In a collision, the __________ collision is when an unsecured driver strikes the inside of the vehicle.

Answers

Answer 1
In a collision, the second collision is when an unsecured driver strikes the inside of the vehicle. It is a collision that happens between an occupant of a vehicle and the vehicle he is riding during the impact. The first collision would be the collision of the vehicle and the other object.
Answer 2

Answer:

In a collision, the SECOND collision is when an unsecured driver strikes the inside of the vehicle.

Explanation:

When driver in the car is unsecured then it means that the driver is not having his safety seat belt.

Now when collision occurs between the car and some other object then due to the property of inertia of driver it has tendency to move in the direction of his motion.

So the driver will continue his motion and collide with other parts of the car and due to this he may got injured.

So in any car collision there are two types of collision

first is the collision of car with other objects

second collision is between car and the driver inside the car


Related Questions

The main purpose of a service panel in a house is to A. keep the meter working correctly. B. connect the service drop to the house. C. provide automatic circuit protection and prevent fires. D. keep electrical hazards localized.

Answers

I think the best answer would be the last option. The main purpose of a service panel in a house is to keep electrical hazards localized. Service panels are used to identify circuit loads and isolate these loads so when  you want to check the equipment you can easily identify the line. Also, it would serve as the isolation point to avoid any electrical hazards.

keep electrical hazards localized

A force of 110 N is applied horizontally to the handles of a lawnmower to move it at a speed of 0.80 m/s across a lawn. Find the power used to mow the lawn.

Answers

Final answer:

The power used to mow the lawn, with a force of 110 N applied to move the lawnmower at 0.80 m/s, is calculated using the formula P = F × v and results in 88 Watts.

Explanation:

To calculate the power used to mow the lawn, we use the formula for power, which is the rate of doing work. Power (P) is equal to the work done (W) divided by the time taken (t), or P = W/t. In this case, work done can also be described as the force applied (F) times the distance moved (d) in the direction of the force, but since the problem doesn't provide the distance and only provides the speed at which the lawnmower is moving, we can use another formula for power: P = F × v where v is velocity.

Given that the force (F) is 110 N and the velocity (v) is 0.80 m/s, we can find the power with P = 110 N × 0.80 m/s giving us:

P = 88 Watts.

This is the power used by the person to mow the lawn while applying a constant horizontal force to move the lawnmower at a constant speed.

An object floats on water with 80% of its volume below the surface. the same object when placed in another liquid floats on that liquid with 72% of its volume below the surface. determine the density of the unknown fluid.

Answers

0.9g/cm cubed, this is my full answer however i have to write at least 20 characters so this is filler :)

A squirrel has x-and y-coordinates (1.1 m, 3.4 m) at time t1= 0 and coordinates (5.3 m, -0.5 m) at time t2= 3.0 s. for this time interval, find (a)the components of the average velocity

Answers

In position #1, at time t₁ = 0, the coordinates are (1.1 m, 3.4 m).
That is,
x₁ = 1.1 m, y₁ = 3.4 m.

In position #2, at time t₂ = 3.0 s, the coordinates are (5.3 m, -0.5 m).
That is,
x₂ = 5.3 m, y₂ = -0.5 m.

The x-component of the average velocity is
Vx = (x₂ - x₁)/(t₂ - t₁)
     = (5.3 - 1.1 m)/(3 - 0 s)
     = 1.4 m/s

Similarly, the y-component of the average velocity is
Vy = (-0.5 - 3.4)/3
     = -1.3 m/s

Answer
The x and y components of the average velocity are 1.4 m/s and -1.3 m/s respectively.

Final answer:

The x-and y-components of the squirrel's average velocity for the given time interval are 1.4 m/s and -1.3 m/s, respectively. These are found by dividing the changes in position by the time interval.

Explanation:

The student is asking for the calculation of the components of the average velocity of a squirrel over a time interval. To find these components, we use the formula for average velocity, which is given by the change in position (Δx and Δy) divided by the change in time (Δt). The changes in the x- and y-coordinates are found by subtracting the initial coordinates from the final coordinates.

The change in the x-coordinate (Δx) is

5.3 m - 1.1 m = 4.2 m

The change in the y-coordinate (Δy) is

-0.5 m - 3.4 m = -3.9 m

The change in time (Δt) is

t2 - t1 = 3.0 s - 0 = 3.0 s

Thus, the x-component of the average velocity is

Δx/Δt = 4.2 m/3.0 s = 1.4 m/s

and the y-component of the average velocity is

Δy/Δt = -3.9 m/3.0 s = -1.3 m/s.

What is the name of the imaginary line that lies 23 degrees south of the equator and marks the southern boundary of the area known as the tropics?

Answers

It is called the Tropic of Capricorn.

What is the speed of a transverse wave in a rope of length 2.00 m and mass 60.0 g under a tension of 500 n?

Answers

The formula we can use in this case would be:

v = sqrt (T / (m / l))

Where,

v = is the velocity of the transverse wave = unknown (?)

T = is the tension on the rope = 500 N

m = is the mass of the rope = 60.0 g = 0.06 kg

 l = is the length of the rope = 2.00 m

Substituting the given values into the equation to search for the speed v:
v = sqrt (500 N/(0.06 kg /2 m)) 
v = sqrt (500 * 2 / 0.06) 
v = sqrt (16,666.67) 
v = 129.10 m/s

In order to be considered a semi-conductor the material must
have insulator and conductor properties.
resist electron flow.
have ions that are negative and accept charges.
easily accept electron flow.

Answers

First one, for instance they become conductors or insulators depending on the temperature!

Answer:

<<<<Have insulator and conductor properties.

>>>>>is your answer

Explanation:

i just take the quiz

A spring has an unstretched length of 10 cm . It exerts a restoring force F when stretched to a length of 11 cm .

Answers

Given:
L = 10 cm, original length

Because the stretched length is 11 cm, the extension is
d = 11 - 10 = 1 cm

Let the spring constant be k N/cm
Then the restoring force is
F = (k N/cm)*(1 cm)
   = k N

Answer:
The restoring force is equal to the spring constant, measured in Newtons per centimeter.

(a). The restoring force in the spring will be [tex]3F[/tex]  if it is stretched to a length of [tex]\boxed{13\,{\text{cm}}}[/tex] .

(b). The restoring force in the spring will be [tex]2F[/tex]  if it is compressed to a length of [tex]\boxed{8\,{\text{cm}}}[/tex] .

Further Explanation:

When we compress or stretch a spring from its natural length, there is a restoring force developed in the spring due to the compression and stretching of the spring.

The restoring force experienced by the spring due to stretching is expressed as:

[tex]F=k\cdot\Delta x[/tex]                                                           …… (1)

Here, [tex]F[/tex]  is the restoring force developed in the spring, [tex]k[/tex]  is the spring constant of the spring and [tex]\Delta x[/tex]  is the length through which the spring is stretched.

The spring experiences a restoring force of  [tex]F[/tex] when it is stretched to a length of [tex]11\,{\text{cm}}[/tex]  from its natural length [tex]10\,{\text{cm}}[/tex] .

[tex]\begin{aligned}\Delta x&={x_f} - {x_i}\\&=0.10 - 0.11\\&=0.01\,{\text{m}}\\\end{aligned}[/tex]

Substitute the values of force and change in length in equation (1).

[tex]\begin{aligned}F&=k\cdot0.01\hfill\\k&=\frac{F}{{0.01}}\hfill\\\end{aligned}[/tex]

Part (a):

When the spring experiences a restoring force of [tex]3F[/tex] , then the stretched length of the spring should be:

[tex]3F=k.\Delta x[/tex]

Substitute [tex]\frac{F}{{0.01}}[/tex]  for [tex]k[/tex]  in above expression.

[tex]\begin{aligned}3F&=\frac{F}{{0.01}}\cdot\Delta x' \\\Delta x'&=3\times0.01\,{\text{m}}\\&=3\,{\text{cm}}\\\end{aligned}[/tex]

So, the stretched length of the spring becomes:

[tex]\begin{aligned}L&={x_o}+\Delta x' \\&=10\,{\text{cm}}+3\,{\text{cm}}\\&=13\,{\text{cm}}\\\end{aligned}[/tex]

Thus, the restoring force in the spring will be [tex]3F[/tex]  if it is stretched to a length of [tex]\boxed{13\,{\text{cm}}}[/tex] .

Part (b):

The restoring force of magnitude [tex]2F[/tex]  is experienced by the spring on compression. The change in length due to compression will be:

[tex]2F=k\cdot\Delta x''[/tex]

Substitute [tex]\frac{F}{{0.01}}[/tex]  for  [tex]k[/tex] in above expression.

[tex]\begin{aligned}2F&=\frac{F}{{0.01}}\cdot\Delta x''\\\Delta x''&=2\times0.01\,{\text{m}}\\&=2\,{\text{cm}}\\\end{aligned}[/tex]

So, the compressed length of the spring becomes:

[tex]\begin{aligned}L'&={x_o}-\Delta x''\\&=10\,{\text{cm}}-{\text{2}}\,{\text{cm}}\\&=8\,{\text{cm}}\\\end{aligned}[/tex]

Thus, the restoring force in the spring will be [tex]2F[/tex]  if it is compressed to a length of [tex]\boxed{8\,{\text{cm}}}[/tex] .

Learn More:

1. How far must you compress a spring with twice the spring constant to store the same amount of energy? Https://brainly.com/question/2114706

2. Max and Maya are riding on a merry-go-round that rotates at a constant speed https://brainly.com/question/8444623

3. It's been a great day of new, frictionless snow. Julie starts at the top of the 60 https://brainly.com/question/3943029

Answer Details:

Grade: High School

Subject: Physics

Chapter: Work and energy

Keywords:

Spring, unstretched length, compressed, stretched, restoring force, 3F, 11 cm, F=kx, natural length of spring.

When jump starting a vehicle, once the stalled vehicle is successfully started, remove the cables in the same order in which they were connected?

Answers

The statement “When you jump start a vehicle, if the stalled vehicle started, then you remove the cables in the same order in which they were connected”, is false.

 




Go through these steps before you even connect the cables:

1.     Both batteries should have the same polarity and same voltage.

2.     Never let the vehicles touch each other and your cars should be near enough to connect the cables.

3.     Turn off the lights, accessories, and ignition switch in both cars. Put the vehicles in neutral mode and make sure the parking brake is set. Also wear safety glasses.

4.     Never smoke. An explosion is possible if sparks and ear a battery.

5.     Don’t try to it the battery if the weak battery is frozen because it can explode.

6.     Be sure to be able to identify the positive and negative terminals of both batteries. You need to have enough room to clamp to the cable terminals.

A ball rolling down an incline has its maximum kinetic energy at

Answers

when its velocity is in maximum, that's just before it stops or before it continue movement on horizontal surface
Final answer:

A ball rolling down an incline has its maximum kinetic energy at the bottom of the incline because the potential energy is converted into kinetic energy as it descends down the slope.

Explanation:

In the context of Physics, a ball rolling down an incline has its maximum kinetic energy at the bottom of the slope. As the ball rolls downhill, potential energy (stored energy due to its position) is gradually converted into kinetic energy (the energy of motion). This is essentially the principle of conservation of energy. So, at the top of the incline, the ball's energy is primarily potential energy, but as it descends, it gains speed and thus kinetic energy. At the bottom of the slope, all the potential energy has been converted to kinetic energy, hence it is at its maximum. Friction and air resistance could decrease the kinetic energy slightly, but when neglecting these factors, the ball's kinetic energy is greatest at the lowest point.

Learn more about Kinetic Energy here:

https://brainly.com/question/33783036

#SPJ11

Two people are rowing a boat at a speed of 9 m/s. in 3 seconds, they dock the boat at a pier. what is the boatâs acceleration?

Answers

Acceleration is a measure of how fast a subject or object has changed its speed over a course of time. This parameter may take a positive value if the speed is increased and negative if the speed is decreased. The latter is rather called deceleration.
With this being said, the acceleration is calculated by dividing the speed by the given time. That is,

acceleration = speed / time

Substituting the known values,
 
acceleration = (9 m/s) / (3 s) 
acceleration = 3 m/s²

Since the boat is docked this means that the speed is reduced. The value then becomes -3m/s². 

Therefore, the boat in this item has an acceleration of -3 m/s². 

The finding that attention can spread within an object, thereby, enhancing detection at other places within the object is referred to as _____.

a. ?spatial drift

b. ?spreading activation

c. ?same-object advantage

d. ?object location invariance

Answers

The finding that attention can spread within an object, thereby, enhancing detection at other places within the object is referred to as same-object advantage effect (SOA). The effect is that the performance of observers who are judging two targets is better (faster and/or more accurately) when they are from the same object than when they are from different objects.

Final answer:

The phenomenon where attention can enhance detection within other parts of the same object is known as the same-object advantage (option c), based on multisensory integration patterns where multisensory enhancement is more likely when stimuli are related spatially and temporally.

Explanation:

The finding that attention can spread within an object, thereby, enhancing detection at other places within the object is referred to as same-object advantage (option c). This concept implies a form of multisensory integration where sensory processing is enhanced for different parts of a single object when compared to processing parts of different objects. This pattern is based on the principle that multisensory enhancement occurs when the sources of stimulation are spatially and temporally related to one another, contributing to the ability to detect stimuli more efficiently when they occur within the same object.

How much would you have to raise the temperature of a copper wire (originally at 20 ?c) to increase its resistance by 18 % ? the temperature coefficient of resistivity of copper is 0.0068 (?c)?1?

Answers

The equation for how temperature changes the resistance R is: 

R=R₀(1+α(T-T₀)), where R₀ is the resistance at T₀=20°C, T is the temperature for which we want to calculate the resistance and α is the temperature coefficient for resistance. 

The resistance of the copper wire increases by 18% or by 0.18, so the new value for the resistance is R=1.18*R₀.

T₀=20°C
=0.0068
R=1.18*R₀

Now we need to input that into the equation for resistance change and solve for temperature T.  

1.18R₀=R₀(1+α(T-20)), R₀ cancels out,

1.18=1+α(T-20),

1.18-1=α(T-20), we divide by α,

0.18/α=T-20, we put 20 on the left side,

26.47+20=T

T=46.47°C

So the temperature on which the resistance of copper wire will increase by 18% is T=46.47°C. 

To increase the resistance of the copper wire by 18%, the temperature will be increase to 46.47 °C

Data obtained from the question Original temperature (T₁) = 20 °C Original resistance (R₁) = RNew resistance (R₂) = 18% increase = 1.18RCoefficient of resistivity (α) = 0.0068 °C¯¹New temperature (T₂) =?

How to determine the new temperature

α = R₂ – R₁ / R₁(T₂ – T₁)

0.0068 = 1.18R – R / R(T₂ – 20)

0.0068 = 0.18R / R(T₂ – 20)

0.0068 = 0.18 / (T₂ – 20)

Cross multiply

0.0068 (T₂ – 20) = 0.18

Divide both side by 0.0068

T₂ – 20 = 0.18 / 0.0068

T₂ – 20 = 26.47

Collect like terms

T₂ = 26.47 + 20

T₂ = 46.47 °C

Learn more about linear expansion:

https://brainly.com/question/23207743

Cora, an electrician, wraps a copper wire with a thick plastic coating. What is she most likely trying to do?
keep the electric potential of the wire balanced
decrease the wire’s resistance
increase the voltage produced by the wire
keep a current from passing out of the wire

p.s. if you're good at physics pm me, could use some help on a quiz.

Answers

The correct answer among the choices given is the last option. Cora wrapping the copper wire with a thick plastic coating keeps a current from passing out a wire. The plastic wire here serves as an insulator. An insulator is a material that prevents electricity or current to flow out the circuit. In order to lessen the loss of energy.

HOPE THIS HELPS!

Insulators are often defined as materials that do not allow electricity to flow through them. She wants to stop the flow of current out from the wire.

What is an insulator?

Insulators are commonly employed in physics. Insulators are often defined as materials that do not allow electricity to flow through them.

Insulators are also referred to as poor electrical conductors. We may discover various instances of these insulators in our daily lives. Insulators include materials such as paper, glass, rubber, and plastic.

From the following observation, we come to the result that she wants to make a insulator.

Hence the option d is correct .

To learn more about the insulator refer to the link;

https://brainly.com/question/24909989

It is desired that 7.7 mc of charge be stored on each plate of a 5.3 mf capacitor. what potential difference is required between the plates?

Answers

In physics, the elements in a circuit could involve a resistor-capacitor, resistor-inductor, or just solely their own type of circuit. For a resistor-capacitor or RC circuit, the potential difference or voltage induced between the parallel plates of a capacitor is related by this equation:

Q = C × V, where

Q is charge in Coulombs
C is the capacitance in Faradays
V is the voltage in volts

Substituting the values, 

7.7×10⁻³ C = 5.3×10⁻³ F * V
V = 1.45 volts

My trip to work is 120 miles. if i go 8 mph faster than my usual speed, i'll get to work 30 minutes earlier. how long does my trip take, in hours, if i go my usual speed?

Answers

Let x be the time it takes for the trip to be completed given that the speed is y.

When the time is 30 minutes (equal to 0.5 hour) shorter than x, the speed is 8 mph more than the original speed. 

The equations that would best represent the given conditions are:
      (1)             120 = (x)(y)
      (2)              120 = (x - 0.5)(y + 8)

Simplifying,
                       y = 120/x
Substitute:
                    120 = (x - 0.5)(120/x + 8)

The value of x from the equation is 3. Thus, if I go with the usual speed, the time it will take me to finish the trip is approximately 3 hours. 

Answer: Hello!

The total distance is 120 miles, and you know that if you go 8 mi/h faster than usual you get there 30(or 0.5 hours) minutes early.

So if v is your usual speed, and t is your usual time, we have the next equations:

1) v*t = 120mi

2) (v + 8mi/h)*(t - 0.5h) = 120 mi

In equation (1) we can write v as a function of t; this is v = 120mi/t, and replace it in the second equation.

(v + 8)*(t - 0.5) = 120

(120/t + 8)(t - 0.5) = 120

120 + 8*t -60/t - 4 = 120

8*t -60/t - 4 = 0

now we need to obtain the value of t. Multiplying by t in both sides we have:

8*t^2 -60 - 4t = 0

Now we can use Bhaskara to obtain the two possible values for t:

[tex]t = \frac{4 +- \sqrt{16 +4*60*8} }{16} = \frac{4+-\sqrt{1936} }{16}  = \frac{4 +-44}{16}[/tex]

So we have two solutions: [tex]t = \frac{4+44}{16} = 3h[/tex] and [tex]t = \frac{4 -44}{16} = -2.5h[/tex].

The second is a negative time, so this has no sense; then we only took the first solution; when you go at your usual speed, your trip takes 3 hours.

A carnot engine rejects 80 mj of energy every hour by transferring heat to areservoir at 10°c. determine the temperature of the high-temperature reservoir and the power produced if the rate of energy addition is 40 kw.

Answers

The Carnot engine is a heat engine that operates based on the reversible Carnot cycle. It is perceived as the ideal heat engine. To determine the temperature and the power that is produced by the Carnot engine, we make use of the definition of its efficiency. 

Efficiency = net work / heat in
     where net work = heat in - heat out
 Efficiency = heat in - heat out / heat in
                 = 1 - heat out / heat in = 1 - Tl / Th

where Tl is the temperature that is colder and Th is the hotter temperature.

heat out = 80 MJ / hr ( 1x10^6 J / 1 MJ ) ( 1 hr / 3600 s ) ( 1 KJ / 1000 J )= 22.22 KJ / s = 22.22 kW = power produced
heat in = 40 kW


 Efficiency = 1 - heat out / heat in = 1 - (22.22 / 40) = 0.4445
0.4445 = 1 - (10+273.15) / Th
Th = 509.72 K = 236.57 degrees Celsius


Final answer:

The temperature of the high-temperature reservoir of a Carnot engine releasing 80 MJ/hour to a 10°C reservoir and receiving energy at the rate of 40 kW is approximately 510.72 K. The power produced by this engine is approximately 17.78 kW.

Explanation:

The temperature of the high-temperature reservoir of the Carnot Engine can be determined using Carnot's theorem, which states that Qc/Qh=Tc/Th or its simplified version, efficiency (Eff) = 1 - (Tc/Th) for a Carnot engine. Given the energy released by the engine (Qc) as 80 MJ/hour or 22.22 kW, and the rate of energy addition (Qh) as 40 kW, we can determine the temperature of the high-temperature reservoir (Th) from the ratio of these values and the known temperature of the cold reservoir (Tc) of 10°C or 283.15 Kelvin (K).

To achieve this, we first determine the engine's efficiency. Given Qc and Qh, we have Eff = 1 - (Qc/Qh) = 1 - (22.22 kW / 40 kW) = 0.445 (or 44.5%). Applying this to the efficiency formula, 'Eff = 1 - (Tc/Th)', we can rearrange this to find 'Th = Tc / (1 - Eff) = 283.15 K / (1 - 0.445) = 510.72 K'. Hence, the temperature of the high-temperature reservoir is approximately 510.72 K.

The power produced is the difference between the energy added and the energy rejected, so Power = Qh - Qc = 40 kW - 22.22 kW = 17.78 kW.

Learn more about Carnot Engine here:

https://brainly.com/question/14680478

#SPJ3

A 12 n cart is moving on a horizontal surface with a coefficient of kinetic friction of 0.20. what force of friction must be overcome to keep the object moving at a constant velocity?

Answers

We must remember that the total net force equation at constant velocity is:

F – Ff = 0

of

F - µN = 0

Using Newton's 2nd Law of Motion:

F = m a 

Where,

F = net force acting on the body 
m = mass of the body 
a = acceleration of the body 

Since the cart is moving at a constant velocity, then acceleration is zero, hence the working equation simplifies to 

F = net Force = 0 

Therefore, 

F - µN = 0 

where 

µ = coefficient of friction = 0.20 
N = normal force acting on the cart = 12 N 

Therefore, 

F - 0.20(12) = 0 

F = 2.4 N 

The drawing (not to scale) shows one alignment of the sun, earth, and moon. the gravitational force vector f sm that the sun exerts on the moon is perpendicular to the force vector f em that the earth exerts on the moon. the masses are: mass of sun = 1.99 1030 kg, mass of earth = 5.98 1024 kg, mass of moon = 7.35 1022 kg. the distances shown in the drawing are rsm = 1.5 1011 m and rem = 3.85 108 m. determine the magnitude of the net gravitational force on the moon.

Answers

Solution:

Ms = 1.99 × 1030 kg− mass of Sun;

Me = 5.98 × 1024kg− mass of Earth;

Mm = 7.35 × 1022kg − mass of Moon;

rSM = 1.50 × 1011m − distance to the Moon from the Sun;

rEM = 3.85 × 108m − distance to the Moon from the Earth;

 

The gravitational force that acts on the Moon by the Earth (Law of Gravity):

 

[tex]F_{e} = G \frac {M_{e} * M_{m} } {r^{2}_{EM}} = 6.67 x 10^{-11} N * (\frac {m} {kg})^{2}*\frac {5.98 * 10^{24} kg * 7.35 * 10^{22} kg} {(3.85 x 10^{8}m)^{2}} = 1.98 * 10^{20} N[/tex]

The gravitational force that acts on the Moon by the Sun (Law of Gravity):

[tex]F_{S} = G \frac {M_{s} * M_{m} } {r^{2}_{EM}} = 6.67 x 10^{-11} N * (\frac {m} {kg})^{2}*\frac {1.99 * 10^{30} kg * 7.35 * 10^{22} kg} {(1.50 x 10^{11}m)^{2}} = 4.34 * 10^{20} N[/tex]

Net gravitational force on the moon:

[tex]F = F_{e} + F_{s} [/tex]

Pythagorean theorem for a right triangle ABC:

 

[tex]F = \sqrt {F^{2}_{S} + F^{2}_{e}} = \sqrt {(1.98 * 10^{20}N)^{2} + (4.34 * 10^{20} N)^{2}} = 4.77 * 10^{20}N[/tex]

Answer: Answer: magnitude of the net gravitational force on the moon is 4.77 × [tex]10^{20} [/tex]N.

Final answer:

The net gravitational force on the moon due to the earth and sun can be calculated using Newton's Law of Universal Gravitation. We apply this law to both the earth-moon and sun-moon systems, and the net force is the vector sum of these two forces.

Explanation:

The net gravitational force exerted on the moon by the sun and the earth can be calculated using Newton's law of gravitation, which states that the force between two objects is proportional to the product of their masses divided by the square of the distance between them. We use this law twice: once for the earth-moon system and once for the sun-moon system.

For the Earth-Moon system: F_EM = (G * mass of earth * mass of moon) / (distance from earth to moon)². Given the values in the problem, this amounts to F_EM = (6.67 * 10⁻¹¹ N.m²/kg² * 5.98 * 10²⁴ kg * 7.35 * 10²² kg) / (3.85 * 10⁸ m)².

For the Sun-Moon system: F_SM = (G * mass of sun * mass of moon) / (distance from sun to moon)². Again, substituting the given values we have F_SM = (6.67 * 10⁻¹¹ N.m²/kg² * 1.99 * 10³⁰ kg * 7.35 * 10²² kg) / (1.5 * 10¹¹ m)².

The net gravitational force on the moon is given by the vector sum of these two forces, which form a right angle, due to the geometry of the situation. Hence, the net force is the hypotenuse of a right triangle with sides F_EM and F_SM, and can be calculated using Pythagoras' Theorem: Net Force = √(F_EM² + F_SM²).

Learn more about Net gravitational force on moon here:

https://brainly.com/question/31112265

#SPJ3

Mikes car can accelerate from 0 mph to 40mph in 5 seconds what is the acceeration of his car in miles per hour per second

Answers

40/5=8. His speed increases 8mph/second :)

A steel cylinder with a moveable piston on top is filled with helium (He) gas. The force that the piston exerts on the gas is constant, but the volume inside the cylinder doubles, pushing the piston up. Which of the following answers correctly states the cause for the change described in the scenario? The temperature increased. The density of the helium atoms decreased. The pressure decreased. The helium atoms increased in size.

Answers

Assuming that Helium behaves as an ideal gas, that means that the Helium molecules have no intermolecular forces. They move freely without depending on one another's energy. We can use the ideal gas equation:

PV = nRT, where

P = pressure
V = volume
n=number of moles of gas
R = gas constant equal to 8.314 J/mol-K
T = absolute temperature

If pressure is kept constant, and we assume that the system is closed such that no moles are added or escaped, then the equation becomes

P/nR = T/V = k, where the k denotes constant. Therefore,

T = kV

So, when the volume doubles, the only reason for this is the increase also of temperature. This is because temperature is directly proportional to the volume of the gas. The answer is: The temperature increased. 

How long will it take you to pass a truck at 60 mph with oncoming traffic?

Answers

This is impossible to calculate without knowing the speed of each vehicle. 

Answer:

4 seconds - Not practical

Explanation:

Length of the truck = 50'

Initial distance behind the truck = 30'

Finish Pass = 50' ahead of truck ,

Pass at =  60mph -- about 3.375 seconds.

- 70mph your closing speed is 130mph.  

If you were less than a 1/4 mile away when you tried the pass you will be dead.

That would be a quick pass.  You will probably want a mile beyond the oncoming traffic.

The number of hours of daylight at any place on earth depends on

Answers

the position that place, and the position of earth.

Explain why the mean and standard deviation are not appropriate for particle size distributions

Answers

The mean is the average of the sample data, while standard deviation is the average of the differences of each data to the mean. This could only be valid if there is a normal distribution. This distribution pertains to a bell-shaped frequency graph. However, in particle size distribution, the frequency of the sizes is rarely concentrated on the medium or middle size. It may be skewed to the left or skewed to the right. So, the mean and standard deviation is not a good measure for this type of distribution.

The mean and standard deviation are not appropriate for particle size distributions due to non-normal distributions, irregular particle shapes, discrete measurement methods, and differences in weighting methods that aren't captured by standard parametric statistics like mean and deviation.

The mean and standard deviation are not always appropriate for describing particle size distributions because particle sizes are often not normally distributed. In the case of particle size distribution, there can be significant skewness or a high level of kurtosis, leading to a distribution that significantly deviates from normality. Additionally, particles may be irregularly shaped, which affects how their size is represented and measured. When particle size is based on sieves, the analysis becomes discrete rather than continuous, which can limit the utility of standard deviation. Furthermore, different weighting methods, like number weighted distribution or intensity weighted distribution, significantly affect the representation of particle size, which the mean and standard deviation do not properly account for.

Moreover, in dynamic light scattering (DLS) methods, the assumption is made that particles are spherical and the distribution is monomodal, which might not hold true for all particle systems. Since the mass of a particle is proportional to the cube of its radius, if particles are crushed to become smaller, a sample with the same number of particles represents a significantly different mass, affecting the representativeness of mean and standard deviation.

Particle shape also influences the determination of size as particles often deviate from sphericity. The equivalent spherical diameter (ESD) used in dynamic measurements may vary, reflecting a limitation for standard mean and deviation metrics. Due to these complexities, particle size distributions are often better described using median particle sizes (such as D50) and span, a dimensionless number that provides insight into the width of size distribution.

Two spaceships that have different masses but rocket engines of identical force are at rest in space. if they fire their rockets at the same time, which ship will speed up faster

Answers

The ship that will speed up faster if they fire their rockets at the same time is; The one with the lower mass

Rocket Propulsion

We are told that;

There are two spaceships

Each spaceship has different masses

Each spaceship has rocket engines of identical force.

We know that formula for force is;

F = ma

Thus, if force is constant, the higher the mass, the lesser the acceleration and also the lesser the speed. Thus, the lower the mass the faster the speed.

This means the spaceship that will speed up faster will be the one with lesser mass.

Read more on Rocket Propulsion at; https://brainly.com/question/20832283

A jet plane is flying at a constant altitude. at time t1=0 it has components of velocity vx= 94 m/s , vy= 110 m/s . at time t2= 33.5 s the components are vx= 175 m/s , vy= 45 m/s . part a for this time interval calculate the average acceleration. give your answer as a pair of components separated by a comma. for example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. express your answer using two significant figures.

Answers

The average acceleration components of the jet plane for the given time interval are approximately 2.4, -1.9 m/s², calculated using the change in velocity components divided by the time interval.

To calculate the average acceleration of a jet plane flying at a constant altitude with given velocity components at two different times, we use the formula for average acceleration: a = (v_f - v_i) / Δt, where a is the average acceleration, v_f is the final velocity, v_i is the initial velocity, and Δt is the change in time.

Given the initial velocity components at t1=0 are v_x1 = 94 m/s and v_y1 = 110 m/s, and the final velocity components at t2=33.5 s are v_x2 = 175 m/s and v_y2 = 45 m/s, we can calculate the average acceleration components as follows:

Average acceleration in the x-direction: a_x = (v_x2 - v_x1) / Δt = (175 m/s - 94 m/s) / 33.5 s = 2.42 m/s²Average acceleration in the y-direction: a_y = (v_y2 - v_y1) / Δt = (45 m/s - 110 m/s) / 33.5 s = -1.94 m/s²

Therefore, the average acceleration components for the time interval are approximately 2.4, -1.9 m/s².

Is grass abiotic or biotic

Answers

Grass would be biotic. Its a living thing.
biotic Hope this helps:)

A gasoline engine operates at a temperature of 270°c and exhausts at 180°c. calculate the maximum efficiency of this engine. (note that the celsius scale is used.)

Answers

Given:
Th = 270 °C = 270+273 = 543 K, hot temperature
Tc = 180 °C = 180+273 = 453 K, cold temperature

According to the Carnot theorem, the maximum efficiency achievable by a heat engine between a hot and cold temperature is
η = 1 - Tc/Th
   = 1 - 453/543
   = 0.166 = 17% (approx)

Answer:  17%  (nearest integer)

16.6 is the answer. Not 17.0 do not round.



What should you do if your boat capsizes answers?

Answers

Many of the boating fatalities take place after capsize, but a modest list of things to do before and after a capsize can minimize boat accidents and boat accident injuries. 

Initially there is an significant list of thing to do before you even step on the boat:

1. Take the boat safety and water safely courses
2. Make certain that yourself and everyone else on the boat is wearing a well-fitting and safe life jacket.
3. Go over the place of the safety items with everyone on the boat as well as the location of the horn of the boat and the flare of the boat.
4. Paint bright color the hull of the boat in order to be seen easily from the air.

After a capsize, there are significant steps to make

1. Stay calm
2. Execute a head count and check everybody for injuries or immediate dangers.
3. Ensure that everyone has floatation device that coolers and other items that can be used. 
4. Stay in the capsized boat unless dangerous.
5. Try to right the boat if someone has a knowledge on how to do so.
6. Use signal devices such as flares, bright colored life jacket, whistles, flashlights and mirror.
7. Try to reboard or climb onto it in order to get as much of your body out of the cold water as possible because treading water will ground to lose body heat sooner. 
8. Do not waste energy and only signal when needed. Try to keep warm and stay strong
Final answer:

If your boat capsizes, stay calm, hold on to the boat, signal for help, and wait for rescuers. Make sure to wear a life jacket when boating to increase your chances of survival.

Explanation:

If your boat capsizes, follow these steps:

Stay calm: It's important to stay calm and avoid panicking in this situation. Panicking can make it harder to make rational decisions.Hold on to the boat: Try to grab onto the boat and hold on to it. This will help keep you afloat and make it easier for rescuers to find you.Signal for help: Use any available signaling devices, such as whistles, flares, or flashing lights, to attract the attention of rescuers.Wait for help: Stay with the boat and wait for help to arrive. It may take some time, but rescuers will eventually find you.

Remember, it's important to always wear a life jacket when boating to increase your chances of survival in the event of a capsizing.

Learn more about Boat Capsizing here:

https://brainly.com/question/3915586

#SPJ6

A 132 g piece of nickel is heated to 100.0 °c in a boiling water bath and then dropped into a beaker containing 877 g of water (density = 1.00 g/cm3) at 5.0 °c. what was the final temperature of the nickel and water after thermal equilibrium was reached

Answers

The answer is attached.

The final temperature of nickel and water having a mass of 132g and 877g and after thermal equilibrium was reached is 6.5 °C.

What is temperature?

The density is the mass of a material substance per unit volume. d = M/V, where d is density, M is mass, and V is volume, is the formula for density. Grams per cubic centimeter are a typical unit of measurement for density.

As an illustration, the density of Earth is 5.51 grams per cubic centimeter, whereas the density of water is 1 gram per cubic centimeter.

Given:

A 132 g piece of nickel is heated to 100.0 °C,

The quantity of water = 877 g,

The temperature of water = 5 °C,

Calculate the final temperature as shown below,

[tex]m_1c_1\Delta t_1 = m_2c_2\Delta t_2[/tex]

0.132 × 444(100 - t) = 0.877 × 4186 (t - 5)

Here, t is the final temperature of nickel and water,

58.608 (100 - t) = 3671.12 (t - 5)

100 - t = 62.64 (t - 5)

100 - t = 62.64t - 313.19

t = 413.19 /

t = 6.49 or 6.5 °C

Thus, the final temperature is 6.5 °C.

To know more about Density:

https://brainly.com/question/6329108

#SPJ5

Other Questions
Find the maximum and minimum values of f(x,y) = 8x+y for the polygonal convex set having vertices at (0, 0), (4, 0), (3, 5), (0, 5). who did the europeans get coffee from and how did it spread to europe Why is the United States Constitution called a living document an athenian education focused on preparation for A type of conflict resolution supervisors would use to satisfy their own needs at the expense of the other party by using their formal authority is ________. Why are chewing tobacco and snuff often-called spitting tobacco? The charge of each titanium ion in the ionic compound TiO2 is ____________________. Discuss the structure of Tans essay Mother Tongue. Note how the essay blurs the line between nonfiction essay and narrative form. Why do you think Tan chose this structure? How do you think such a form influences the development of ideas in the essay? Do you think it is an effective form? Why or why not? Signs of a sprain, fracture, or dislocation might includeA: BruisingB: PainC: SwellingD: All of the Above These statements describe the relationship between poverty and the environment in Sub-Saharan Africa. Choose all that apply. A.People depend heavily on the land for their basic needs. B. Poor people are able to spend a lot of time on environmental concerns. C. Survival needs come before environmental protection efforts. D. Most of the region's poor people live in urban areas. Which of the following sentences contains a misplaced modifier?A. Stacey stood on the stage. She wore a blue dress.B. Stacey stood on the stage wearing a blue dress.C. Stacey, wearing a blue dress, stood on the stage.D. Wearing a blue dress, Stacy stood on the stage. which of the following is the best evidence that cold war fears affected American civil liberties during the 1950's Elwood goes to a therapist for treatment of his severe depression. his therapist focuses on the beliefs, attitudes, and automatic types of thinking that appear to be compounding elwood's depression. his therapist is practicing ______. Our ______ is part of a network of blood vessels that distribute and collect materials from throughout the body. Find the area of the circle with the given radius or diameter. Use = 3.14.r = 6A =37.68 sq. units113.04 sq. units226.08 sq. units How were African Americans affected by the Reconstruction Aamendments and Black Codes? Which type of action was used by the Red Power movement more than any other? (2 points) A) boycotts B) strikes C) occupations D) freedom rides Which statement is false? A.The all them of a regular polygon is perpendicular to the side. B.the radius of a regular polygon is always greater than the all them. C.the perimeter of a regular hexagon is 6r. D.the perimeter of a regular n-gob is the area divided by the all them. La sur reoit des magazines __________. journaliers hebdomadaires mensuels annuels Elle est connue ___________ pour ses ides sur la mode. au magasin en ville l'cole la piscine Elle coute la radio ___________. le matin le midi l'aprs-midi le soir Pour faire du sport elle va ______________. la piscine au stade au terrain de foot au parc Elle utilise ______________ pour contacter la radio. l'internet son portable un courriel une lettre What is the best translation for the following sentence?The fish embroidery is more colorful than the flowered one.El bordado de pez tiene ms color que el bordado de flor.El bordado de pez tiene menos color que el bordado de flor.El bordado de flor tiene ms color que el bordado de pez. Steam Workshop Downloader