41.2153 liters

Breaking which type of bond would require the most energy?

Answers

It takes most energy to break a Covalent bond.

a european cheese making recipe calls for 2.50 kg of whole milk. An american wishes to make the recipe has only measuring cups, which are marked in cups. If the density of milk is l.03 g/cm^3 how many cups of milk does he need?

Answers

To determine the number of cups of milk, we first calculate for the volume of the milk needed. Then, we use a conversion factor for the volume from cubic centimeter to cups. From literature, 1 cubic centimeter is equal to 0.0042 cup. We do as follows:

Volume of milk = ( 2.50 kg ) ( 1000 g / 1 kg ) / 1.03 g /cm^3 = 2427.18 cm^3
cups of milk = 2427.18 cm^3 ( 0.0042 cup / 1 cm^3 ) = 10.19 cups

Are molecules with identical chemical formulas but different three-dimensional structures

Answers

Molecules are having the same chemical formula same number of atom but different three dimensional shapes are called isomer. Cis trans isomers maintain the same covalent partnerships,but atom may arranged differently.There are two or more compounds arranged in same molecular formula but different arranged atoms are seen in this molecule with different structure of it.

Final answer:

Isomers are molecules that have the same molecular formula but differ in their three-dimensional structures, leading to distinct chemical properties. Structural isomers have different placements of covalent bonds, while stereoisomers have different spatial arrangements while maintaining the same connectivity of atoms.

Explanation:

Molecules with identical chemical formulas but different three-dimensional structures are known as isomers. This phenomenon highlights that the three-dimensional placement of atoms and chemical bonds within organic molecules is central to understanding their chemistry. Structural isomers, such as butane and isobutane, have the same chemical formula, i.e., C₄H₁₀, but due to different placements of their atoms and bonds, they have distinct chemical properties.

For example, butane is commonly used as a fuel for lighters and torches, whereas isobutane finds use as a refrigerant and a propellant in spray cans. These differences illustrate that even with the same molecular formula, the arrangement of atoms in three-dimensional space can lead to compounds with diverse properties and uses. The concept of isomers extends to other types of isomerism as well, such as stereoisomers, where the connectivity of atoms remains the same but the spatial arrangement differs.

When the metallic element sodium combines with the nonmetallic element bromine, br2(l), what is the chemical formula of the product?

Answers

Final answer:

The chemical formula of the product when sodium combines with bromine is NaBr, forming an ionic compound with a 1:1 ratio of Na+ and Br- ions.

Explanation:

When the metallic element sodium (Na) combines with the nonmetallic element bromine (Br2), the chemical formula of the product is NaBr. Sodium and bromine react in a 1:1 ratio because sodium (Na) has an oxidation number of +1 and bromine (Br) has an oxidation number of -1 as a bromide ion (Br-). Consequently, the ionic compound that forms is composed of equal numbers of cations (Na+) and anions (Br-).

In similar reactions, such as when sodium (Na) combines with chlorine (Cl2) to form sodium chloride (NaCl), we used the diatomic nature of the halogens (Br2, Cl2) to balance the equation properly. It is also essential to remember that halogens like bromine exist as diatomic molecules. The balanced chemical equation for the reaction between sodium and bromine would be: 2Na (s) + Br2 (l) → 2NaBr (s).

Which of the following is a mixture?
a.) Mercury
b.) Alcohol
c.) Ink
d.) Water

Answers

Ink is a mixture. The rest are pure substances.
a glass of a water would be a mixture 

How would you determine the proper number of significant figures of a liquid using a graduated cylinder?

Answers

you use the lowest point and then you round it to your nearest guess. I hope I got ur question right

Bears and salmon have a predator - prey relationship . What would most likely happen to the bear population if the salmon population increase ?

Answers

The population would grow and live easier.
Hello! Some bears only rely on salmon as the other bears eat most of the other foods available. So, if the salmon increased then all of the bears would have something to eat which would allow the bear population to increase as well!

I hope this helped!

I am, yours most sincerely,
SuperHelperThingy

How to make half equations

Answers

In a chemical reaction equation.. There must be redox reaction taking palce.. So oxidation and reduction reactions will be happening on both sides of the equation.. You can separate the oxidation and reduction equations in halves. . So there will be one half oxidation equation and the other half reduction equation of the reaction.

To create half equations, balance the atoms and charges in each half-reaction, ensure they contain the same number of electrons, and then combine them to form the overall equation.

To make half equations, follow these steps:

Write each half-reaction that shows either oxidation or reduction.

Balance the atoms other than O and H in each half-reaction.

Balance oxygen atoms by adding H₂O, and hydrogen atoms by adding H+ ions.

Balance the charges by adding electrons.

Multiply each half-reaction by a factor chosen to make each of the resulting half-reactions contain the same number of electrons.

Combine the two half-reactions to get the overall equation, ensuring the electrons cancel.

An example of this process would be the combination of the iron half-reaction's coefficients being multiplied by 6 to equalize the number of electrons transferred in the reactions.

Nitrogen reacts with hydrogen to produce ammonia gas as follows.

mc023-1.jpg

How many moles of nitrogen would react with excess hydrogen to produce 520 mL of ammonia?
0.0116 mol
0.012 mol
0.0232 mol
0.024 mol

Answers

Final answer:

In the given reaction, 1 mole of nitrogen reacts with 3 moles of hydrogen to produce 2 moles of ammonia. Given a volume of 520 mL of ammonia, the number of moles of nitrogen required can be calculated using the ideal gas law. The correct answer is 0.0232 mol.

Explanation:

In the given reaction, 1 mole of nitrogen reacts with 3 moles of hydrogen to produce 2 moles of ammonia. From the information provided in the question, the volume of ammonia produced is 520 mL. To calculate the number of moles of nitrogen required, we can use the balanced equation:

1 mole N2 : 3 moles H2 : 2 moles NH3

Therefore, 520 mL of NH3 is equivalent to 520/1000 L = 0.52 L

Using the ideal gas law, we can calculate the number of moles of NH3:

moles = (volume in liters) / (molar volume)

moles = (0.52 L) / (22.4 L/mol) = 0.0232 mol

Therefore, the correct answer is 0.0232 mol.

The correct answer is 0.0116 mol of nitrogen would react with excess hydrogen to produce 520 mL of ammonia.

To solve this problem, we need to use the stoichiometry of the balanced chemical equation for the reaction between nitrogen [tex](N_2)[/tex] and hydrogen [tex](H_2)[/tex] to form ammonia [tex](NH_3)[/tex]. The balanced equation is:

[tex]\[ N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \][/tex]

From the ideal gas law, we know that:

[tex]\[ PV = nRT \][/tex]

where:

- [tex]\( P \)[/tex] is the pressure,

- [tex]\( V \)[/tex] is the volume,

- [tex]\( n \)[/tex] is the number of moles,

- [tex]\( R \)[/tex] is the ideal gas constant, and

- [tex]\( T \)[/tex] is the temperature in Kelvin.

We can rearrange the ideal gas law to solve for the number of moles [tex]\( n \)[/tex]:

[tex]\[ n = \frac{PV}{RT} \][/tex]

Given that the volume [tex]\( V \)[/tex] of ammonia is 520 mL (or 0.520 L), we need to convert this to liters for the calculation. The pressure [tex]\( P \)[/tex] and temperature [tex]\( T \)[/tex] are not given, so we assume standard temperature and pressure (STP) conditions, where [tex]\( P = 1 \) atm[/tex] and [tex]\( T = 273.15 \) K[/tex]. The value of [tex]\( R \)[/tex], the ideal gas constant, is 0.0821 L·atm/(mol·K).

First, let's calculate the number of moles of ammonia produced:

[tex]\[ n_{NH_3} = \frac{PV}{RT} \][/tex]

[tex]\[ n_{NH_3} = \frac{(1 \text{ atm})(0.520 \text{ L})}{(0.0821 \text{ L.atm/(mol.K)})(273.15 \text{ K})} \][/tex]

[tex]\[ n_{NH_3} = \frac{0.520}{22.41} \][/tex]

[tex]\[ n_{NH_3} \approx 0.0232 \text{ mol} \][/tex]

Now, using the stoichiometry of the balanced equation, we know that 2 moles of [tex]NH_3[/tex] are produced from 1 mole of [tex]N_2[/tex]. Therefore, to find the moles of [tex]N_2[/tex] that reacted, we divide the moles of [tex]NH_3[/tex] by 2:

[tex]\[ n_{N_2} = \frac{n_{NH_3}}{2} \][/tex]

[tex]\[ n_{N_2} = \frac{0.0232 \text{ mol}}{2} \][/tex]

[tex]\[ n_{N_2} = 0.0116 \text{ mol} \][/tex]

Thus, 0.0116 mol of nitrogen would react with excess hydrogen to produce 520 mL of ammonia under STP conditions. This matches option (a) 0.0116 mol.

Hearing protection is required if the noise level at any point in the workday reaches 115 dB and lasts longer than ____________ .

Answers

In general, the louder the noise, the smaller the exposure time before hearing protection is required. For most people, contact to a noise level of 90dB for an eight-hour workday is the determined allowable before hearing protection is required. When you’re exposed to work-related noise at or above 85 dB averaged over eight hours, employers are obligatory to start a hearing conservation program. Though, if the noise level at any point in the workday extents to 115 dB and lasts longer than 15 minutes, hearing protection will be required.

. Never start a job without knowing the ___________ and ______________ of the chemicals you are working with.

Answers

location,types that is your answer for this one hope i helped

Answer:

Explanation:

the blanks will be properties and hazard

       Working on chemicals can be a dangerous job so before working on chemicals we should have all the knowledge of the chemicals properties.

         And also while working on the chemical you should also have the knowledge of the hazard caused by the chemicals.

Name some advantages and disadvantages of separating oxygen isotopes by gaseous diffusion of carbon dioxide instead of carbon monoxide

Answers

 Advantage: CO2 isn't as toxic as CO. Disadvantages: Can get a mixture of oxygen isotopes in CO2, so some species would effuse at about the same rate." But I'm jumping into AP Chem with no prior knowledge so I don't understand anything.

Separating oxygen isotopes by gaseous diffusion using CO₂ instead of CO has advantages such as larger molecular size, stability, and environmental benefits due to scCO₂ technology. Disadvantages include difficulty in analyzing polar solutes and varying diffusion rates. Additionally, diffusion constants and molecular affinity and binding must be considered for efficiency.

The advantages and disadvantages of separating oxygen isotopes by gaseous diffusion of carbon dioxide (CO₂) instead of carbon monoxide (CO) can be analyzed in the context of their physical properties, reaction kinetics, and safety considerations. Separating isotopes by gaseous diffusion involves the movement of gaseous molecules through a membrane or series of membranes that selectively allow lighter isotopes to pass through more quickly than heavier ones.

Advantages of using CO₂ for isotope separation include its relatively larger molecular size compared to CO, which may result in more efficient separation due to kinetic isotope effects. Additionally, CO₂ is a more stable molecule, reducing the risk of accidental releases of toxic gases and enhancing operational safety. The availability of supercritical carbon dioxide (scCO₂) technology provides an effective route for separation without producing hazardous solvents, beneficial for the environment and applications in pharmaceutical, food, and cosmetic industries.

Disadvantages of using CO₂ for this process include potential issues with analyzing highly polar solutes due to the nonpolar nature of CO₂ as a mobile phase. Additionally, the gaseous diffusion rate for CO₂ may vary from that of CO, which can affect separation efficiency. In cases of chemical reactions such as the reaction of CO with oxygen to form CO₂, the activated complexes have only been observed spectroscopically, indicating that this gas-phase reaction is incredibly rapid, and separating intermediates might be difficult.

When choosing between CO and CO₂ for gaseous diffusion, one should also consider the diffusion constants, which increase with temperature due to increased molecular speed, affecting the overall efficacy of the separation process. Furthermore, the affinities and binding sites of CO₂ and O₂ need to be considered, as different gases can have different electrostatic potentials influencing their diffusion rates.

If an atom of hydrogen loses its electron, what is its charge?

A. -1
B. 0
C. +2
D. +1

(I know it's not the first two, I'm just confused because hydrogen has one proton and one electron but has a charge of +1)

Answers

Since it is specifically stated that the hydrogen is an atom and not an ion, therefore it is written simple as H (not H+). So since an atom of Hydrogen (H) has one proton and one electron and it loses its electron, therefore it is left with one proton, therefore now it becomes an ion of H+.

So answer is its charge is +1.

 

Answer:

D. +1

answer      +1

explanation

Two glucose molecules are bonded together through a dehydration reaction to form a disaccharide called maltose. the molecular formula of glucose is c6h12o6. what is the molecular formula of maltose?

Answers

C12H22O11. If it is a dehydration reaction, there is a union of the two monosaccharides and a water molecule is lost. So double the C6H12O6, and remove an H2O, so C12H24O12 - H2O would yield C12H22O11.

The deflection of alpha particles in Rutherford’s gold foil experiments resulted in what change to the atomic model?

Answers

Hello.

This experiment proved that atoms are not massive, they have large blanks inside the structure. Therefore, models like Thomsom's and Dalton's weren't good enough to describe the comportment of these units. A model of an atom like a planetary system was elaborated after this. 

Rutherford performed the gold foil experiment and the observation was as follows:

Most of the alpha particles passed undeflected through the atom proving that most of the atom is empty space.   A certain fraction of alpha particles deflected by 90 degrees that indicated the center of the atom is positive.  Another small fraction of alpha particles deflected by more than 90 degrees that indicated that most of the atom's mass lies in a small volume at the center of the atom.  

How can we see all four colors from a hydrogen gas discharge tube simultaneously?

Answers

Final answer:

We can see all four colors from a hydrogen gas discharge tube simultaneously by passing the light through a prism or diffraction grating, separating the light into its constituent wavelengths. These wavelengths result from the process of electrons cascading down through the different energy levels of the hydrogen atoms, emitting energy as light. This process, known as fluorescence, allows us to view the four colors simultaneously.

Explanation:

To see all four colors from a hydrogen gas discharge tube simultaneously, one must understand the concept of emission lines and how a tube of hydrogen gas generates light. When an electric discharge passes through the tube, the H₂ molecules are separated into individual H atoms and light is emitted. This light is typically blue-pink in color due to the individual wavelengths of light, or photons, released.

A helpful illustration of this can be gained by passing the gas's light through a prism or diffraction grating, producing a line spectrum. This process separates the light into its constituent wavelengths, yielding four distinct colors that can be perceived simultaneously. Each emission line represents a different color because each line corresponds to a single wavelength of light, with each wavelength correlating to a specific energy level.

These wavelengths are a result of the electrons captured by the hydrogen nuclei cascading down through the different energy levels and emitting energy in the form of light. This is a process known as fluorescence, and it allows us to view the four colors from a hydrogen gas discharge tube at the same time.

Learn more about Emission Lines here:

https://brainly.com/question/33462089

#SPJ12

Final answer:

The four colors in a hydrogen gas discharge tube can be seen simultaneously when the light emitted by charged H atoms is passed through a prism or diffraction grating. These colors are a result of electrons transitioning between different energy levels within the hydrogen atom, each transition emitting photons of a specific wavelength and hence a specific color.

Explanation:

To see all four colors from a hydrogen gas discharge tube simultaneously, we utilize a phenomenon known as the emission spectrum. When an electric discharge passes through a tube containing hydrogen gas at low pressure, the H₂ molecules are broken apart into separate H atoms. This action produces light, a blue-pink color that is a combination of photons of four visible wavelengths. This light, when passed through a diffraction grating or a prism, separates into its constituent wavelengths, each representing a specific color.

The emission lines are a result of electrons in the hydrogen atoms moving between different energy levels. When electrons move from a higher energy level to a lower one, they emit energy in the form of photons, the discrete packets of light. The frequency and color of the light emitted depend on the energy difference between the two levels. For instance, the red hydrogen line is from the transition that releases the most energy.

The emission spectrum of hydrogen, notably, consists of lines of four distinct colors: red, blue, violet, and a second, fainter red. The presence of these four different emission lines corresponds to the four unique transitions that the electrons in a hydrogen atom can undergo. Therefore, when you look at the hydrogen gas discharge tube, you are actually seeing the combined light from millions of these transitions occurring simultaneously.

Learn more about Spectral Lines here:

https://brainly.com/question/27494244

#SPJ12

Heat energy that is transmitted primarily through solids is called _____.

Answers

Heat energy that is transmited primarilly through solids is called conduction. 
Heat energy transmitted through an solid is _Conduction_

hope this helps

Which of these best describes an ionic bond? a force that keeps two large molecules together an attraction that occurs between two nonmetals a force that holds two oppositely charged ions together an electromagnetic attraction that occurs between two metals

Answers

The elements combine with other elements in order to complete their octet and attain stability. The combination can take place either by transfer of electrons or by sharing of electrons. The sharing of electrons results in formation of covalent bond whereas transfer of electrons results in the formation of ionic bonds. The loss of electrons will result in the formation of cation whereas the gain of electrons results in formation of anion. The two oppositely charged ions are held together by electrostatic force of attraction between them.

Hence, an ionic is a force that holds two oppositely charged ions together.

An ionic bond is a force that holds two oppositely charged ions together, typically formed between a metal and a nonmetal.

It involves the transfer of electrons, resulting in cations and anions held by electrostatic attraction. A common example is sodium chloride (NaCl).

An ionic bond is best described as the force that holds two oppositely charged ions together. This type of chemical bond occurs when one atom, typically a metal, donates one or more electrons to another atom, typically a nonmetal, forming a cation (positive ion) and an anion (negative ion). The electrostatic attraction between these oppositely charged ions creates the ionic bond. A classic example is the formation of sodium chloride (NaCl), where sodium (Na) donates an electron to chlorine (Cl), resulting in a strong ionic bond that holds the two ions together.

Assuming that the solute consists entirely of nacl (over 90% is), calculate the osmotic pressure of seawater at 20∘c.

Answers

Final answer:

The osmotic pressure of seawater at 20∘C can be calculated using the formula II = MRT, assuming the solute is NaCl. By converting the osmotic pressure to atmospheres and determining the molar concentration, the osmotic pressure can be calculated.

Explanation:

The osmotic pressure of seawater at 20∘C can be calculated using the formula for osmotic pressure, II = MRT, where T is the temperature in Kelvin and R is the gas constant. Assuming the solute consists entirely of NaCl, the molar concentration can be determined using the given information. By converting the osmotic pressure to atmospheres, we can find the molar concentration and calculate the osmotic pressure of seawater at 20∘C.

Learn more about Osmotic pressure here:

https://brainly.com/question/37985044

#SPJ11

An atom of magnesium has lost two electrons. it is known as a(n) ________. an atom of magnesium has lost two electrons. it is known as a(n) ________. cation molecule anion neutral atom isotope

Answers

Answer: Option (a) is the correct answer.

Explanation:

Atomic number of magnesium is 12 and electrons are distributed in its shell as 2, 8, 2. So, in order to attain stability magnesium easily loses two electrons.

Therefore, there will be decrease in number of electrons as a result, a positive charge will occur and thus, a cation will be formed.

Thus, we can conclude that an atom of magnesium has lost two electrons. It is known as a cation.

Final answer:

In Chemistry, a neutral atom becoming a cation by losing electrons is explained. Metals like magnesium form cations by losing electrons based on the periodic table. Predicting the formation of cations using the periodic table is highlighted.

Explanation:

Cation: When an atom loses electrons, it becomes positively charged and is called a cation. For example, a magnesium atom that loses two electrons forms a Mg2+ cation as it aims to achieve the electron configuration of a noble gas.

Metal Ions: Metals tend to form cations by losing electrons. A metal like magnesium in group 2 loses two electrons to form a 2+ cation, and the resulting ion is named after the metal itself, like Mg2+ as a magnesium ion.

Periodic Table: The periodic table guides us in predicting whether an atom will form an anion or cation. Main-group metals lose electrons to achieve noble gas configurations, leading to the formation of cations with predictable charges.

5. 48 dm3 of a gas has a mass of 262 grams. How many moles is this? What is the Mr? What must this element be?

Answers

Final answer:

The number of moles of gas is 2.14 moles and the molar mass (Mr) is approximately 122.43 g/mol. Based on the molar mass, the gas could be diatomic sulfur (S₂) or another substance with a similar molar mass.

Explanation:

To determine the number of moles of a gas from a given mass and volume, we use the ideal gas law and the concept of molar mass. When we are given that 48 dm³ of a gas has a mass of 262 grams, we can first convert the volume to liters since standard molar volume is commonly used in these units.

Since 1 dm³ equals 1 L, the volume of the gas is 48 L. At standard temperature and pressure (STP), 1 mole of an ideal gas occupies 22.4 L. Therefore, to find the number of moles, we divide the volume of gas by the molar volume at STP:

Number of moles (n) = Volume of the gas at STP / Molar volume at STP

= 48 L / 22.4 L/mol

= 2.14 moles.

To find the molar mass (Mr), we use the mass of the gas divided by the moles of the gas:

Mr = Mass / Moles

= 262 g / 2.14 mol

= 122.43 g/mol.

Based on the molar mass, the element could be Sulfur (S), which has an approximate molar mass of 32.07 g/mol when formed as a diatomic molecule (S₂), or another substance with a molar mass around 122.43 g/mol.

Which molecule is usually comprised of six carbons in a ring (with six sides)?

Answers

The hydrocarbon is usually named using the prefix that would indicate or entail how many carbon are present in it. For six carbons, the name would begin with hexa-. For cyclic molecule, the name would begin further with cyclo-. Thus, for the molecule that is described above, the name would be, cyclohexane. 

Another, more well-known, component is the cyclic molecule with alternating double bonds, this will be named, benzene. 

The mass of 0.3253 mol of a compound with the formula mbr4, in which m is a metallic element, is 171.4 g. what is the identity of the metal

Answers

Lead (Pb) Let's figure out how many moles of the unknown element there is and what it's atomic weight is. We have 0.3253 mol of mBr4 which has a mass of 171.4 g. Since there's 4 bromine atoms per molecule, that means we have 4 * 0.3253 = 1.3012 moles of bromine. The atomic weight of bromine is 79.904, so 1.3012 mol * 79.904 g/mol = 103.9711 g So now subtract the known mass of bromine from the mass of the unknown substance. 171.4g - 103.9711g = 67.42892 g Now divide that by the number of moles we have of that metal to determine its atomic weight 67.42892 g / 0.3253 mol = 207.2822 g/mol Now look at the periodic table to see if there's any metals with an atomic weight close to 207.2822 g/mol The closest match is for Lead (Pb) with an atomic weight of 207.2. Additionally, it's in the same column as Carbon so Lead has 4 valance electrons. And Bromine wants to grab one electron so you'd expect lead to combine with 4 bromine atoms. Which this compound does. So the evidence indicates that the unknown metal is Lead.

If the heaviest isotope is more abundant and the other two isotopes were kess abundant what would happene to the atomic weight of beanium

Answers

Final answer:

The atomic weight of an element is a weighted average of the masses of its isotopes, each multiplied by its relative abundance. Therefore, if the heaviest isotope is the most abundant, it largely influences the average atomic weight, increasing it.

Explanation:

The atomic weight of an element, like beanium, is determined by the relative abundance and the mass of its isotopes. If the heaviest isotope of beanium is more abundant, it would increase the average atomic weight of beanium. This is because the atomic weight is calculated as the average of the masses of its isotopes, each multiplied by the relative abundance of that isotope.

For example, if beanium has isotopes A, B and C with the respective masses of 10, 20 and 30 units, and their relative abundances are 10%, 20% and 70%, the atomic weight of beanium will be (10*0.10) + (20*0.20) + (30*0.70) = 27 units.

Therefore, if the heaviest isotope ('C' in this example) is the most abundant, it makes the biggest contribution to the atomic weight of the element, increasing the average atomic weight.

Learn more about Atomic Weight here:

https://brainly.com/question/36410206

#SPJ12

Final answer:

If the heaviest isotope is more abundant and the other two isotopes are less abundant, the atomic weight of Beanium would increase.

Explanation:

The atomic weight of an element is determined by the relative abundance and atomic masses of its isotopes. If the heaviest isotope is more abundant and the other two isotopes are less abundant, the atomic weight of the element would increase.

For example, let's consider an element called Beanium with three isotopes: A, B, and C. If isotope A has a higher atomic mass and is more abundant than isotopes B and C, then the atomic weight of Beanium would increase due to the contribution of isotope A.

It's important to note that the atomic weight of an element is an average value that takes into account all the isotopes and their relative abundance.

Learn more about Atomic weight here:

https://brainly.com/question/36410206

#SPJ11

your friend just challenged you to a race. you know in order to beat him, you must run 15 meters within 20 seconds in a northern direction. what does your average velocity need to be to win the race? (2 points) .5 meters per second, north .75 meters per second, north 1.3 meters per second, north 300 meters per second, north

Answers

velocity can be calculated using the following rule:
velocity =distance/time
now, the distance is given 15 meters and the time is 20 seconds.
so, just directly sibstitute in the equation to get the velocity as follows:
velocity = 15/20 = 0.75 m/sec

The right choice is 0.75 m/sec north.
Hi there,

the answer is 0.75 m/sec north.

Hope this helps :)

A substance containing atoms of two or more different elements chemically bonded together is called what

Answers

I believe the answer is cheamical.

Hope this helps
Other Questions
How does the volume occupied by a cubic centimeter compare with the volume occupied by a millimeter 3.company pays a greater annual salary? Show your Company A offers a semimonthly salary of $2432, and Company B offers a biweekly salary of $2390. Which work. What is the role of majority rule? Please help asap :( Which choice is a respectful way to express a differing opinion in group situations?A.I hate it when you say that!B.I disagree. Let me explain.C.I disagree. Keep your opinion to yourself.D.You do not belong in this group. What two lands are listed as being captured by egypt during the middle kingdom? In a nucleotide, we find which other biomolecule(s) making up a piece of the nucleotide itself? How does personal responsibility play a role in the financial planning process? A hypothesis is a lucky guess? True or false Is the given point interior, exterior, or on the circle (x + 2)2 + (y - 3)2 = 81? Q(6,3) Evaluate how technology impacts society in a positive and negative way at the same time. The expenditure approach to measuring gdp sums together ______, and the largest component is ______. 2.Not everyone was delighted by the art and ideas of the Renaissance. Some people merely resisted the new ideas; others were outraged by them. Describe one of the great controversies of the era. (Who was outraged and why?) Algebra 1: Consecutive Integers If the sum of the first two consecutive even integers is equal to three times the third what are the three integers Pls help Simplify 6m+ 7n+ 5m - 3n he earns $7 a week for each cat he feeds and $0.20for each email he answers. Marcus answered 140 emails and earned $49 last week. create an equation that will determine the number of cats he fed What is the minimum quality of fruits that should be eaten daily A frozen yogurt machine is usually cleaned by a method called Where in the colonies did the british military concentrate their attacks? Who is the speaker in black snake black snake In which sentence is the plural possessive of painter formed correctly? A. We had to walk around those painters ladders. B. We had to walk around those painters's ladders. C. We had to walk around those painters' ladders. D. We had to walk around those painter's ladders. Steam Workshop Downloader